complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | image | def image(self) -> ImageTk.PhotoImage:
assert self._preview_image_tk is not None
return self._preview_image_tk
| 2e8ef5e3c8f2df0f1cca9b342baa8aaa6f620650 | 7 | image.py | 35 | GUI - Preview updates
- Training preview. Embed preview pop-out window
- Bugfix - convert/extract previews | 21,352 | 0 | 32 | 21 | 10 | 101,978 | 11 | faceswap | 5 | lib/gui/utils/image.py | Python | 4 | {
"docstring": ":class:`PIL.ImageTk.PhotoImage` The preview image for displaying in a tkinter canvas ",
"language": "en",
"n_whitespaces": 10,
"n_words": 10,
"vocab_size": 10
} | https://github.com/deepfakes/faceswap.git |
|
11 | _join_by_index | def _join_by_index(self, other_modin_frames, how, sort, ignore_index):
if how == "outer":
raise NotImplementedError("outer join is not supported in HDK engine")
lhs = self._maybe_materialize_rowid()
reset_index_names = False
for rhs in other_modin_frames:
rhs = rhs._maybe_materialize_rowid()
if len(lhs._index_cols) != len(rhs._index_cols):
raise NotImplementedError(
"join by indexes with different sizes is not supported"
)
reset_index_names = reset_index_names or lhs._index_cols != rhs._index_cols
condition = lhs._build_equi_join_condition(
rhs, lhs._index_cols, rhs._index_cols
)
exprs = lhs._index_exprs()
new_columns = lhs.columns.to_list()
for col in lhs.columns:
exprs[col] = lhs.ref(col)
for col in rhs.columns:
# Handle duplicating column names here. When user specifies
# suffixes to make a join, actual renaming is done in front-end.
new_col_name = col
rename_idx = 0
while new_col_name in exprs:
new_col_name = f"{col}{rename_idx}"
rename_idx += 1
exprs[new_col_name] = rhs.ref(col)
new_columns.append(new_col_name)
op = JoinNode(
lhs,
rhs,
how=how,
exprs=exprs,
condition=condition,
)
new_columns = Index.__new__(
Index, data=new_columns, dtype=self.columns.dtype
)
lhs = lhs.__constructor__(
dtypes=lhs._dtypes_for_exprs(exprs),
columns=new_columns,
index_cols=lhs._index_cols,
op=op,
force_execution_mode=self._force_execution_mode,
)
if sort:
lhs = lhs.sort_rows(
lhs._index_cols,
ascending=True,
ignore_index=False,
na_position="last",
)
if reset_index_names:
lhs = lhs._reset_index_names()
if ignore_index:
new_columns = Index.__new__(RangeIndex, data=range(len(lhs.columns)))
lhs = lhs._set_columns(new_columns)
return lhs
| e5b1888cd932909e49194d58035da34b210b91c4 | 16 | dataframe.py | 498 | FEAT-#4946: Replace OmniSci with HDK (#4947)
Co-authored-by: Iaroslav Igoshev <[email protected]>
Signed-off-by: Andrey Pavlenko <[email protected]> | 36,066 | 0 | 912 | 315 | 113 | 154,556 | 171 | modin | 44 | modin/experimental/core/execution/native/implementations/hdk_on_native/dataframe/dataframe.py | Python | 57 | {
"docstring": "\n Perform equi-join operation for multiple frames by index columns.\n\n Parameters\n ----------\n other_modin_frames : list of HdkOnNativeDataframe\n Frames to join with.\n how : str\n A type of join.\n sort : bool\n Sort the result by join keys.\n ignore_index : bool\n If True then reset column index for the resulting frame.\n\n Returns\n -------\n HdkOnNativeDataframe\n The new frame.\n ",
"language": "en",
"n_whitespaces": 188,
"n_words": 55,
"vocab_size": 43
} | https://github.com/modin-project/modin.git |
|
9 | _get_suitable_downloader | def _get_suitable_downloader(info_dict, params={}):
# if (info_dict.get('start_time') or info_dict.get('end_time')) and not info_dict.get('requested_formats') and FFmpegFD.can_download(info_dict):
# return FFmpegFD
external_downloader = params.get('external_downloader')
if external_downloader is not None:
ed = get_external_downloader(external_downloader)
if ed.can_download(info_dict):
return ed
protocol = info_dict['protocol']
if protocol.startswith('m3u8') and info_dict.get('is_live'):
return FFmpegFD
if protocol == 'm3u8' and params.get('hls_prefer_native') is True:
return HlsFD
if protocol == 'm3u8_native' and params.get('hls_prefer_native') is False:
return FFmpegFD
return PROTOCOL_MAP.get(protocol, HttpFD)
__all__ = [
'get_suitable_downloader',
'FileDownloader',
]
| 92d73ef3936ed6de9770f613fddf2260731becc9 | 10 | __init__.py | 200 | [niconico] Implement heartbeat for download | 22,343 | 0 | 153 | 105 | 40 | 106,288 | 69 | youtube-dl | 15 | youtube_dl/downloader/__init__.py | Python | 14 | {
"docstring": "Get the downloader class that can handle the info dict.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | https://github.com/ytdl-org/youtube-dl.git |
|
1 | test_having_condition_with_preventing_aggregate_metrics_only | def test_having_condition_with_preventing_aggregate_metrics_only(self):
response = self.do_request(
{
"field": ["transaction", "project", "p50(transaction.duration)"],
"query": "event.type:transaction p50(transaction.duration):<50",
"dataset": "metrics",
"preventMetricAggregates": "1",
"per_page": 50,
"project": self.project.id,
}
)
assert response.status_code == 400, response.content
| d3b8c9dd7bef6bccb5e70d2ccf3cda8463444a34 | 12 | test_organization_events_mep.py | 109 | chore(discover): Cleanup events tests (#36797)
- Delete the deprecated eventsv2 tests
- Move MEP tests to its own file | 18,970 | 0 | 168 | 59 | 28 | 93,148 | 28 | sentry | 8 | tests/snuba/api/endpoints/test_organization_events_mep.py | Python | 12 | {
"docstring": "same as the previous test, but with the dataset on explicit metrics\n which should throw a 400 error instead",
"language": "en",
"n_whitespaces": 25,
"n_words": 19,
"vocab_size": 18
} | https://github.com/getsentry/sentry.git |
|
4 | test_unknown_sequence_followed_by_known_sequence | def test_unknown_sequence_followed_by_known_sequence(parser, chunk_size):
unknown_sequence = "\x1b[?"
known_sequence = "\x1b[8~" # key = 'end'
sequence = unknown_sequence + known_sequence
events = []
parser.more_data = lambda: True
for chunk in chunks(sequence, chunk_size):
events.append(parser.feed(chunk))
events = list(itertools.chain.from_iterable(list(event) for event in events))
assert [event.key for event in events] == [
"circumflex_accent",
"left_square_bracket",
"question_mark",
"end",
]
| 3f0955cbe5405bdb3d1dda756ee3a1e000695dff | 12 | test_xterm_parser.py | 156 | fix tests | 44,934 | 0 | 117 | 92 | 36 | 185,184 | 51 | textual | 18 | tests/test_xterm_parser.py | Python | 15 | {
"docstring": "When we feed the parser an unknown sequence followed by a known\n sequence. The characters in the unknown sequence are delivered as keys,\n and the known escape sequence that follows is delivered as expected.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 34,
"vocab_size": 26
} | https://github.com/Textualize/textual.git |
|
1 | test_block_tag | def test_block_tag(self):
user = self.get_staff()
page = create_page('Test', 'col_two.html', 'en', published=True)
ex1 = Example1(
date_field=datetime.date(2012, 1, 1),
**FOUR_CHARS
)
ex1.save()
# This template does not render anything as content is saved in a
# variable and never inserted in the page
template_text =
request = self.get_page_request(page, user, edit=True)
response = detail_view(request, ex1.pk, template_string=template_text)
self.assertNotContains(
response,
'<template class="cms-plugin cms-plugin-start cms-plugin-{0}-{1}-{2} cms-render-model-icon"></template>'
'<img src="/static/cms/img/toolbar/render_model_icon.png">'
'<template class="cms-plugin cms-plugin-end cms-plugin-{0}-{1}-{2} cms-render-model-icon">'
'</template>'.format(
'placeholderapp', 'example1', ex1.pk
)
)
# This template does not render anything as content is saved in a
# variable and inserted in the page afterwards
template_text =
request = self.get_page_request(page, user, edit=True)
response = detail_view(request, ex1.pk, template_string=template_text)
# Assertions on the content of the block tag
self.assertContains(
response,
'<template class="cms-plugin cms-plugin-start cms-plugin-{}-{}-{} '
'cms-render-model cms-render-model-block">'.format(
'placeholderapp', 'example1', ex1.pk
)
)
self.assertContains(response, f'<h1>{ex1.char_1} - {ex1.char_2}</h1>')
self.assertContains(response, '<span class="date">%s</span>' % (ex1.date_field.strftime("%Y")))
self.assertContains(
response, '<a href="%s">successful if</a>\n \n<template' % (reverse('detail', args=(ex1.pk,)))
)
# This template is rendered directly
template_text =
request = self.get_page_request(page, user, edit=True)
response = detail_view(request, ex1.pk, template_string=template_text)
# Assertions on the content of the block tag
self.assertContains(
response,
'<template class="cms-plugin cms-plugin-start cms-plugin-{}-{}-{} cms-render-model '
'cms-render-model-block">'.format(
'placeholderapp', 'example1', ex1.pk
)
)
self.assertContains(response, f'<h1>{ex1.char_1} - {ex1.char_2}</h1>')
self.assertContains(response, '<span class="date">%s</span>' % (ex1.date_field.strftime("%Y")))
self.assertContains(
response, '<a href="%s">successful if</a>\n \n<template' % (reverse('detail', args=(ex1.pk,)))
)
# Changelist check
template_text =
request = self.get_page_request(page, user, edit=True)
response = detail_view(request, ex1.pk, template_string=template_text)
# Assertions on the content of the block tag
self.assertContains(
response,
'<template class="cms-plugin cms-plugin-start cms-plugin-{}-{}-changelist-{} cms-render-model '
'cms-render-model-block"></template>'.format(
'placeholderapp', 'example1', ex1.pk
)
)
self.assertContains(
response,
"edit_plugin: '{}?language={}&edit_fields=changelist'".format(
admin_reverse('placeholderapp_example1_changelist'), 'en'
)
)
| b8750ebc0ebaa52ec51945f1d4824a80d806f479 | 14 | test_toolbar.py | 672 | ci: sync isort line length (#7353) | 17,440 | 0 | 921 | 379 | 97 | 82,563 | 254 | django-cms | 31 | cms/tests/test_toolbar.py | Python | 114 | {
"docstring": "{% extends \"base.html\" %}\n{% load cms_tags %}\n\n{% block content %}\n{% render_model_block instance as rendered_model %}\n {{ instance }}\n <h1>{{ instance.char_1 }} - {{ instance.char_2 }}</h1>\n {{ instance.date_field|date:\"Y\" }}\n {% if instance.char_1 %}\n <a href=\"{% url 'detail' instance.pk %}\">successful if</a>\n {% endif %}\n{% endrender_model_block %}\n{% endblock content %}\n{% extends \"base.html\" %}\n{% load cms_tags %}\n\n{% block content %}\n{% render_model_block instance as rendered_model %}\n {{ instance }}\n <h1>{{ instance.char_1 }} - {{ instance.char_2 }}</h1>\n <span class=\"date\">{{ instance.date_field|date:\"Y\" }}</span>\n {% if instance.char_1 %}\n <a href=\"{% url 'detail' instance.pk %}\">successful if</a>\n {% endif %}\n{% endrender_model_block %}\n{{ rendered_model }}\n{% endblock content %}\n{% extends \"base.html\" %}\n{% load cms_tags %}\n\n{% block content %}\n{% render_model_block instance %}\n {{ instance }}\n <h1>{{ instance.char_1 }} - {{ instance.char_2 }}</h1>\n <span class=\"date\">{{ instance.date_field|date:\"Y\" }}</span>\n {% if instance.char_1 %}\n <a href=\"{% url 'detail' instance.pk %}\">successful if</a>\n {% endif %}\n{% endrender_model_block %}\n{% endblock content %}\n{% extends \"base.html\" %}\n{% load cms_tags %}\n\n{% block content %}\n{% render_model_block instance 'changelist' %}\n {{ instance }}\n{% endrender_model_block %}\n{% endblock content %}\n",
"language": "en",
"n_whitespaces": 221,
"n_words": 186,
"vocab_size": 35
} | https://github.com/django-cms/django-cms.git |
|
1 | test_connect_more_newlines | def test_connect_more_newlines(tctx):
server = Placeholder(Server)
playbook = Playbook(http.HttpLayer(tctx, HTTPMode.regular))
nl = Placeholder(layer.NextLayer)
assert (
playbook
>> DataReceived(tctx.client, b"CONNECT example.com:80 HTTP/1.1\r\n\r\n\r\n")
<< http.HttpConnectHook(Placeholder())
>> reply()
<< OpenConnection(server)
>> reply(None)
<< SendData(tctx.client, b"HTTP/1.1 200 Connection established\r\n\r\n")
>> DataReceived(tctx.client, b"\x16\x03\x03\x00\xb3\x01\x00\x00\xaf\x03\x03")
<< layer.NextLayerHook(nl)
)
assert nl().data_client() == b"\x16\x03\x03\x00\xb3\x01\x00\x00\xaf\x03\x03"
| b3587b52b25077f68116b9852b041d33e7fc6601 | 17 | test_http.py | 212 | make it black! | 73,851 | 0 | 128 | 118 | 33 | 251,848 | 44 | mitmproxy | 22 | test/mitmproxy/proxy/layers/http/test_http.py | Python | 16 | {
"docstring": "Ignore superfluous \\r\\n in CONNECT request, https://github.com/mitmproxy/mitmproxy/issues/4870",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/mitmproxy/mitmproxy.git |
|
1 | set_as_test_mirror | def set_as_test_mirror(self, primary_settings_dict):
self.connection.settings_dict["NAME"] = primary_settings_dict["NAME"]
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 9 | creation.py | 38 | Refs #33476 -- Reformatted code with Black. | 50,921 | 0 | 20 | 21 | 6 | 204,842 | 6 | django | 5 | django/db/backends/base/creation.py | Python | 2 | {
"docstring": "\n Set this database up to be used in testing as a mirror of a primary\n database whose settings are given.\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 20,
"vocab_size": 18
} | https://github.com/django/django.git |
|
1 | themed_values | def themed_values(self) -> dict[str, Any] | None:
return getattr(self, '__themed_values__', None)
| 528d85e642340ef30ec91f30b65c7c43370f648d | 8 | has_props.py | 39 | Normalize built-in types and remove `Unknown` (#12252)
* Use lower case names for built-in types
Also incidentally apply TypeAlias marker.
* Drop `Unknown` in favour of consistent usage of `Any`
* Enable lazy annotations in conftest.py | 53,247 | 0 | 25 | 24 | 11 | 212,474 | 11 | bokeh | 6 | bokeh/core/has_props.py | Python | 11 | {
"docstring": " Get any theme-provided overrides.\n\n Results are returned as a dict from property name to value, or\n ``None`` if no theme overrides any values for this instance.\n\n Returns:\n dict or None\n\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 30,
"vocab_size": 27
} | https://github.com/bokeh/bokeh.git |
|
4 | is_cgi | def is_cgi(self):
collapsed_path = _url_collapse_path(self.path)
dir_sep = collapsed_path.find('/', 1)
while dir_sep > 0 and not collapsed_path[:dir_sep] in self.cgi_directories:
dir_sep = collapsed_path.find('/', dir_sep+1)
if dir_sep > 0:
head, tail = collapsed_path[:dir_sep], collapsed_path[dir_sep+1:]
self.cgi_info = head, tail
return True
return False
cgi_directories = ['/cgi-bin', '/htbin']
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 12 | server.py | 153 | add python 3.10.4 for windows | 54,974 | 0 | 132 | 85 | 30 | 217,867 | 43 | XX-Net | 11 | python3.10.4/Lib/http/server.py | Python | 10 | {
"docstring": "Test whether self.path corresponds to a CGI script.\n\n Returns True and updates the cgi_info attribute to the tuple\n (dir, rest) if self.path requires running a CGI script.\n Returns False otherwise.\n\n If any exception is raised, the caller should assume that\n self.path was rejected as invalid and act accordingly.\n\n The default implementation tests whether the normalized url\n path begins with one of the strings in self.cgi_directories\n (and the next character is a '/' or the end of the string).\n\n ",
"language": "en",
"n_whitespaces": 141,
"n_words": 78,
"vocab_size": 59
} | https://github.com/XX-net/XX-Net.git |
|
7 | to_euler | def to_euler(self, seq):
extrinsic = _check_sequence(seq)
i, j, k = seq.lower()
i = _elementary_axis_index(i)
j = _elementary_axis_index(j)
k = _elementary_axis_index(k)
if not extrinsic:
i, k = k, i
# check if sequence is symmetric
symmetric = i == k
if symmetric:
k = 6 - i - j
# parity of the permutation
sign = (i - j) * (j - k) * (k - i) // 2
# permutate elements
elements = [self.a, self.b, self.c, self.d]
a = elements[0]
b = elements[i]
c = elements[j]
d = elements[k] * sign
if not symmetric:
a, b, c, d = a - c, b + d, c + a, d - b
# calculate angles
half_sum = atan2(b, a)
half_diff = atan2(d, c)
angle_2 = 2*atan2(sqrt(c*c + d*d), sqrt(a*a + b*b))
# alternatively, we can use this to avoid the square root:
# angle_2 = acos(2*(a*a + b*b)/(a*a + b*b + c*c + d*d) - 1)
angle_1 = half_sum + half_diff
angle_3 = half_sum - half_diff
if extrinsic:
angle_1, angle_3 = angle_3, angle_1
# for Tait-Bryan angles
if not symmetric:
angle_2 -= pi / 2
if extrinsic:
angle_3 *= sign
else:
angle_1 *= sign
return Matrix([angle_1, angle_2, angle_3])
| 69baa8d90fe079b799a80c8c06735c3ebd4bfe33 | 13 | quaternion.py | 404 | added reference | 49,727 | 0 | 521 | 258 | 104 | 200,603 | 197 | sympy | 26 | sympy/algebras/quaternion.py | Python | 33 | {
"docstring": "Returns Euler angles representing same in the sequence given by\n `seq`. This implements the method described in [1]_.\n\n Parameters\n ==========\n\n seq : string of length 3\n Represents the sequence of rotations.\n For intrinsic rotations, seq but be all lowercase and its elements\n must be from the set `['x', 'y', 'z']`\n For extrinsic rotations, seq but be all uppercase and its elements\n must be from the set `['X', 'Y', 'Z']`\n\n Returns\n =======\n\n Matrix\n The Euler angles calculated from the quaternion\n\n Examples\n ========\n\n >>> from sympy import Quaternion\n >>> from sympy.abc import a, b, c, d\n >>> euler = Quaternion(a, b, c, d).to_euler('zyz')\n >>> euler\n Matrix([[-atan2(-b, c) + atan2(d, a)],\n [2*atan2(sqrt(b**2 + c**2), sqrt(a**2 + d**2))],\n [atan2(-b, c) + atan2(d, a)]])\n\n References\n ==========\n\n .. [1] https://doi.org/10.1371/journal.pone.0276302\n\n ",
"language": "en",
"n_whitespaces": 346,
"n_words": 124,
"vocab_size": 82
} | https://github.com/sympy/sympy.git |
|
2 | quantiles | def quantiles(self) -> np.ndarray:
if not self.count:
return np.ndarray([], dtype=np.float32)
else:
return np.nanpercentile(
self.items[: self.count], [0, 10, 50, 90, 100]
).tolist()
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 15 | window_stat.py | 97 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 33,098 | 0 | 90 | 63 | 20 | 144,040 | 21 | ray | 10 | rllib/utils/metrics/window_stat.py | Python | 8 | {
"docstring": "Returns ndarray with 0, 10, 50, 90, and 100 percentiles.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/ray-project/ray.git |
|
1 | test_copy_with_credential | def test_copy_with_credential(self):
expression = "col1, col2"
op = DatabricksCopyIntoOperator(
file_location=COPY_FILE_LOCATION,
file_format='CSV',
table_name='test',
task_id=TASK_ID,
expression_list=expression,
credential={'AZURE_SAS_TOKEN': 'abc'},
)
assert (
op._create_sql_query()
== f.strip()
)
| 401419432082d222b823e4f2a66f21e5cc3ab28d | 12 | test_databricks_sql.py | 102 | Add new options to DatabricksCopyIntoOperator (#22076)
This includes:
* `encryption` - to specify encryption options for a given location
* `credential` - to specify authentication options for a given location
* `validate` - to control validation of schema & data | 8,743 | 0 | 145 | 56 | 21 | 45,916 | 23 | airflow | 15 | tests/providers/databricks/operators/test_databricks_sql.py | Python | 17 | {
"docstring": "COPY INTO test\nFROM (SELECT {expression} FROM '{COPY_FILE_LOCATION}' WITH (CREDENTIAL (AZURE_SAS_TOKEN = 'abc') ))\nFILEFORMAT = CSV\n",
"language": "en",
"n_whitespaces": 14,
"n_words": 17,
"vocab_size": 15
} | https://github.com/apache/airflow.git |
|
1 | test_press_button | async def test_press_button(hass):
helper = await setup_test_component(hass, create_switch_with_setup_button)
# Helper will be for the primary entity, which is the outlet. Make a helper for the button.
button = Helper(
hass,
"button.testdevice_setup",
helper.pairing,
helper.accessory,
helper.config_entry,
)
await hass.services.async_call(
"button",
"press",
{"entity_id": "button.testdevice_setup"},
blocking=True,
)
button.async_assert_service_values(
ServicesTypes.OUTLET,
{
CharacteristicsTypes.Vendor.HAA_SETUP: "#HAA@trcmd",
},
)
| 58b8c30221a6f6e5acbbe98b7e3298b03fb741f5 | 11 | test_button.py | 129 | Improve homekit_controller tests (#65266) | 110,119 | 0 | 172 | 78 | 42 | 311,454 | 50 | core | 19 | tests/components/homekit_controller/test_button.py | Python | 21 | {
"docstring": "Test a switch service that has a button characteristic is correctly handled.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/home-assistant/core.git |
|
1 | describe_an_sg_2 | def describe_an_sg_2(ec2_client_stub, security_group):
ec2_client_stub.add_response(
"describe_security_groups",
expected_params={"GroupIds": [security_group["GroupId"]]},
service_response={"SecurityGroups": [security_group]},
)
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 13 | stubs.py | 66 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,476 | 0 | 40 | 38 | 10 | 131,108 | 10 | ray | 6 | python/ray/tests/aws/utils/stubs.py | Python | 6 | {
"docstring": "Same as last function, different input param format.\n\n A call with this input parameter format is made when sg.ip_permissions is\n accessed in aws/config.py.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 23,
"vocab_size": 21
} | https://github.com/ray-project/ray.git |
|
1 | wait_for_style_to_equal | def wait_for_style_to_equal(self, selector, style, val, timeout=None):
return self._wait_for(
method=style_to_equal,
args=(selector, style, val),
timeout=timeout,
msg=f"style val => {style} {val} not found within {timeout or self._wait_timeout}s",
)
| c3c84b9ecf16bcc61ed80ec39d511af92fe07f2c | 12 | browser.py | 81 | f-strings everywhere! fffff | 7,360 | 0 | 90 | 45 | 24 | 40,221 | 25 | dash | 12 | dash/testing/browser.py | Python | 7 | {
"docstring": "Explicit wait until the element's style has expected `value` timeout\n if not set, equals to the fixture's `wait_timeout` shortcut to\n `WebDriverWait` with customized `style_to_equal` condition.",
"language": "en",
"n_whitespaces": 38,
"n_words": 25,
"vocab_size": 23
} | https://github.com/plotly/dash.git |
|
17 | get_rendered_html_form | def get_rendered_html_form(self, data, view, method, request):
# See issue #2089 for refactoring this.
serializer = getattr(data, 'serializer', None)
if serializer and not getattr(serializer, 'many', False):
instance = getattr(serializer, 'instance', None)
if isinstance(instance, Page):
instance = None
else:
instance = None
# If this is valid serializer data, and the form is for the same
# HTTP method as was used in the request then use the existing
# serializer instance, rather than dynamically creating a new one.
if request.method == method and serializer is not None:
try:
kwargs = {'data': request.data}
except ParseError:
kwargs = {}
existing_serializer = serializer
else:
kwargs = {}
existing_serializer = None
with override_method(view, request, method) as request:
if not self.show_form_for_method(view, method, request, instance):
return
if method in ('DELETE', 'OPTIONS'):
return True # Don't actually need to return a form
has_serializer = getattr(view, 'get_serializer', None)
has_serializer_class = getattr(view, 'serializer_class', None)
if (
(not has_serializer and not has_serializer_class) or
not any(is_form_media_type(parser.media_type) for parser in view.parser_classes)
):
return
if existing_serializer is not None:
with contextlib.suppress(TypeError):
return self.render_form_for_serializer(existing_serializer)
if has_serializer:
if method in ('PUT', 'PATCH'):
serializer = view.get_serializer(instance=instance, **kwargs)
else:
serializer = view.get_serializer(**kwargs)
else:
# at this point we must have a serializer_class
if method in ('PUT', 'PATCH'):
serializer = self._get_serializer(view.serializer_class, view,
request, instance=instance, **kwargs)
else:
serializer = self._get_serializer(view.serializer_class, view,
request, **kwargs)
return self.render_form_for_serializer(serializer)
| c10f2266222c434485889b08cc1463acdb8fa169 | 17 | renderers.py | 503 | Refactor: Replace try/except with contextlib.suppress() (#8676) | 9,563 | 0 | 902 | 308 | 111 | 48,672 | 215 | django-rest-framework | 30 | rest_framework/renderers.py | Python | 45 | {
"docstring": "\n Return a string representing a rendered HTML form, possibly bound to\n either the input or output data.\n\n In the absence of the View having an associated form then return None.\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 30,
"vocab_size": 27
} | https://github.com/encode/django-rest-framework.git |
|
5 | get_expected_metric_variable_names | def get_expected_metric_variable_names(var_names, name_suffix=""):
if tf.__internal__.tf2.enabled() or tf.executing_eagerly():
# In V1 eager mode and V2 variable names are not made unique.
return [n + ":0" for n in var_names]
# In V1 graph mode variable names are made unique using a suffix.
return [n + name_suffix + ":0" for n in var_names]
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 10 | test_utils.py | 85 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,647 | 0 | 77 | 49 | 34 | 276,385 | 51 | keras | 9 | keras/testing_infra/test_utils.py | Python | 4 | {
"docstring": "Returns expected metric variable names given names and prefix/suffix.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | https://github.com/keras-team/keras.git |
|
1 | test_incorrect_lookup_parameters | def test_incorrect_lookup_parameters(self):
changelist_url = reverse("admin:admin_views_thing_changelist")
response = self.client.get(changelist_url, {"notarealfield": "5"})
self.assertRedirects(response, "%s?e=1" % changelist_url)
# Spanning relationships through a nonexistent related object (Refs #16716)
response = self.client.get(changelist_url, {"notarealfield__whatever": "5"})
self.assertRedirects(response, "%s?e=1" % changelist_url)
response = self.client.get(
changelist_url, {"color__id__exact": "StringNotInteger!"}
)
self.assertRedirects(response, "%s?e=1" % changelist_url)
# Regression test for #18530
response = self.client.get(changelist_url, {"pub_date__gte": "foo"})
self.assertRedirects(response, "%s?e=1" % changelist_url)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 11 | tests.py | 207 | Refs #33476 -- Reformatted code with Black. | 52,112 | 0 | 160 | 116 | 35 | 207,811 | 58 | django | 8 | tests/admin_views/tests.py | Python | 12 | {
"docstring": "Ensure incorrect lookup parameters are handled gracefully.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/django/django.git |
|
2 | load_items | def load_items(self) -> Dict[str, List[int]]:
faces: Dict[str, List[int]] = {}
for face in cast(List[Tuple[str, "PNGHeaderDict"]], self.file_list_sorted):
src = face[1]["source"]
faces.setdefault(src["source_filename"], []).append(src["face_index"])
logger.trace(faces) # type: ignore
return faces
| c79175cbde5600bebd65785f3821fc74b3a80cbe | 13 | media.py | 138 | Alignments Tool updates
- Copy info back to alignments file from faces | 21,163 | 0 | 85 | 87 | 25 | 101,759 | 27 | faceswap | 16 | tools/alignments/media.py | Python | 14 | {
"docstring": " Load the face names into dictionary.\n\n Returns\n -------\n dict\n The source filename as key with list of face indices for the frame as value\n ",
"language": "en",
"n_whitespaces": 64,
"n_words": 24,
"vocab_size": 21
} | https://github.com/deepfakes/faceswap.git |
|
4 | row_join | def row_join(self, other):
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
if self.rows != other.rows:
raise ShapeError(
"The matrices have incompatible number of rows ({} and {})"
.format(self.rows, other.rows))
return self._eval_row_join(other)
| 9b2351534f8f02bcd5b9691d5e7a06150685beca | 12 | common.py | 118 | Make ShapeError more readable | 49,553 | 0 | 133 | 74 | 39 | 200,153 | 45 | sympy | 9 | sympy/matrices/common.py | Python | 8 | {
"docstring": "Concatenates two matrices along self's last and rhs's first column\n\n Examples\n ========\n\n >>> from sympy import zeros, ones\n >>> M = zeros(3)\n >>> V = ones(3, 1)\n >>> M.row_join(V)\n Matrix([\n [0, 0, 0, 1],\n [0, 0, 0, 1],\n [0, 0, 0, 1]])\n\n See Also\n ========\n\n row\n col_join\n ",
"language": "en",
"n_whitespaces": 152,
"n_words": 47,
"vocab_size": 34
} | https://github.com/sympy/sympy.git |
|
1 | test_permission_with_proxy_content_type_created | def test_permission_with_proxy_content_type_created(self):
opts = UserProxy._meta
codename = get_permission_codename("add", opts)
self.assertTrue(
Permission.objects.filter(
content_type__model=opts.model_name,
content_type__app_label=opts.app_label,
codename=codename,
).exists()
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 13 | test_management.py | 83 | Refs #33476 -- Reformatted code with Black. | 49,919 | 0 | 118 | 51 | 15 | 201,335 | 16 | django | 16 | tests/auth_tests/test_management.py | Python | 10 | {
"docstring": "\n A proxy model's permissions use its own content type rather than the\n content type of the concrete model.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 15
} | https://github.com/django/django.git |
|
2 | get_bboxes_list | def get_bboxes_list(end2end_result, structure_master_result):
# end2end
end2end_xyxy_list = []
end2end_xywh_list = []
for end2end_item in end2end_result:
src_bbox = end2end_item['bbox']
end2end_xyxy_list.append(src_bbox)
xywh_bbox = xyxy2xywh(src_bbox)
end2end_xywh_list.append(xywh_bbox)
end2end_xyxy_bboxes = np.array(end2end_xyxy_list)
end2end_xywh_bboxes = np.array(end2end_xywh_list)
# structure master
src_bboxes = structure_master_result['bbox']
src_bboxes = remove_empty_bboxes(src_bboxes)
# structure_master_xywh_bboxes = src_bboxes
# xyxy_bboxes = xywh2xyxy(src_bboxes)
# structure_master_xyxy_bboxes = xyxy_bboxes
structure_master_xyxy_bboxes = src_bboxes
xywh_bbox = xyxy2xywh(src_bboxes)
structure_master_xywh_bboxes = xywh_bbox
return end2end_xyxy_bboxes, end2end_xywh_bboxes, structure_master_xywh_bboxes, structure_master_xyxy_bboxes
| ddaa2c2552e19635cd6cdf38619f1f176c358f89 | 10 | table_master_match.py | 159 | add SLANet | 4,761 | 0 | 143 | 93 | 37 | 24,519 | 64 | PaddleOCR | 18 | ppstructure/table/table_master_match.py | Python | 16 | {
"docstring": "\n This function is use to convert end2end results and structure master results to\n List of xyxy bbox format and List of xywh bbox format\n :param end2end_result: bbox's format is xyxy\n :param structure_master_result: bbox's format is xywh\n :return: 4 kind list of bbox ()\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 43,
"vocab_size": 26
} | https://github.com/PaddlePaddle/PaddleOCR.git |
|
6 | make_modal | def make_modal(self):
if not self._is_window_created('tried Window.make_modal'):
return
if running_mac() and ENABLE_MAC_MODAL_DISABLE_PATCH:
return
# if modal windows have been disabled globally
if not DEFAULT_MODAL_WINDOWS_ENABLED:
return
try:
self.TKroot.transient()
self.TKroot.grab_set()
self.TKroot.focus_force()
except Exception as e:
print('Exception trying to make modal', e)
| ef3746cb06a9ee6bc93bc3c163ba961fd1b9c413 | 11 | PySimpleGUI.py | 116 | set_options - new parm disable_modal_windows provides ability to disable modal setting for all windows including popups | 53,310 | 0 | 164 | 63 | 32 | 212,647 | 38 | PySimpleGUI | 13 | PySimpleGUI.py | Python | 13 | {
"docstring": "\n Makes a window into a \"Modal Window\"\n This means user will not be able to interact with other windows until this one is closed\n\n NOTE - Sorry Mac users - you can't have modal windows.... lobby your tkinter Mac devs\n ",
"language": "en",
"n_whitespaces": 69,
"n_words": 40,
"vocab_size": 37
} | https://github.com/PySimpleGUI/PySimpleGUI.git |
|
1 | set_interpret_parameters | def set_interpret_parameters(self, segments=8):
self.interpretation_segments = segments
return self
| 9e4541822770333ab5191bc01aa3edc9738f17ff | 7 | components.py | 29 | Blocks-Components
- move audio component | 43,002 | 0 | 29 | 17 | 8 | 179,703 | 8 | gradio | 4 | gradio/components.py | Python | 3 | {
"docstring": "\n Calculates interpretation score of audio subsections by splitting the audio into subsections, then using a \"leave one out\" method to calculate the score of each subsection by removing the subsection and measuring the delta of the output value.\n Parameters:\n segments (int): Number of interpretation segments to split audio into.\n ",
"language": "en",
"n_whitespaces": 78,
"n_words": 49,
"vocab_size": 34
} | https://github.com/gradio-app/gradio.git |
|
3 | with_csv_dialect | def with_csv_dialect(name, **kwargs) -> Iterator[None]:
import csv
_BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"}
if name in _BUILTIN_DIALECTS:
raise ValueError("Cannot override builtin dialect.")
csv.register_dialect(name, **kwargs)
try:
yield
finally:
csv.unregister_dialect(name)
@contextmanager | f538568afc2c76c2d738d32e3544cf9fe6742960 | @contextmanager | 10 | contexts.py | 103 | TYP: misc return type annotations (#47558) | 40,048 | 1 | 69 | 55 | 27 | 167,592 | 28 | pandas | 10 | pandas/_testing/contexts.py | Python | 28 | {
"docstring": "\n Context manager to temporarily register a CSV dialect for parsing CSV.\n\n Parameters\n ----------\n name : str\n The name of the dialect.\n kwargs : mapping\n The parameters for the dialect.\n\n Raises\n ------\n ValueError : the name of the dialect conflicts with a builtin one.\n\n See Also\n --------\n csv : Python's CSV library.\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 51,
"vocab_size": 36
} | https://github.com/pandas-dev/pandas.git |
6 | adjust_legend_subtitles | def adjust_legend_subtitles(legend):
# Legend title not in rcParams until 3.0
font_size = plt.rcParams.get("legend.title_fontsize", None)
hpackers = legend.findobj(mpl.offsetbox.VPacker)[0].get_children()
for hpack in hpackers:
draw_area, text_area = hpack.get_children()
handles = draw_area.get_children()
if not all(artist.get_visible() for artist in handles):
draw_area.set_width(0)
for text in text_area.get_children():
if font_size is not None:
text.set_size(font_size)
| 6460a21555ba6557e1f6f06f4d677d9c19148169 | 15 | utils.py | 165 | Workaround for matplotlib rc_context issue (#2925)
* Workaround for matplotlib rc_context issue
Fixes #2914
* Add some additional comments about this workaround | 7,477 | 0 | 138 | 100 | 34 | 42,077 | 46 | seaborn | 22 | seaborn/utils.py | Python | 11 | {
"docstring": "\n Make invisible-handle \"subtitles\" entries look more like titles.\n\n Note: This function is not part of the public API and may be changed or removed.\n\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 24,
"vocab_size": 24
} | https://github.com/mwaskom/seaborn.git |
|
2 | _prepare_skip_target_masks | def _prepare_skip_target_masks(self):
return [l is None for l in self.loss_functions]
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 8 | training_v1.py | 30 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,930 | 0 | 24 | 18 | 10 | 272,002 | 10 | keras | 4 | keras/engine/training_v1.py | Python | 2 | {
"docstring": "Boolean mask for whether the target in the output list should be skipped.\n\n If the loss function corresponding to a model output is None, then this\n output will be skipped during total loss calculation and feed targets\n preparation.\n\n Returns:\n A boolean list for whether the corresponding target in the output list\n should be skipped during loss calculation.\n ",
"language": "en",
"n_whitespaces": 110,
"n_words": 57,
"vocab_size": 36
} | https://github.com/keras-team/keras.git |
|
4 | update_terminal | def update_terminal():
poetry_hash = sha256sum("poetry.lock")
completed_process = subprocess.run("git pull", shell=True, check=False) # nosec
if completed_process.returncode != 0:
return completed_process.returncode
new_poetry_hash = sha256sum("poetry.lock")
if poetry_hash == new_poetry_hash:
console.print("Great, seems like poetry hasn't been updated!")
return completed_process.returncode
console.print(
"Seems like more modules have been added, grab a coke, this may take a while."
)
completed_process = subprocess.run(
"poetry install", shell=True, check=False
) # nosec
if completed_process.returncode != 0:
return completed_process.returncode
return 0
| 82747072c511beb1b2672846ae2ee4aec53eb562 | 10 | terminal_helper.py | 163 | Terminal Wide Rich (#1161)
* My idea for how we handle Rich moving forward
* remove independent consoles
* FIxed pylint issues
* add a few vars
* Switched print to console
* More transitions
* Changed more prints
* Replaced all prints
* Fixing tabulate
* Finished replace tabulate
* Finished removing rich from Tabulate
* add Panel around menu
* add GST watermark under feature flag
* Fixed 46 tests
* Delete test_screener[False].yaml
* Delete test_screener[True].yaml
* Fixed the rest of the tests
* add help and source color vars and use rgb
* rich on stocks/options
* update rich on disc, dps, sia
* rich in gov, ins and scr menus
* ba and ca menus with rich
* Fixed import issue
* Fixed some tests
* removed termcolor
* Removed prettytable
* add rich to remaining stocks menus
* FIxed linting issue
* Added James' changes
* Updated dependencies
* Add rich to cryptocurrency menu
* refactor economy and forex
* refactor etf with rich
* refactor mfunds
* refactor rich rest
* not specify style so default color works well on any background
* Fixing mypy issues
* Updated tests
* More test fixes
* James' test fixes
* Updating tests : stocks/screener - fix cassettes using BR
* Updating tests : crypto
* Updating tests : disable DEBUG_MODE
* Updating tests : stocks/fa/yfinance
* minor fixes that escape
* Improve the rich table function (that replaces tabulate :D )
* Fixed bad code
* delete rogue file + dcf fix + NoConsole
* sia mypy
* fuck you linter
* fuck you linter pt 2
* skip hehe
* i hate the black linter
* ubuntu mypy attempt
* Update : rich_config + gtff
* Updating tests : conftest
* Updating tests : stocks
* Update : rich_config
* Updating : rich_config
* make panel configurable for Theodore :b
* colors update
* Merged
* Updating : rich_config + feature_flags
* Updating : rich_config
* Updating tests : stocks
* Updating : feature_flags
Co-authored-by: DidierRLopes <[email protected]>
Co-authored-by: Chavithra PARANA <[email protected]>
Co-authored-by: james <[email protected]>
Co-authored-by: jose-donato <[email protected]> | 83,890 | 0 | 150 | 94 | 46 | 281,593 | 70 | OpenBBTerminal | 12 | gamestonk_terminal/terminal_helper.py | Python | 18 | {
"docstring": "Updates the terminal by running git pull in the directory. Runs poetry install if needed",
"language": "en",
"n_whitespaces": 15,
"n_words": 15,
"vocab_size": 14
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
1 | test_serialize_post_error_mock | def test_serialize_post_error_mock(self, stream_mock):
obj = QPoint()
stream_mock.__lshift__.side_effect = lambda _other: self._set_status(
stream_mock, QDataStream.Status.ReadCorruptData)
with pytest.raises(OSError, match="The data stream has read corrupt "
"data."):
qtutils.serialize_stream(stream_mock, obj)
assert stream_mock.__lshift__.called_once_with(obj)
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 12 | test_qtutils.py | 108 | Run scripts/dev/rewrite_enums.py | 117,730 | 0 | 125 | 64 | 26 | 321,448 | 27 | qutebrowser | 19 | tests/unit/utils/test_qtutils.py | Python | 8 | {
"docstring": "Test serialize_stream with an error while serializing.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/qutebrowser/qutebrowser.git |
|
5 | _validate_fill_value | def _validate_fill_value(self, value):
dtype = self.dtype
if isinstance(dtype, np.dtype) and dtype.kind not in ["m", "M"]:
try:
return np_can_hold_element(dtype, value)
except ValueError as err:
# re-raise as TypeError for consistency
raise TypeError from err
if not can_hold_element(self._values, value):
raise TypeError
return value
| 3977d7335f0792c012013e3b459a7950dfd31a7d | 11 | base.py | 109 | REF: consolidate _validate_fill_logic in np_can_hold_element (#45216) | 39,405 | 0 | 154 | 67 | 33 | 163,219 | 41 | pandas | 13 | pandas/core/indexes/base.py | Python | 10 | {
"docstring": "\n Check if the value can be inserted into our array without casting,\n and convert it to an appropriate native type if necessary.\n\n Raises\n ------\n TypeError\n If the value cannot be inserted into an array of this dtype.\n ",
"language": "en",
"n_whitespaces": 91,
"n_words": 37,
"vocab_size": 29
} | https://github.com/pandas-dev/pandas.git |
|
7 | __anext__ | async def __anext__(self):
if isinstance(self.iterator, Iterator):
if not self._iterate_sync_in_thread: | 5a0830cfb6bfa33dcffb38681f86efe5f6f0f97c | 9 | helper.py | 39 | refactor: avoid run in executor creating threads (#5518) | 2,797 | 0 | 38 | 108 | 8 | 14,004 | 9 | jina | 6 | jina/serve/stream/helper.py | Python | 27 | {
"docstring": "\n An `Iterator` indicates \"blocking\" code, which might block all tasks in the event loop.\n Hence we iterate in the default executor provided by asyncio.\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 24,
"vocab_size": 22
} | https://github.com/jina-ai/jina.git |
|
6 | __new__ | def __new__(cls, name, bases, ns, total=True):
# Create new typed dict class object.
# This method is called directly when TypedDict is subclassed,
# or via _typeddict_new when TypedDict is instantiated. This way
# TypedDict supports all three syntaxes described in its docstring.
# Subclasses and instances of TypedDict return actual dictionaries
# via _dict_new.
ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new
tp_dict = super().__new__(cls, name, (dict,), ns)
annotations = {}
own_annotations = ns.get('__annotations__', {})
own_annotation_keys = set(own_annotations.keys())
msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
own_annotations = {
n: typing._type_check(tp, msg) for n, tp in own_annotations.items()
}
required_keys = set()
optional_keys = set()
for base in bases:
annotations.update(base.__dict__.get('__annotations__', {}))
required_keys.update(base.__dict__.get('__required_keys__', ()))
optional_keys.update(base.__dict__.get('__optional_keys__', ()))
annotations.update(own_annotations)
if total:
required_keys.update(own_annotation_keys)
else:
optional_keys.update(own_annotation_keys)
tp_dict.__annotations__ = annotations
tp_dict.__required_keys__ = frozenset(required_keys)
tp_dict.__optional_keys__ = frozenset(optional_keys)
if not hasattr(tp_dict, '__total__'):
tp_dict.__total__ = total
return tp_dict
__instancecheck__ = __subclasscheck__ = _check_fails
TypedDict = _TypedDictMeta('TypedDict', (dict,), {})
TypedDict.__module__ = __name__
TypedDict.__doc__ = \
| f3166e673fe8d40277b804d35d77dcdb760fc3b3 | """A simple typed name space. At runtimeequivalent to a plain dict.
TypedDict creates a dictionary type that expects all ofto a plain dictinstances to have a certain set ofwith eachassociated with a value of a consistent type. This expectation
is not checked at runtime but is only enforced by type checkers.
Usage::a value of a consistent type. Thisat runtime butonly enforced by type | 12 | typing_extensions.py | 495 | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 3,614 | 9 | 565 | 221 | 116 | 20,914 | 162 | pipenv | 80 | pipenv/patched/notpip/_vendor/typing_extensions.py | Python | 27 | {
"docstring": "A simple typed name space. At runtime it is equivalent to a plain dict.\n\n TypedDict creates a dictionary type that expects all of its\n instances to have a certain set of keys, with each key\n associated with a value of a consistent type. This expectation\n is not checked at runtime but is only enforced by type checkers.\n Usage::\n",
"language": "en",
"n_whitespaces": 92,
"n_words": 58,
"vocab_size": 46
} | https://github.com/pypa/pipenv.git |
7 | _set_dependencies | def _set_dependencies(self, analysis, path):
for toc in (analysis.binaries, analysis.datas):
for i, tpl in enumerate(toc):
if not tpl[1] in self._dependencies:
logger.debug("Adding dependency %s located in %s", tpl[1], path)
self._dependencies[tpl[1]] = path
else:
dep_path = self._get_relative_path(path, self._dependencies[tpl[1]])
# Ignore references that point to the origin package. This can happen if the same resource is listed
# multiple times in TOCs (e.g., once as binary and once as data).
if dep_path.endswith(path):
logger.debug(
"Ignoring self-reference of %s for %s, located in %s - duplicated TOC entry?", tpl[1], path,
dep_path
)
# Clear the entry as it is a duplicate.
toc[i] = (None, None, None)
continue
logger.debug("Referencing %s to be a dependency for %s, located in %s", tpl[1], path, dep_path)
# Determine the path relative to dep_path (i.e, within the target directory) from the 'name'
# component of the TOC tuple.
rel_path = os.path.dirname(tpl[0])
# Take filename from 'path' (second component of TOC tuple); this way, we don't need to worry about
# suffix of extensions.
filename = os.path.basename(tpl[1])
# Construct the full file path relative to dep_path...
filename = os.path.join(rel_path, filename)
# ...and use it in new DEPENDENCY entry
analysis.dependencies.append((":".join((dep_path, filename)), tpl[1], "DEPENDENCY"))
toc[i] = (None, None, None)
# Clean the list
toc[:] = [tpl for tpl in toc if tpl != (None, None, None)]
# TODO: use pathlib.Path.relative_to() instead. | 04984a040c2396127f234518f783cbed088408bb | 18 | api.py | 365 | building: move filename processing of EXTENSION entries to analysis stage
Move filename processing of EXTENSION TOC entries (i.e., converting
the module name to file path and adding the suffix) from the
build stage (i.e., `assemble` in `PKG`, `COLLECT`, and `BUNDLE`)
into analysis stage.
This ensures that during the build stage, the EXTENSION entries
in the TOC are already full filenames, same as other file-based
entries (DATA, BINARY, etc.).
This in turn means that the `add_suffix_to_extension` helper does
not need to worry about DEPENDENCY entries anymore, and can
process only EXTENSION ones, as implied by its name.
Early conversion of EXTENSION module names to file names also
prevents duplication when the same file is collected as both
an EXTENSION and some other type, for example DATA:
```
('torch._C',
'...\\site-packages\\torch\\_C.cp39-win_amd64.pyd',
'EXTENSION'),
('torch\\_C.cp39-win_amd64.pyd',
'...\\site-pakages\\torch\\_C.cp39-win_amd64.pyd',
'DATA'),
```
Prior to this commit, the entries were considered different
from the `TOC` perspective, but led to duplication in onefile
build's PKG once extension's name was changed to the file name
(whereas in onedir build, the first entry was overwritten by
the second). | 77,548 | 0 | 807 | 237 | 129 | 263,997 | 216 | pyinstaller | 24 | PyInstaller/building/api.py | Python | 22 | {
"docstring": "\n Synchronize the Analysis result with the needed dependencies.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 7
} | https://github.com/pyinstaller/pyinstaller.git |
|
3 | break_up_by_substrings | def _break_up_by_substrings(self):
new_submobjects = []
curr_index = 0
for tex_string in self.tex_strings:
sub_tex_mob = SingleStringMathTex(
tex_string,
tex_environment=self.tex_environment,
tex_template=self.tex_template,
)
num_submobs = len(sub_tex_mob.submobjects)
new_index = (
curr_index + num_submobs + len("".join(self.arg_separator.split()))
)
if num_submobs == 0:
# For cases like empty tex_strings, we want the corresponding
# part of the whole MathTex to be a VectorizedPoint
# positioned in the right part of the MathTex
sub_tex_mob.submobjects = [VectorizedPoint()]
last_submob_index = min(curr_index, len(self.submobjects) - 1)
sub_tex_mob.move_to(self.submobjects[last_submob_index], RIGHT)
else:
sub_tex_mob.submobjects = self.submobjects[curr_index:new_index]
new_submobjects.append(sub_tex_mob)
curr_index = new_index
self.submobjects = new_submobjects
return self
| 902e7eb4f0147b5882a613b67467e38a1d47f01e | 17 | tex_mobject.py | 230 | Hide more private methods from the docs. (#2468)
* hide privs from text_mobject.py
* hide privs from tex_mobject.py
* hide privs from code_mobject.py
* hide privs from svg_mobject.py
* remove SVGPath and utils from __init__.py
* don't import string_to_numbers
* hide privs from geometry.py
* hide privs from matrix.py
* hide privs from numbers.py
* hide privs from three_dimensions.py
* forgot underscore under set_stroke_width_from_length
* there were more i missed
* unhidea method that was used in docs
* forgot other text2hash
* remove svg_path from docs | 46,082 | 0 | 394 | 142 | 61 | 189,478 | 88 | manim | 23 | manim/mobject/svg/tex_mobject.py | Python | 23 | {
"docstring": "\n Reorganize existing submobjects one layer\n deeper based on the structure of tex_strings (as a list\n of tex_strings)\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 17,
"vocab_size": 16
} | https://github.com/ManimCommunity/manim.git |
|
2 | delimitedList | def delimitedList(expr, delim=",", combine=False):
dlName = _ustr(expr) + " [" + _ustr(delim) + " " + _ustr(expr) + "]..."
if combine:
return Combine(expr + ZeroOrMore(delim + expr)).setName(dlName)
else:
return (expr + ZeroOrMore(Suppress(delim) + expr)).setName(dlName)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 17 | pyparsing.py | 132 | upd; format | 13,253 | 0 | 60 | 77 | 21 | 63,322 | 34 | transferlearning | 10 | .venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py | Python | 6 | {
"docstring": "Helper to define a delimited list of expressions - the delimiter\n defaults to ','. By default, the list elements and delimiters can\n have intervening whitespace, and comments, but this can be\n overridden by passing ``combine=True`` in the constructor. If\n ``combine`` is set to ``True``, the matching tokens are\n returned as a single token string, with the delimiters included;\n otherwise, the matching tokens are returned as a list of tokens,\n with the delimiters suppressed.\n\n Example::\n\n delimitedList(Word(alphas)).parseString(\"aa,bb,cc\") # -> ['aa', 'bb', 'cc']\n delimitedList(Word(hexnums), delim=':', combine=True).parseString(\"AA:BB:CC:DD:EE\") # -> ['AA:BB:CC:DD:EE']\n ",
"language": "en",
"n_whitespaces": 127,
"n_words": 86,
"vocab_size": 61
} | https://github.com/jindongwang/transferlearning.git |
|
2 | _gcd_import | def _gcd_import(name, package=None, level=0):
_sanity_check(name, package, level)
if level > 0:
name = _resolve_name(name, package, level)
return _find_and_load(name, _gcd_import)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 10 | _bootstrap.py | 66 | add python 3.10.4 for windows | 55,125 | 0 | 38 | 44 | 17 | 218,095 | 19 | XX-Net | 7 | python3.10.4/Lib/importlib/_bootstrap.py | Python | 5 | {
"docstring": "Import and return the module based on its name, the package the call is\n being made from, and the level adjustment.\n\n This function represents the greatest common denominator of functionality\n between import_module and __import__. This includes setting __package__ if\n the loader did not.\n\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 43,
"vocab_size": 35
} | https://github.com/XX-net/XX-Net.git |
|
1 | get_transactions | def get_transactions(self):
df = self.__transactions[
[
"Date",
"Type",
"Ticker",
"Side",
"Price",
"Quantity",
"Fees",
"Investment",
"Currency",
"Sector",
"Industry",
"Country",
"Region",
]
]
df = df.replace(np.nan, "-")
df["Date"] = df["Date"].dt.strftime("%Y-%m-%d")
df.sort_values(by="Date", ascending=False, inplace=True)
return df
| 8e9e6bd57f4bc5d57ccedfacccda6342d5881266 | 11 | portfolio_model.py | 157 | Incorporate portfolio class into SDK (#3401)
* create functions to interact with portfolio
* fix some docstrings
* view docstrings
* make portfolio loading available in sdk
* reorder some methods
* fix bug
* update controller
* update website
* remove import
* change input name
* regenerate website
* change portfolio arg name
* fix metrics bugs
* fix report
* refactor assets alloc
* refactor assets sectors alloc
* remove unecessary attributes
* refactor allocaasset sector
* reorganize class
* first refactor alloc
* refactor portfolio alloc
* black
* fix alloc bug
* regenerate sdk website
* fix alloc bugs
* forgot this exception
* some refactor on portfolio alloc country region
* fix some allocation bugs
* add examples
* regenerate website
Co-authored-by: James Maslek <[email protected]> | 85,861 | 0 | 299 | 87 | 28 | 286,538 | 33 | OpenBBTerminal | 13 | openbb_terminal/portfolio/portfolio_model.py | Python | 22 | {
"docstring": "Get formatted transactions\n\n Returns\n -------\n pd.DataFrame: formatted transactions\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 8,
"vocab_size": 6
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
1 | get_global_params | def get_global_params():
GlobalParams = namedtuple('GlobalParams', [
'drop_connect_rate', 'width_coefficient', 'depth_coefficient',
'depth_divisor', 'image_size'
])
global_params = GlobalParams(
drop_connect_rate=0.3,
width_coefficient=1.2,
depth_coefficient=1.4,
depth_divisor=8,
image_size=64)
return global_params
| 6e607a0fa1cefbf0388dac86c84debf4781cec48 | 10 | rec_efficientb3_pren.py | 83 | [Feature] Add PREN Scene Text Recognition Model(Accepted in CVPR2021) (#5563)
* [Feature] add PREN scene text recognition model
* [Patch] Optimize yml File
* [Patch] Save Label/Pred Preprocess Time Cost
* [BugFix] Modify Shape Conversion to Fit for Inference Model Exportion
* [Patch] ?
* [Patch] ?
* 啥情况... | 4,585 | 0 | 134 | 55 | 20 | 23,379 | 22 | PaddleOCR | 9 | ppocr/modeling/backbones/rec_efficientb3_pren.py | Python | 12 | {
"docstring": "\n The fllowing are efficientnetb3's arch superparams, but to fit for scene \n text recognition task, the resolution(image_size) here is changed \n from 300 to 64.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 23,
"vocab_size": 22
} | https://github.com/PaddlePaddle/PaddleOCR.git |
|
1 | get_extra_addanother_params | def get_extra_addanother_params(self, request, params):
return {}
#
# Request handlers
#
| 8b1a462a6070cb6054af8bb59589c9a2e785afc2 | 6 | object_views.py | 25 | #10094 changes from code review | 78,139 | 0 | 34 | 13 | 9 | 265,553 | 11 | netbox | 4 | netbox/netbox/views/generic/object_views.py | Python | 2 | {
"docstring": "\n Return a dictionary of extra parameters to use on the Add Another button.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 13
} | https://github.com/netbox-community/netbox.git |
|
2 | _ensure_html_header | def _ensure_html_header(response):
# type: (Response) -> None
content_type = response.headers.get("Content-Type", "")
if not content_type.lower().startswith("text/html"):
raise _NotHTML(content_type, response.request.method)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 11 | collector.py | 76 | upd; format | 12,262 | 0 | 36 | 42 | 17 | 60,723 | 17 | transferlearning | 10 | .venv/lib/python3.8/site-packages/pip/_internal/index/collector.py | Python | 4 | {
"docstring": "Check the Content-Type header to ensure the response contains HTML.\n\n Raises `_NotHTML` if the content type is not text/html.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 19,
"vocab_size": 17
} | https://github.com/jindongwang/transferlearning.git |
|
1 | test_get_next_txn | def test_get_next_txn(self) -> None:
# Prefill table with 7 rows written by 'master'
self._insert_rows("master", 7)
id_gen = self._create_id_generator()
self.assertEqual(id_gen.get_positions(), {"master": 7})
self.assertEqual(id_gen.get_current_token_for_writer("master"), 7)
# Try allocating a new ID gen and check that we only see position
# advanced after we leave the context manager.
| 9d21ecf7ceab55bc19c4457b8b07401b0b1623a7 | 10 | test_id_generators.py | 94 | Add type hints to tests files. (#12256) | 71,924 | 0 | 101 | 98 | 41 | 247,791 | 45 | synapse | 8 | tests/storage/test_id_generators.py | Python | 10 | {
"docstring": "Test that the `get_next_txn` function works correctly.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/matrix-org/synapse.git |
|
11 | sanitize_index | def sanitize_index(ind):
from dask.array.utils import asanyarray_safe
if ind is None:
return None
elif isinstance(ind, slice):
return slice(
_sanitize_index_element(ind.start),
_sanitize_index_element(ind.stop),
_sanitize_index_element(ind.step),
)
elif isinstance(ind, Number):
return _sanitize_index_element(ind)
elif is_dask_collection(ind):
return ind
index_array = asanyarray_safe(ind, like=ind)
if index_array.dtype == bool:
nonzero = np.nonzero(index_array)
if len(nonzero) == 1:
# If a 1-element tuple, unwrap the element
nonzero = nonzero[0]
if is_arraylike(nonzero):
return nonzero
else:
return np.asanyarray(nonzero)
elif np.issubdtype(index_array.dtype, np.integer):
return index_array
elif np.issubdtype(index_array.dtype, np.floating):
int_index = index_array.astype(np.intp)
if np.allclose(index_array, int_index):
return int_index
else:
check_int = np.isclose(index_array, int_index)
first_err = index_array.ravel()[np.flatnonzero(~check_int)[0]]
raise IndexError("Bad index. Must be integer-like: %s" % first_err)
else:
raise TypeError("Invalid index type", type(ind), ind)
| cccb9d8d8e33a891396b1275c2448c352ef40c27 | 17 | slicing.py | 371 | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | 36,528 | 0 | 356 | 235 | 72 | 156,063 | 103 | dask | 38 | dask/array/slicing.py | Python | 35 | {
"docstring": "Sanitize the elements for indexing along one axis\n\n >>> sanitize_index([2, 3, 5])\n array([2, 3, 5])\n >>> sanitize_index([True, False, True, False])\n array([0, 2])\n >>> sanitize_index(np.array([1, 2, 3]))\n array([1, 2, 3])\n >>> sanitize_index(np.array([False, True, True]))\n array([1, 2])\n >>> type(sanitize_index(np.int32(0)))\n <class 'int'>\n >>> sanitize_index(1.0)\n 1\n >>> sanitize_index(0.5)\n Traceback (most recent call last):\n ...\n IndexError: Bad index. Must be integer-like: 0.5\n ",
"language": "en",
"n_whitespaces": 109,
"n_words": 57,
"vocab_size": 45
} | https://github.com/dask/dask.git |
|
2 | test_process_messages_cardinality_limited | def test_process_messages_cardinality_limited(caplog, settings, monkeypatch) -> None:
settings.SENTRY_METRICS_INDEXER_DEBUG_LOG_SAMPLE_RATE = 1.0
| c48fda09e252018a4d2b831bb84e1c68a739c085 | 7 | test_multiprocess_steps.py | 28 | feat(metrics): Add cardinality limiter to indexer [sns-1651] (#38428)
Reopen of https://github.com/getsentry/sentry/pull/38302 to avoid
notification spam
See #38257 and
https://www.notion.so/sentry/Metrics-Dimensionality-Limiting-df010a6a6d4e467ca3c5c19230db862b#4966fb9c07fc4394b720ad161c99a096.
This is just the glue code and configuration options for using the
cardinality limiter in the indexer. The actual implementation is TBD.
This is safe to merge because the stub implementation does not actually
limit anything at all, so it should be fast enough to do synchronously
for now
## rollout plan
- [x] https://github.com/getsentry/sentry/pull/38446
- [x] set options to nothing in prod
- [ ] merge + deploy this PR
- [ ] check prod metrics: redis should not be used
- [ ] https://github.com/getsentry/sentry/pull/38445
- [ ] check prod metrics: redis should still not be used
- [ ] run qe tests?
- [ ] get a redis cluster and configure it
- [ ] run use_quota on a separate thread
- [ ] set a quota
- [ ] get rid of writes limiter?
- [ ] stop indexing tag values
Co-authored-by: getsantry[bot] <66042841+getsantry[bot]@users.noreply.github.com>
Co-authored-by: Nikhar Saxena <[email protected]> | 18,024 | 0 | 15 | 170 | 9 | 85,651 | 9 | sentry | 5 | tests/sentry/sentry_metrics/test_multiprocess_steps.py | Python | 28 | {
"docstring": "\n Test that the message processor correctly calls the cardinality limiter.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 9
} | https://github.com/getsentry/sentry.git |
|
2 | dag_id | def dag_id(self) -> str:
if self.dag:
return self.dag.dag_id
return "_in_memory_dag_"
| 34154803ac73d62d3e969e480405df3073032622 | 9 | taskmixin.py | 38 | Show tasks in grid view based on topological sort. (#22741)
This takes the existing topological sort that existed on a DAG and moves
it down to TaskGroup.
In order to do this (and not have duplicated sort) the existing sort on
DAG is re-implemented on top of the new method.
This also surfaced a tiny bug in deserialize_task_group where the
SerializedTaskGroup did not have `dag` set -- it didn't cause any
problems until now but was needed to call `upstream_list` on a
SerializedTaskGroup object. | 9,007 | 0 | 42 | 21 | 9 | 46,825 | 10 | airflow | 4 | airflow/models/taskmixin.py | Python | 5 | {
"docstring": "Returns dag id if it has one or an adhoc/meaningless ID",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/apache/airflow.git |
|
1 | compress | def compress(summary, epsilon):
# TODO(b/184863356): remove the numpy escape hatch here.
return tf.numpy_function(
lambda s: _compress_summary_numpy(s, epsilon), [summary], tf.float32
)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 10 | discretization.py | 49 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,077 | 0 | 39 | 31 | 20 | 272,922 | 20 | keras | 8 | keras/layers/preprocessing/discretization.py | Python | 4 | {
"docstring": "Compress a summary to within `epsilon` accuracy.\n\n The compression step is needed to keep the summary sizes small after merging,\n and also used to return the final target boundaries. It finds the new bins\n based on interpolating cumulative weight percentages from the large summary.\n Taking the difference of the cumulative weights from the previous bin's\n cumulative weight will give the new weight for that bin.\n\n Args:\n summary: 2D `np.ndarray` summary to be compressed.\n epsilon: A `'float32'` that determines the approxmiate desired precision.\n\n Returns:\n A 2D `np.ndarray` that is a compressed summary. First column is the\n interpolated partition values, the second is the weights (counts).\n ",
"language": "en",
"n_whitespaces": 156,
"n_words": 104,
"vocab_size": 71
} | https://github.com/keras-team/keras.git |
|
2 | Head | def Head(num_classes=1000, name=None):
if name is None:
name = str(backend.get_uid("head"))
| 2d1086447a25d281f9428832d046c473d80ad761 | 13 | convnext.py | 49 | Corrected preprocess_input docstring in regnet.py and convnext.py | 79,999 | 0 | 23 | 32 | 9 | 269,278 | 10 | keras | 6 | keras/applications/convnext.py | Python | 5 | {
"docstring": "Implementation of classification head of RegNet.\n\n Args:\n num_classes: number of classes for Dense layer\n name: name prefix\n\n Returns:\n Classification head function.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 21,
"vocab_size": 18
} | https://github.com/keras-team/keras.git |
|
1 | require_tpu | def require_tpu(test_case):
return unittest.skipUnless(is_tpu_available(), "test requires TPU")(test_case)
| e5c17f36a8b5bf8b9478d416c4a80841a353fb19 | 10 | testing.py | 37 | Clean up tests + fix import (#330) | 121,064 | 0 | 13 | 20 | 7 | 337,462 | 7 | accelerate | 5 | src/accelerate/test_utils/testing.py | Python | 2 | {
"docstring": "\n Decorator marking a test that requires TPUs. These tests are skipped when there are no TPUs available.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 17,
"vocab_size": 16
} | https://github.com/huggingface/accelerate.git |
|
6 | _identify_infrequent | def _identify_infrequent(self, category_count, n_samples, col_idx):
if isinstance(self.min_frequency, numbers.Integral):
infrequent_mask = category_count < self.min_frequency
elif isinstance(self.min_frequency, numbers.Real):
min_frequency_abs = n_samples * self.min_frequency
infrequent_mask = category_count < min_frequency_abs
else:
infrequent_mask = np.zeros(category_count.shape[0], dtype=bool)
n_current_features = category_count.size - infrequent_mask.sum() + 1
if self.max_categories is not None and self.max_categories < n_current_features:
# stable sort to preserve original count order
smallest_levels = np.argsort(category_count, kind="mergesort")[
: -self.max_categories + 1
]
infrequent_mask[smallest_levels] = True
output = np.flatnonzero(infrequent_mask)
return output if output.size > 0 else None
| 7f0006c8aad1a09621ad19c3db19c3ff0555a183 | 13 | _encoders.py | 227 | ENH Adds infrequent categories to OneHotEncoder (#16018)
* ENH Completely adds infrequent categories
* STY Linting
* STY Linting
* DOC Improves wording
* DOC Lint
* BUG Fixes
* CLN Address comments
* CLN Address comments
* DOC Uses math to description float min_frequency
* DOC Adds comment regarding drop
* BUG Fixes method name
* DOC Clearer docstring
* TST Adds more tests
* FIX Fixes mege
* CLN More pythonic
* CLN Address comments
* STY Flake8
* CLN Address comments
* DOC Fix
* MRG
* WIP
* ENH Address comments
* STY Fix
* ENH Use functiion call instead of property
* ENH Adds counts feature
* CLN Rename variables
* DOC More details
* CLN Remove unneeded line
* CLN Less lines is less complicated
* CLN Less diffs
* CLN Improves readiabilty
* BUG Fix
* CLN Address comments
* TST Fix
* CLN Address comments
* CLN Address comments
* CLN Move docstring to userguide
* DOC Better wrapping
* TST Adds test to handle_unknown='error'
* ENH Spelling error in docstring
* BUG Fixes counter with nan values
* BUG Removes unneeded test
* BUG Fixes issue
* ENH Sync with main
* DOC Correct settings
* DOC Adds docstring
* DOC Immprove user guide
* DOC Move to 1.0
* DOC Update docs
* TST Remove test
* DOC Update docstring
* STY Linting
* DOC Address comments
* ENH Neater code
* DOC Update explaination for auto
* Update sklearn/preprocessing/_encoders.py
Co-authored-by: Roman Yurchak <[email protected]>
* TST Uses docstring instead of comments
* TST Remove call to fit
* TST Spelling error
* ENH Adds support for drop + infrequent categories
* ENH Adds infrequent_if_exist option
* DOC Address comments for user guide
* DOC Address comments for whats_new
* DOC Update docstring based on comments
* CLN Update test with suggestions
* ENH Adds computed property infrequent_categories_
* DOC Adds where the infrequent column is located
* TST Adds more test for infrequent_categories_
* DOC Adds docstring for _compute_drop_idx
* CLN Moves _convert_to_infrequent_idx into its own method
* TST Increases test coverage
* TST Adds failing test
* CLN Careful consideration of dropped and inverse_transform
* STY Linting
* DOC Adds docstrinb about dropping infrequent
* DOC Uses only
* DOC Numpydoc
* TST Includes test for get_feature_names_out
* DOC Move whats new
* DOC Address docstring comments
* DOC Docstring changes
* TST Better comments
* TST Adds check for handle_unknown='ignore' for infrequent
* CLN Make _infrequent_indices private
* CLN Change min_frequency default to None
* DOC Adds comments
* ENH adds support for max_categories=1
* ENH Describe lexicon ordering for ties
* DOC Better docstring
* STY Fix
* CLN Error when explicity dropping an infrequent category
* STY Grammar
Co-authored-by: Joel Nothman <[email protected]>
Co-authored-by: Roman Yurchak <[email protected]>
Co-authored-by: Guillaume Lemaitre <[email protected]> | 75,639 | 0 | 237 | 146 | 56 | 259,201 | 78 | scikit-learn | 26 | sklearn/preprocessing/_encoders.py | Python | 16 | {
"docstring": "Compute the infrequent indices.\n\n Parameters\n ----------\n category_count : ndarray of shape (n_cardinality,)\n Category counts.\n\n n_samples : int\n Number of samples.\n\n col_idx : int\n Index of the current category. Only used for the error message.\n\n Returns\n -------\n output : ndarray of shape (n_infrequent_categories,) or None\n If there are infrequent categories, indices of infrequent\n categories. Otherwise None.\n ",
"language": "en",
"n_whitespaces": 173,
"n_words": 55,
"vocab_size": 41
} | https://github.com/scikit-learn/scikit-learn.git |
|
1 | test_port_editor | def test_port_editor(self, mock_unity3d):
_ = Unity3DEnv(port=None)
args, kwargs = mock_unity3d.call_args
mock_unity3d.assert_called_once()
self.assertEqual(5004, kwargs.get("base_port"))
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 10 | test_unity3d_env.py | 70 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 32,988 | 0 | 48 | 41 | 12 | 143,428 | 13 | ray | 12 | rllib/env/wrappers/tests/test_unity3d_env.py | Python | 5 | {
"docstring": "Test if the environment uses the editor port\n when no environment file is provided",
"language": "en",
"n_whitespaces": 20,
"n_words": 14,
"vocab_size": 12
} | https://github.com/ray-project/ray.git |
|
5 | get_create_field_function | def get_create_field_function(self, type):
create_field_function = getattr(self, "create_%s_field" % type, None)
if create_field_function:
return create_field_function
else:
import inspect
method_list = [
f[0]
for f in inspect.getmembers(self.__class__, inspect.isfunction)
if f[0].startswith("create_") and f[0].endswith("_field")
]
raise AttributeError(
"Could not find function matching format \
create_<fieldname>_field for type: "
+ type,
"Must be one of: " + ", ".join(method_list),
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 15 | forms.py | 149 | Reformat with black | 15,920 | 0 | 254 | 89 | 48 | 72,986 | 55 | wagtail | 15 | wagtail/contrib/forms/forms.py | Python | 17 | {
"docstring": "\n Takes string of field type and returns a Django Form Field Instance.\n Assumes form field creation functions are in the format:\n 'create_fieldtype_field'\n ",
"language": "en",
"n_whitespaces": 51,
"n_words": 22,
"vocab_size": 21
} | https://github.com/wagtail/wagtail.git |
|
1 | image_entity | def image_entity(props):
return DOM.create_element(
"embed",
{
"embedtype": "image",
"format": props.get("format"),
"id": props.get("id"),
"alt": props.get("alt"),
},
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 12 | contentstate.py | 91 | Reformat with black | 16,356 | 0 | 90 | 48 | 16 | 75,104 | 16 | wagtail | 5 | wagtail/images/rich_text/contentstate.py | Python | 10 | {
"docstring": "\n Helper to construct elements of the form\n <embed alt=\"Right-aligned image\" embedtype=\"image\" format=\"right\" id=\"1\"/>\n when converting from contentstate data\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 18,
"vocab_size": 18
} | https://github.com/wagtail/wagtail.git |
|
5 | _linab | def _linab(arg, symbol):
arg = factor_terms(arg.expand())
ind, dep = arg.as_independent(symbol)
if arg.is_Mul and dep.is_Add:
a, b, x = _linab(dep, symbol)
return ind*a, ind*b, x
if not arg.is_Add:
b = 0
a, x = ind, dep
else:
b = ind
a, x = separatevars(dep).as_independent(symbol, as_Add=False)
if x.could_extract_minus_sign():
a = -a
x = -x
return a, b, x
| 59d22b6bb7287613d598611027f640d068ca5748 | 13 | bivariate.py | 188 | Moved imports to higher level | 47,919 | 0 | 136 | 118 | 33 | 196,419 | 56 | sympy | 16 | sympy/solvers/bivariate.py | Python | 16 | {
"docstring": "Return ``a, b, X`` assuming ``arg`` can be written as ``a*X + b``\n where ``X`` is a symbol-dependent factor and ``a`` and ``b`` are\n independent of ``symbol``.\n\n Examples\n ========\n\n >>> from sympy.solvers.bivariate import _linab\n >>> from sympy.abc import x, y\n >>> from sympy import exp, S\n >>> _linab(S(2), x)\n (2, 0, 1)\n >>> _linab(2*x, x)\n (2, 0, x)\n >>> _linab(y + y*x + 2*x, x)\n (y + 2, y, x)\n >>> _linab(3 + 2*exp(x), x)\n (2, 3, exp(x))\n ",
"language": "en",
"n_whitespaces": 126,
"n_words": 78,
"vocab_size": 55
} | https://github.com/sympy/sympy.git |
|
6 | __getattr__ | def __getattr__(self, name):
attr = None
if name.startswith('do_'):
module = name.replace('do_', '')
if module_loader.find_plugin(module):
setattr(self, name, lambda arg, module=module: self.default(module + ' ' + arg))
attr = object.__getattr__(self, name)
elif name.startswith('help_'):
module = name.replace('help_', '')
if module_loader.find_plugin(module):
setattr(self, name, lambda module=module: self.helpdefault(module))
attr = object.__getattr__(self, name)
if attr is None:
raise AttributeError(f"{self.__class__} does not have a {name} attribute")
return attr
| 34f8168afc1d7047c47adec3730c591a58f4f899 | 17 | console.py | 240 | ansible-console fixes (#78064)
* list collection task actions too
* dynamically add execute/help functions when module is found
* handle redirection and short names | 78,939 | 0 | 217 | 138 | 38 | 267,520 | 60 | ansible | 16 | lib/ansible/cli/console.py | Python | 15 | {
"docstring": " handle not found to populate dynamically a module function if module matching name exists ",
"language": "en",
"n_whitespaces": 15,
"n_words": 14,
"vocab_size": 13
} | https://github.com/ansible/ansible.git |
|
1 | test_blacklisted_ip_specific | def test_blacklisted_ip_specific(self) -> None:
self.lookups["example.com"] = [(IPv4Address, "192.168.1.1")]
channel = self.make_request(
"GET", "preview_url?url=http://example.com", shorthand=False
)
# No requests made.
self.assertEqual(len(self.reactor.tcpClients), 0)
self.assertEqual(channel.code, 502)
self.assertEqual(
channel.json_body,
{
"errcode": "M_UNKNOWN",
"error": "DNS resolution failure during URL preview generation",
},
)
| 32c828d0f760492711a98b11376e229d795fd1b3 | 11 | test_url_preview.py | 139 | Add type hints to `tests/rest`. (#12208)
Co-authored-by: Patrick Cloke <[email protected]> | 71,729 | 0 | 175 | 81 | 36 | 247,541 | 38 | synapse | 13 | tests/rest/media/v1/test_url_preview.py | Python | 17 | {
"docstring": "\n Blacklisted IP addresses, found via DNS, are not spidered.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | https://github.com/matrix-org/synapse.git |
|
1 | verbatim | def verbatim(parser, token):
nodelist = parser.parse(("endverbatim",))
parser.delete_first_token()
return VerbatimNode(nodelist.render(Context()))
@register.tag | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | @register.tag | 11 | defaulttags.py | 70 | Refs #33476 -- Reformatted code with Black. | 51,443 | 1 | 21 | 36 | 10 | 206,254 | 10 | django | 11 | django/template/defaulttags.py | Python | 4 | {
"docstring": "\n Stop the template engine from rendering the contents of this block tag.\n\n Usage::\n\n {% verbatim %}\n {% don't process this %}\n {% endverbatim %}\n\n You can also designate a specific closing tag block (allowing the\n unrendered use of ``{% endverbatim %}``)::\n\n {% verbatim myblock %}\n ...\n {% endverbatim myblock %}\n ",
"language": "en",
"n_whitespaces": 116,
"n_words": 50,
"vocab_size": 33
} | https://github.com/django/django.git |
3 | test_large_batch_mixed_efficiency | def test_large_batch_mixed_efficiency(self):
with override_settings(DEBUG=True):
connection.queries_log.clear()
TwoFields.objects.bulk_create(
[
TwoFields(id=i if i % 2 == 0 else None, f1=i, f2=i + 1)
for i in range(100000, 101000)
]
)
self.assertLess(len(connection.queries), 10)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 16 | tests.py | 120 | Refs #33476 -- Reformatted code with Black. | 50,024 | 0 | 155 | 76 | 28 | 201,942 | 29 | django | 18 | tests/bulk_create/tests.py | Python | 10 | {
"docstring": "\n Test inserting a large batch with objects having primary key set\n mixed together with objects without PK set.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 16
} | https://github.com/django/django.git |
|
1 | test_subdag_pools | def test_subdag_pools(self):
dag = DAG('parent', default_args=default_args)
subdag = DAG('parent.child', default_args=default_args)
session = airflow.settings.Session()
pool_1 = airflow.models.Pool(pool='test_pool_1', slots=1)
pool_10 = airflow.models.Pool(pool='test_pool_10', slots=10)
session.add(pool_1)
session.add(pool_10)
session.commit()
EmptyOperator(task_id='dummy', dag=subdag, pool='test_pool_1')
with pytest.raises(AirflowException):
SubDagOperator(task_id='child', dag=dag, subdag=subdag, pool='test_pool_1')
# recreate dag because failed subdagoperator was already added
dag = DAG('parent', default_args=default_args)
SubDagOperator(task_id='child', dag=dag, subdag=subdag, pool='test_pool_10')
session.delete(pool_1)
session.delete(pool_10)
session.commit()
| 49e336ae0302b386a2f47269a6d13988382d975f | 11 | test_subdag_operator.py | 287 | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | 9,191 | 0 | 183 | 169 | 38 | 47,650 | 53 | airflow | 25 | tests/operators/test_subdag_operator.py | Python | 17 | {
"docstring": "\n Subdags and subdag tasks can't both have a pool with 1 slot\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | https://github.com/apache/airflow.git |
|
6 | test_loss_of_perfect_prediction | def test_loss_of_perfect_prediction(loss, sample_weight):
if not loss.is_multiclass:
# Use small values such that exp(value) is not nan.
raw_prediction = np.array([-10, -0.1, 0, 0.1, 3, 10])
# If link is identity, we must respect the interval of y_pred:
if isinstance(loss.link, IdentityLink):
eps = 1e-10
low = loss.interval_y_pred.low
if not loss.interval_y_pred.low_inclusive:
low = low + eps
high = loss.interval_y_pred.high
if not loss.interval_y_pred.high_inclusive:
high = high - eps
raw_prediction = np.clip(raw_prediction, low, high)
y_true = loss.link.inverse(raw_prediction)
else:
# HalfMultinomialLoss
y_true = np.arange(loss.n_classes).astype(float)
# raw_prediction with entries -exp(10), but +exp(10) on the diagonal
# this is close enough to np.inf which would produce nan
raw_prediction = np.full(
shape=(loss.n_classes, loss.n_classes),
fill_value=-np.exp(10),
dtype=float,
)
raw_prediction.flat[:: loss.n_classes + 1] = np.exp(10)
if sample_weight == "range":
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
loss_value = loss.loss(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
)
constant_term = loss.constant_to_optimal_zero(
y_true=y_true, sample_weight=sample_weight
)
# Comparing loss_value + constant_term to zero would result in large
# round-off errors.
assert_allclose(loss_value, -constant_term, atol=1e-14, rtol=1e-15)
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
@pytest.mark.parametrize("sample_weight", [None, "range"]) | 75a94f518f7bd7d0bf581ffb67d9f961e3c4efbc | @pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
@pytest.mark.parametrize("sample_weight", [None, "range"]) | 15 | test_loss.py | 446 | ENH migrate GLMs / TweedieRegressor to linear loss (#22548)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Thomas J. Fan <[email protected]> | 75,769 | 1 | 438 | 266 | 110 | 259,435 | 159 | scikit-learn | 43 | sklearn/_loss/tests/test_loss.py | Python | 32 | {
"docstring": "Test value of perfect predictions.\n\n Loss of y_pred = y_true plus constant_to_optimal_zero should sums up to\n zero.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 17,
"vocab_size": 16
} | https://github.com/scikit-learn/scikit-learn.git |
2 | set_cmap | def set_cmap(cmap):
cmap = colormaps[cmap]
rc('image', cmap=cmap.name)
im = gci()
if im is not None:
im.set_cmap(cmap)
@_copy_docstring_and_deprecators(matplotlib.image.imread) | a17f4f3bd63e3ca3754f96d7db4ce5197720589b | @_copy_docstring_and_deprecators(matplotlib.image.imread) | 9 | pyplot.py | 82 | MNT: convert tests and internal usage way from using mpl.cm.get_cmap | 23,562 | 1 | 38 | 39 | 15 | 109,381 | 17 | matplotlib | 11 | lib/matplotlib/pyplot.py | Python | 6 | {
"docstring": "\n Set the default colormap, and applies it to the current image if any.\n\n Parameters\n ----------\n cmap : `~matplotlib.colors.Colormap` or str\n A colormap instance or the name of a registered colormap.\n\n See Also\n --------\n colormaps\n matplotlib.cm.register_cmap\n matplotlib.cm.get_cmap\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 36,
"vocab_size": 33
} | https://github.com/matplotlib/matplotlib.git |
1 | test_ddp_sharded_strategy_fit_ckpt_path | def test_ddp_sharded_strategy_fit_ckpt_path(tmpdir):
model = BoringModel()
trainer = Trainer(strategy="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
trainer = Trainer(strategy="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
trainer.fit(model, ckpt_path=checkpoint_path)
@pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") # todo
@pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.")
@RunIf(min_gpus=2, skip_windows=True, fairscale=True) | 650c710efacd633fa283955145342bb64063c883 | @pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") # todo
@pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.")
@RunIf(min_gpus=2, skip_windows=True, fairscale=True) | 10 | test_sharded_strategy.py | 197 | Rename training plugin test files & names to strategy (#11303) | 69,606 | 1 | 75 | 82 | 40 | 241,581 | 50 | lightning | 24 | tests/strategies/test_sharded_strategy.py | Python | 9 | {
"docstring": "Test to ensure that resuming from checkpoint works.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/Lightning-AI/lightning.git |
4 | get_provider | def get_provider(moduleOrReq):
if isinstance(moduleOrReq, Requirement):
return working_set.find(moduleOrReq) or require(str(moduleOrReq))[0]
try:
module = sys.modules[moduleOrReq]
except KeyError:
__import__(moduleOrReq)
module = sys.modules[moduleOrReq]
loader = getattr(module, '__loader__', None)
return _find_adapter(_provider_factories, loader)(module)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 13 | __init__.py | 124 | upd; format | 13,146 | 0 | 73 | 77 | 22 | 63,100 | 27 | transferlearning | 17 | .venv/lib/python3.8/site-packages/pip/_vendor/pkg_resources/__init__.py | Python | 10 | {
"docstring": "Return an IResourceProvider for the named module or requirement",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/jindongwang/transferlearning.git |
|
2 | get_template_env | def get_template_env(self) -> jinja2.Environment:
dag = self.get_dag()
if dag:
return dag.get_template_env()
return SandboxedEnvironment(cache_size=0)
| ff3bbc3db24f9f3f4f88033d48859fb08fc3237b | 9 | base.py | 57 | Implement enough interface for MappedOperator to be baggable (#20945) | 8,186 | 0 | 52 | 33 | 12 | 44,167 | 13 | airflow | 8 | airflow/models/base.py | Python | 6 | {
"docstring": "Fetch a Jinja template environment from the DAG or instantiate empty environment if no DAG.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 14
} | https://github.com/apache/airflow.git |
|
2 | load | def load(self):
try:
return signing.loads(
self.session_key,
serializer=self.serializer,
# This doesn't handle non-default expiry dates, see #19201
max_age=self.get_session_cookie_age(),
salt="django.contrib.sessions.backends.signed_cookies",
)
except Exception:
# BadSignature, ValueError, or unpickling exceptions. If any of
# these happen, reset the session.
self.create()
return {}
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | signed_cookies.py | 81 | Refs #33476 -- Reformatted code with Black. | 50,693 | 0 | 197 | 47 | 36 | 204,312 | 39 | django | 11 | django/contrib/sessions/backends/signed_cookies.py | Python | 11 | {
"docstring": "\n Load the data from the key itself instead of fetching from some\n external data store. Opposite of _get_session_key(), raise BadSignature\n if signature fails.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 23,
"vocab_size": 19
} | https://github.com/django/django.git |
|
5 | mlsd | def mlsd(self, path="", facts=[]):
if facts:
self.sendcmd("OPTS MLST " + ";".join(facts) + ";")
if path:
cmd = "MLSD %s" % path
else:
cmd = "MLSD"
lines = []
self.retrlines(cmd, lines.append)
for line in lines:
facts_found, _, name = line.rstrip(CRLF).partition(' ')
entry = {}
for fact in facts_found[:-1].split(";"):
key, _, value = fact.partition("=")
entry[key.lower()] = value
yield (name, entry)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 14 | ftplib.py | 222 | add python 3.10.4 for windows | 54,776 | 0 | 214 | 129 | 45 | 217,427 | 58 | XX-Net | 23 | python3.10.4/Lib/ftplib.py | Python | 16 | {
"docstring": "List a directory in a standardized format by using MLSD\n command (RFC-3659). If path is omitted the current directory\n is assumed. \"facts\" is a list of strings representing the type\n of information desired (e.g. [\"type\", \"size\", \"perm\"]).\n\n Return a generator object yielding a tuple of two elements\n for every file found in path.\n First element is the file name, the second one is a dictionary\n including a variable number of \"facts\" depending on the server\n and whether \"facts\" argument has been provided.\n ",
"language": "en",
"n_whitespaces": 145,
"n_words": 82,
"vocab_size": 60
} | https://github.com/XX-net/XX-Net.git |
|
1 | callbacks | def callbacks(self, callbacks_class) -> "TrainerConfig":
self.callbacks_class = callbacks_class
return self
| 2eaa54bd763ae0e63158ae0d939633c804394b78 | 7 | trainer_config.py | 31 | [RLlib] POC: Config objects instead of dicts (PPO only). (#23491) | 34,012 | 0 | 31 | 17 | 10 | 147,576 | 10 | ray | 3 | rllib/agents/trainer_config.py | Python | 14 | {
"docstring": "Sets the callbacks configuration.\n\n Args:\n callbacks_class: Callbacks class, whose methods will be run during\n various phases of training and environment sample collection.\n See the `DefaultCallbacks` class and\n `examples/custom_metrics_and_callbacks.py` for more usage information.\n\n Returns:\n This updated TrainerConfig object.\n ",
"language": "en",
"n_whitespaces": 125,
"n_words": 37,
"vocab_size": 35
} | https://github.com/ray-project/ray.git |
|
2 | print_help | def print_help(self):
source_txt = CRYPTO_SOURCES.get(self.source, "?") if self.source != "" else ""
help_text = f
console.print(text=help_text, menu="Crypto - Due Diligence")
| a6f7e111e68346aeab315985b3704c2710693b38 | 10 | dd_controller.py | 86 | Bounty Hunter mood: 11 bugs fixed (#1853)
* fix #1850
* fix #1831
* add extra check to Reddit API keys
* ignore warning message to update praw api
* improve OpenBB links
* fix quick performance only on stocks class because I'm James bitch
* fix quick performance only on stocks class because I'm James bitch
* fix #1829
* fix #1821
* add messari to keys - fix #1819
* example of multiple oclumns to check on options/chains
* minor improvement in xlabel re. #1814
* remove repeated command
* fix #1698
* fix line too long
* fix #1814 fr now
* fix tests | 84,832 | 0 | 48 | 42 | 18 | 284,582 | 20 | OpenBBTerminal | 12 | openbb_terminal/cryptocurrency/due_diligence/dd_controller.py | Python | 56 | {
"docstring": "Print help[cmds]\n load load a specific cryptocurrency for analysis\n\n[param]Coin: [/param]{self.coin}\n[param]Source: [/param]{source_txt}\n\n[src]CoinGecko[/src]\n info basic information about loaded coin\n market market stats about loaded coin\n ath all time high related stats for loaded coin\n atl all time low related stats for loaded coin\n web found websites for loaded coin e.g forum, homepage\n social social portals urls for loaded coin, e.g reddit, twitter\n score different kind of scores for loaded coin, e.g developer score, sentiment score\n dev github, bitbucket coin development statistics\n bc links to blockchain explorers for loaded coin\n[src]Glassnode[/src]\n active active addresses\n nonzero addresses with non-zero balances\n change 30d change of supply held on exchange wallets\n eb total balance held on exchanges (in percentage and units)\n[src]Coinglass[/src]\n oi open interest per exchange\n[src]CoinPaprika[/src]\n basic basic information about loaded coin\n ps price and supply related metrics for loaded coin\n mkt all markets for loaded coin\n ex all exchanges where loaded coin is listed\n twitter tweets for loaded coin\n events events related to loaded coin\n[src]Binance[/src]\n binbook order book\n balance coin balance\n[src]Coinbase[/src]\n cbbook order book\n trades last trades\n stats coin stats\n[src]Messari[/src]\n mcapdom market cap dominance\n mt messari timeseries e.g. twitter followers, circ supply, etc\n rm roadmap\n tk tokenomics e.g. circulating/max/total supply, emission type, etc\n pi project information e.g. technology details, public repos, audits, vulns\n team contributors (individuals and organizations)\n inv investors (individuals and organizations)\n gov governance details\n fr fundraising details e.g. treasury accounts, sales rounds, allocation\n links links e.g. whitepaper, github, twitter, youtube, reddit, telegram\n[src]Santiment[/src]\n gh github activity over time\n[src]CryptoPanic[/src]\n news loaded coin's most recent news[/cmds]\n",
"language": "en",
"n_whitespaces": 814,
"n_words": 260,
"vocab_size": 163
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
1 | __call__ | def __call__(self, hidden_states):
# layer norm should always be calculated in float32
variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True)
hidden_states = hidden_states / jnp.sqrt(variance + self.eps)
return self.weight * hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseActDense with T5->LongT5 | a72f1c9f5b907f96cbb7de3bbb02a1d431d34071 | 13 | modeling_flax_longt5.py | 91 | Add `LongT5` model (#16792)
* Initial commit
* Make some fixes
* Make PT model full forward pass
* Drop TF & Flax implementation, fix copies etc
* Add Flax model and update some corresponding stuff
* Drop some TF things
* Update config and flax local attn
* Add encoder_attention_type to config
* .
* Update docs
* Do some cleansing
* Fix some issues -> make style; add some docs
* Fix position_bias + mask addition + Update tests
* Fix repo consistency
* Fix model consistency by removing flax operation over attn_mask
* [WIP] Add PT TGlobal LongT5
* .
* [WIP] Add flax tglobal model
* [WIP] Update flax model to use the right attention type in the encoder
* Fix flax tglobal model forward pass
* Make the use of global_relative_attention_bias
* Add test suites for TGlobal model
* Fix minor bugs, clean code
* Fix pt-flax equivalence though not convinced with correctness
* Fix LocalAttn implementation to match the original impl. + update READMEs
* Few updates
* Update: [Flax] improve large model init and loading #16148
* Add ckpt conversion script accoring to #16853 + handle torch device placement
* Minor updates to conversion script.
* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM
* gpu support + dtype fix
* Apply some suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies
* Remove caching logic for local & tglobal attention
* Apply another batch of suggestions from code review
* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx
* Fix converting script + revert config file change
* Revert "Remove caching logic for local & tglobal attention"
This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.
* Stash caching logic in Flax model
* Make side relative bias used always
* Drop caching logic in PT model
* Return side bias as it was
* Drop all remaining model parallel logic
* Remove clamp statements
* Move test files to the proper place
* Update docs with new version of hf-doc-builder
* Fix test imports
* Make some minor improvements
* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray
* Fix TGlobal for ONNX conversion + update docs
* fix _make_global_fixed_block_ids and masked neg value
* update flax model
* style and quality
* fix imports
* remove load_tf_weights_in_longt5 from init and fix copies
* add slow test for TGlobal model
* typo fix
* Drop obsolete is_parallelizable and one warning
* Update __init__ files to fix repo-consistency
* fix pipeline test
* Fix some device placements
* [wip]: Update tests -- need to generate summaries to update expected_summary
* Fix quality
* Update LongT5 model card
* Update (slow) summarization tests
* make style
* rename checkpoitns
* finish
* fix flax tests
Co-authored-by: phungvanduy <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
Co-authored-by: patil-suraj <[email protected]> | 5,713 | 0 | 68 | 55 | 30 | 31,263 | 34 | transformers | 13 | src/transformers/models/longt5/modeling_flax_longt5.py | Python | 4 | {
"docstring": "\n Construct a layernorm module in the LongT5 style; No bias and no subtraction of mean.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 15,
"vocab_size": 15
} | https://github.com/huggingface/transformers.git |
|
11 | partitionwise_graph | def partitionwise_graph(func, layer_name, *args, **kwargs):
pairs = []
numblocks = {}
for arg in args:
if isinstance(arg, _Frame):
pairs.extend([arg._name, "i"])
numblocks[arg._name] = (arg.npartitions,)
elif isinstance(arg, Scalar):
pairs.extend([arg._name, "i"])
numblocks[arg._name] = (1,)
elif isinstance(arg, Array):
if arg.ndim == 1:
pairs.extend([arg.name, "i"])
elif arg.ndim == 0:
pairs.extend([arg.name, ""])
elif arg.ndim == 2:
pairs.extend([arg.name, "ij"])
else:
raise ValueError("Can't add multi-dimensional array to dataframes")
numblocks[arg._name] = arg.numblocks
elif isinstance(arg, BlockwiseDep):
if len(arg.numblocks) == 1:
pairs.extend([arg, "i"])
elif len(arg.numblocks) == 2:
pairs.extend([arg, "ij"])
else:
raise ValueError(
f"BlockwiseDep arg {arg!r} has {len(arg.numblocks)} dimensions; only 1 or 2 are supported."
)
else:
pairs.extend([arg, None])
return blockwise(
func, layer_name, "i", *pairs, numblocks=numblocks, concatenate=True, **kwargs
)
| 2a9d34aff0a38be5fc8bfcdec38e5c4a7bafcf0e | 20 | core.py | 437 | Move DataFrame ACA aggregations to HLG (#8468) | 36,437 | 0 | 449 | 264 | 67 | 155,618 | 107 | dask | 22 | dask/dataframe/core.py | Python | 34 | {
"docstring": "\n Apply a function partition-wise across arguments to create layer of a graph\n\n This applies a function, ``func``, in an embarrassingly parallel fashion\n across partitions/chunks in the provided arguments. It handles Dataframes,\n Arrays, and scalars smoothly, and relies on the ``blockwise`` machinery\n to provide a nicely symbolic graph.\n\n It is most commonly used in other graph-building functions to create the\n appropriate layer of the resulting dataframe.\n\n Parameters\n ----------\n func: callable\n layer_name: str\n Descriptive name for the operation. Used as the output name\n in the resulting ``Blockwise`` graph layer.\n *args:\n **kwargs:\n\n Returns\n -------\n out: Blockwise graph\n\n Examples\n --------\n >>> subgraph = partitionwise_graph(function, x, y, z=123) # doctest: +SKIP\n >>> layer = partitionwise_graph(function, df, x, z=123) # doctest: +SKIP\n >>> graph = HighLevelGraph.from_collections(name, layer, dependencies=[df, x]) # doctest: +SKIP\n >>> result = new_dd_object(graph, name, metadata, df.divisions) # doctest: +SKIP\n\n See Also\n --------\n map_partitions\n ",
"language": "en",
"n_whitespaces": 238,
"n_words": 140,
"vocab_size": 95
} | https://github.com/dask/dask.git |
|
4 | cancel | def cancel(self, msg=None):
self._log_traceback = False
if self.done():
return False
if self._fut_waiter is not None:
if self._fut_waiter.cancel(msg=msg):
# Leave self._fut_waiter; it may be a Task that
# catches and ignores the cancellation so we may have
# to cancel it again later.
return True
# It must be the case that self.__step is already scheduled.
self._must_cancel = True
self._cancel_message = msg
return True
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 10 | tasks.py | 98 | add python 3.10.4 for windows | 56,134 | 0 | 201 | 58 | 45 | 220,825 | 63 | XX-Net | 8 | python3.10.4/Lib/asyncio/tasks.py | Python | 10 | {
"docstring": "Request that this task cancel itself.\n\n This arranges for a CancelledError to be thrown into the\n wrapped coroutine on the next cycle through the event loop.\n The coroutine then has a chance to clean up or even deny\n the request using try/except/finally.\n\n Unlike Future.cancel, this does not guarantee that the\n task will be cancelled: the exception might be caught and\n acted upon, delaying cancellation of the task or preventing\n cancellation completely. The task may also return a value or\n raise a different exception.\n\n Immediately after this method is called, Task.cancelled() will\n not return True (unless the task was already cancelled). A\n task will be marked as cancelled when the wrapped coroutine\n terminates with a CancelledError exception (even if cancel()\n was not called).\n ",
"language": "en",
"n_whitespaces": 229,
"n_words": 122,
"vocab_size": 83
} | https://github.com/XX-net/XX-Net.git |
|
2 | _dictionary | def _dictionary(self):
# type: () -> Dict[str, Any]
# NOTE: Dictionaries are not populated if not loaded. So, conditionals
# are not needed here.
retval = {}
for variant in OVERRIDE_ORDER:
retval.update(self._config[variant])
return retval
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 11 | configuration.py | 50 | upd; format | 12,237 | 0 | 100 | 28 | 28 | 60,671 | 34 | transferlearning | 7 | .venv/lib/python3.8/site-packages/pip/_internal/configuration.py | Python | 5 | {
"docstring": "A dictionary representing the loaded configuration.\n ",
"language": "en",
"n_whitespaces": 13,
"n_words": 6,
"vocab_size": 6
} | https://github.com/jindongwang/transferlearning.git |
|
3 | _transpose_for_tf_conv | def _transpose_for_tf_conv(lhs, rhs, dimension_numbers):
# TODO(marcvanzee): Add tests for this ops for shape polymorphism.
lhs_perm, rhs_perm, _ = dimension_numbers
# TODO(marcvanzee): Consider merging tranposes if we want to optimize.
# For `lhs_perm` / `output_perm`, perm (0, 1, 2, 3) corresponds to "NCHW".
lhs = tf.transpose(lhs, lhs_perm) # lhs --> "NCHW"
if len(lhs_perm) == 3:
# For 1D convolution, we add a trivial "W" dimension, so that 2D Convolution
# logic can be applied downstream.
lhs = lhs[:, :, :, np.newaxis]
# However, the TF ops only support "NHWC" on CPU, so we transpose again.
lhs = tf.transpose(lhs, (0, 2, 3, 1)) # "NCHW" --> "NHWC"
# For `rhs_perm`, perm (0, 1, 2, 3) corresponds to "OIHW".
rhs = tf.transpose(rhs, rhs_perm) # rhs --> "OIHW"
# Handle conv1d case.
if len(rhs_perm) == 3:
rhs = rhs[:, :, :, np.newaxis]
# For the tf ops, rhs is expected to be "OIHW".
rhs = tf.transpose(rhs, (2, 3, 1, 0)) # "OIHW" --> "HWIO"
return lhs, rhs
| 4e224bcfb99c3bd9b6a32b8ad7836d12517e788f | 10 | impl_no_xla.py | 192 | [jax2tf] Add support for common audio convolutions (1D variants, dilated depthwise, transpose with SAME padding).
PiperOrigin-RevId: 458266485 | 27,024 | 0 | 195 | 121 | 96 | 121,058 | 163 | jax | 12 | jax/experimental/jax2tf/impl_no_xla.py | Python | 11 | {
"docstring": "Tranposes lhs and rhs to respectively NHWC and HWIO so they can be passed to TF functions.",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 15
} | https://github.com/google/jax.git |
|
3 | test_pprint_heap_allocated_type | def test_pprint_heap_allocated_type():
module_name = "xxlimited" if sys.version_info < (3, 10) else "xxlimited_35"
expected_output = (
"xxlimited.Null" if sys.version_info < (3, 11) else "xxlimited_35.Null"
)
xxlimited = pytest.importorskip(module_name)
output = pretty.pretty(xxlimited.Null)
assert output == expected_output
| d858213d4088237e1481038865bc52ccdd074053 | 10 | test_pretty.py | 100 | xxlimited_35 module now has the same name in repr in Py 3.11
See https://github.com/python/cpython/commit/a87c9b538fbfc42883417c4d5e69f1a5922690e3 | 52,497 | 0 | 62 | 59 | 24 | 208,740 | 34 | ipython | 11 | IPython/lib/tests/test_pretty.py | Python | 8 | {
"docstring": "\n Test that pprint works for heap allocated types.\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 8,
"vocab_size": 8
} | https://github.com/ipython/ipython.git |
|
1 | test_delete_missing_version | def test_delete_missing_version(self) -> None:
e = self.get_failure(
self.handler.delete_version(self.local_user, "1"), SynapseError
)
res = e.value.code
self.assertEqual(res, 404)
| 652d1669c5a103b1c20478770c4aaf18849c09a3 | 11 | test_e2e_room_keys.py | 72 | Add missing type hints to tests.handlers. (#14680)
And do not allow untyped defs in tests.handlers. | 73,359 | 0 | 62 | 44 | 15 | 250,281 | 16 | synapse | 12 | tests/handlers/test_e2e_room_keys.py | Python | 7 | {
"docstring": "Check that we get a 404 on deleting nonexistent versions",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/matrix-org/synapse.git |
|
10 | name | def name(self, pretty=False):
# type: (bool) -> str
name = (
self.os_release_attr("name")
or self.lsb_release_attr("distributor_id")
or self.distro_release_attr("name")
or self.uname_attr("name")
)
if pretty:
name = self.os_release_attr("pretty_name") or self.lsb_release_attr(
"description"
)
if not name:
name = self.distro_release_attr("name") or self.uname_attr("name")
version = self.version(pretty=True)
if version:
name = name + " " + version
return name or ""
| f3166e673fe8d40277b804d35d77dcdb760fc3b3 | 15 | distro.py | 186 | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 3,230 | 0 | 251 | 102 | 31 | 20,087 | 53 | pipenv | 8 | pipenv/patched/notpip/_vendor/distro.py | Python | 17 | {
"docstring": "\n Return the name of the OS distribution, as a string.\n\n For details, see :func:`distro.name`.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | https://github.com/pypa/pipenv.git |
|
1 | test_extra_serialized_field_and_multiple_operator_links | def test_extra_serialized_field_and_multiple_operator_links(self, dag_maker):
test_date = timezone.DateTime(2019, 8, 1, tzinfo=timezone.utc)
with dag_maker(dag_id='simple_dag', start_date=test_date) as dag:
CustomOperator(task_id='simple_task', bash_command=["echo", "true"])
serialized_dag = SerializedDAG.to_dict(dag)
assert "bash_command" in serialized_dag["dag"]["tasks"][0]
dag = SerializedDAG.from_dict(serialized_dag)
simple_task = dag.task_dict["simple_task"]
assert getattr(simple_task, "bash_command") == ["echo", "true"]
#########################################################
# Verify Operator Links work with Serialized Operator
#########################################################
# Check Serialized version of operator link only contains the inbuilt Op Link
assert serialized_dag["dag"]["tasks"][0]["_operator_extra_links"] == [
{'tests.test_utils.mock_operators.CustomBaseIndexOpLink': {'index': 0}},
{'tests.test_utils.mock_operators.CustomBaseIndexOpLink': {'index': 1}},
]
# Test all the extra_links are set
assert set(simple_task.extra_links) == {
'BigQuery Console #1',
'BigQuery Console #2',
'airflow',
'github',
'google',
}
dag_maker.create_dagrun(execution_date=test_date)
XCom.set(
key='search_query',
value=["dummy_value_1", "dummy_value_2"],
task_id=simple_task.task_id,
dag_id=simple_task.dag_id,
execution_date=test_date,
)
# Test Deserialized inbuilt link #1
custom_inbuilt_link = simple_task.get_extra_links(test_date, "BigQuery Console #1")
assert 'https://console.cloud.google.com/bigquery?j=dummy_value_1' == custom_inbuilt_link
# Test Deserialized inbuilt link #2
custom_inbuilt_link = simple_task.get_extra_links(test_date, "BigQuery Console #2")
assert 'https://console.cloud.google.com/bigquery?j=dummy_value_2' == custom_inbuilt_link
# Test Deserialized link registered via Airflow Plugin
google_link_from_plugin = simple_task.get_extra_links(test_date, GoogleLink.name)
assert "https://www.google.com" == google_link_from_plugin
| 0ebd6428e6b484790bfbbe1b8687ef4e6cae10e9 | 12 | test_dag_serialization.py | 430 | Switch XCom implementation to use run_id (#20975) | 8,435 | 0 | 494 | 246 | 98 | 44,997 | 148 | airflow | 33 | tests/serialization/test_dag_serialization.py | Python | 34 | {
"docstring": "\n Assert extra field exists & OperatorLinks defined in Plugins and inbuilt Operator Links.\n\n This tests also depends on GoogleLink() registered as a plugin\n in tests/plugins/test_plugin.py\n\n The function tests that if extra operator links are registered in plugin\n in ``operator_extra_links`` and the same is also defined in\n the Operator in ``BaseOperator.operator_extra_links``, it has the correct\n extra link.\n ",
"language": "en",
"n_whitespaces": 113,
"n_words": 56,
"vocab_size": 40
} | https://github.com/apache/airflow.git |
|
5 | get_mac_addr | def get_mac_addr(self):
if (
self.bulb.host_firmware_version
and AwesomeVersion(self.bulb.host_firmware_version) >= FIX_MAC_FW
):
octets = [int(octet, 16) for octet in self.mac_addr.split(":")]
octets[5] = (octets[5] + 1) % 256
return ":".join(f"{octet:02x}" for octet in octets)
return self.mac_addr
| a0974e0c7297537149985f93544dd6f8ed8cfded | 13 | light.py | 131 | Refactor LIFX discovery to prevent duplicate discovery response handling (#72213)
* Partially revert #70458 and allow duplicate LIFX discoveries
Signed-off-by: Avi Miller <[email protected]>
* Only process one discovery at a time
* Revert all LIFX duplicate/inflight discovery checks
Also remember LIFX Switches and do as little processing for them
as possible.
Signed-off-by: Avi Miller <[email protected]>
* Bump aiolifx version to support the latest LIFX devices
LIFX added 22 new product definitions to their public product
list at the end of January and those new products are defined in
aiolifx v0.8.1, so bump the dependency version.
Also switched to testing for relays instead of maintaining a
seperate list of switch product IDs.
Fixes #72894.
Signed-off-by: Avi Miller <[email protected]>
* Refactor LIFX discovery to better handle duplicate responses
Signed-off-by: Avi Miller <[email protected]>
* Update clear_inflight_discovery with review suggestion
Signed-off-by: Avi Miller <[email protected]>
* Move the existing entity check to before the asyncio lock
Signed-off-by: Avi Miller <[email protected]>
* Bail out of discovery early and if an entity was created
Also ensure that the entity always has a unique ID even if the bulb was
not successfully discovered.
Signed-off-by: Avi Miller <[email protected]>
Co-authored-by: J. Nick Koston <[email protected]> | 112,213 | 0 | 116 | 78 | 28 | 313,595 | 33 | core | 12 | homeassistant/components/lifx/light.py | Python | 9 | {
"docstring": "Increment the last byte of the mac address by one for FW>3.70.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/home-assistant/core.git |
|
2 | metrics_names | def metrics_names(self):
# This property includes all output names including `loss` and per-output
# losses for backward compatibility.
return [m.name for m in self.metrics]
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 8 | training.py | 32 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,791 | 0 | 52 | 18 | 22 | 271,550 | 24 | keras | 5 | keras/engine/training.py | Python | 2 | {
"docstring": "Returns the model's display labels for all outputs.\n\n Note: `metrics_names` are available only after a `keras.Model` has been\n trained/evaluated on actual data.\n\n Examples:\n\n >>> inputs = tf.keras.layers.Input(shape=(3,))\n >>> outputs = tf.keras.layers.Dense(2)(inputs)\n >>> model = tf.keras.models.Model(inputs=inputs, outputs=outputs)\n >>> model.compile(optimizer=\"Adam\", loss=\"mse\", metrics=[\"mae\"])\n >>> model.metrics_names\n []\n\n >>> x = np.random.random((2, 3))\n >>> y = np.random.randint(0, 2, (2, 2))\n >>> model.fit(x, y)\n >>> model.metrics_names\n ['loss', 'mae']\n\n >>> inputs = tf.keras.layers.Input(shape=(3,))\n >>> d = tf.keras.layers.Dense(2, name='out')\n >>> output_1 = d(inputs)\n >>> output_2 = d(inputs)\n >>> model = tf.keras.models.Model(\n ... inputs=inputs, outputs=[output_1, output_2])\n >>> model.compile(optimizer=\"Adam\", loss=\"mse\", metrics=[\"mae\", \"acc\"])\n >>> model.fit(x, (y, y))\n >>> model.metrics_names\n ['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae',\n 'out_1_acc']\n\n ",
"language": "en",
"n_whitespaces": 290,
"n_words": 105,
"vocab_size": 70
} | https://github.com/keras-team/keras.git |
|
5 | from_collections | def from_collections(cls, name, layer, dependencies=()):
if len(dependencies) == 1:
return cls._from_collection(name, layer, dependencies[0])
layers = {name: layer}
deps = {name: set()}
for collection in toolz.unique(dependencies, key=id):
if is_dask_collection(collection):
graph = collection.__dask_graph__()
if isinstance(graph, HighLevelGraph):
layers.update(graph.layers)
deps.update(graph.dependencies)
deps[name] |= set(collection.__dask_layers__())
else:
key = _get_some_layer_name(collection)
layers[key] = graph
deps[name].add(key)
deps[key] = set()
else:
raise TypeError(type(collection))
return cls(layers, deps)
| dfdc4bbab43678927e30866f06df509483ac5d24 | 16 | highlevelgraph.py | 260 | Collections with HLG must always implement __dask_layers__ (#8548)
Without ``__dask_layers__``, ``HighLevelGraph.from_collections`` will produce a broken layer dependency graph and things will fall apart down the line. Given this, it seems likely that no users should have the use case in production, so it should be safe not to have a deprecation cycle here. | 36,421 | 0 | 324 | 165 | 44 | 155,542 | 56 | dask | 26 | dask/highlevelgraph.py | Python | 53 | {
"docstring": "Construct a HighLevelGraph from a new layer and a set of collections\n\n This constructs a HighLevelGraph in the common case where we have a single\n new layer and a set of old collections on which we want to depend.\n\n This pulls out the ``__dask_layers__()`` method of the collections if\n they exist, and adds them to the dependencies for this new layer. It\n also merges all of the layers from all of the dependent collections\n together into the new layers for this graph.\n\n Parameters\n ----------\n name : str\n The name of the new layer\n layer : Mapping\n The graph layer itself\n dependencies : List of Dask collections\n A list of other dask collections (like arrays or dataframes) that\n have graphs themselves\n\n Examples\n --------\n\n In typical usage we make a new task layer, and then pass that layer\n along with all dependent collections to this method.\n\n >>> def add(self, other):\n ... name = 'add-' + tokenize(self, other)\n ... layer = {(name, i): (add, input_key, other)\n ... for i, input_key in enumerate(self.__dask_keys__())}\n ... graph = HighLevelGraph.from_collections(name, layer, dependencies=[self])\n ... return new_collection(name, graph)\n ",
"language": "en",
"n_whitespaces": 407,
"n_words": 179,
"vocab_size": 105
} | https://github.com/dask/dask.git |
|
1 | test_hf_classification_bin | def test_hf_classification_bin(self, mock_handler):
# create predictor
create_sql =
model_name = 'spam_classifier'
predict_sql =
self.hf_test_run(mock_handler, model_name, create_sql, predict_sql)
# one line prediction
predict_sql =
# use predictor
ret = self.command_executor.execute_command(parse_sql(predict_sql, dialect='mindsdb'))
assert ret.error_code is None
| cc6313a0f791ba42782082b1161b6a62578e45f4 | 12 | test_ml_handlers.py | 98 | fixed one line prediction for new ml handler api | 25,865 | 0 | 106 | 54 | 26 | 116,887 | 34 | mindsdb | 13 | tests/unit/test_ml_handlers.py | Python | 23 | {
"docstring": "\n CREATE PREDICTOR huggingface.spam_classifier\n predict PRED\n USING\n task='text-classification',\n model_name= \"mrm8488/bert-tiny-finetuned-sms-spam-detection\",\n input_column = 'text_spammy',\n labels=['ham','spam']\n \n SELECT h.*\n FROM pg.df as t \n JOIN huggingface.spam_classifier as h\n \n SELECT * from huggingface.spam_classifier\n where text_spammy= 'It is the best time to launch the Robot to get more money. https:\\\\/\\\\/Gof.bode-roesch.de\\\\/Gof'\n ",
"language": "en",
"n_whitespaces": 216,
"n_words": 43,
"vocab_size": 37
} | https://github.com/mindsdb/mindsdb.git |
|
5 | update_denormalized_fields | def update_denormalized_fields(sender, instance, created, raw, **kwargs):
# Skip for new objects or those being populated from raw data
if created or raw:
return
# Look up any denormalized fields referencing this model from the application registry
for model, field_name, mappings in registry['denormalized_fields'].get(sender, []):
logger.debug(f'Updating denormalized values for {model}.{field_name}')
filter_params = {
field_name: instance.pk,
}
update_params = {
# Map the denormalized field names to the instance's values
denorm: getattr(instance, origin) for denorm, origin in mappings.items()
}
# TODO: Improve efficiency here by placing conditions on the query?
# Update all the denormalized fields with the triggering object's new values
count = model.objects.filter(**filter_params).update(**update_params)
logger.debug(f'Updated {count} rows')
| e96620260a6c1b5cf8cff2112d40d061984a7b2c | 13 | denormalized.py | 180 | Closes #9903: Implement a mechanism for automatically updating denormalized fields | 78,111 | 0 | 223 | 104 | 79 | 265,476 | 105 | netbox | 24 | netbox/netbox/denormalized.py | Python | 13 | {
"docstring": "\n Check if the sender has denormalized fields registered, and update them as necessary.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 13,
"vocab_size": 13
} | https://github.com/netbox-community/netbox.git |
|
7 | aimport | def aimport(self, parameter_s="", stream=None):
modname = parameter_s
if not modname:
to_reload = sorted(self._reloader.modules.keys())
to_skip = sorted(self._reloader.skip_modules.keys())
if stream is None:
stream = sys.stdout
if self._reloader.check_all:
stream.write("Modules to reload:\nall-except-skipped\n")
else:
stream.write("Modules to reload:\n%s\n" % " ".join(to_reload))
stream.write("\nModules to skip:\n%s\n" % " ".join(to_skip))
else:
for _module in [_.strip() for _ in modname.split(",")]:
if _module.startswith("-"):
_module = _module[1:].strip()
self._reloader.mark_module_skipped(_module)
else:
top_module, top_name = self._reloader.aimport_module(_module)
# Inject module to user namespace
self.shell.push({top_name: top_module})
| 8a66e854a87b5147d811bd3bc92c5c2a382633e1 | 17 | autoreload.py | 308 | Improve parsing for `%aimport` | 52,549 | 0 | 344 | 175 | 49 | 208,820 | 69 | ipython | 28 | IPython/extensions/autoreload.py | Python | 20 | {
"docstring": "%aimport => Import modules for automatic reloading.\n\n %aimport\n List modules to automatically import and not to import.\n\n %aimport foo\n Import module 'foo' and mark it to be autoreloaded for %autoreload 1\n\n %aimport foo, bar\n Import modules 'foo', 'bar' and mark them to be autoreloaded for %autoreload 1\n\n %aimport -foo, bar\n Mark module 'foo' to not be autoreloaded for %autoreload 1, 2, or 3, and 'bar'\n to be autoreloaded for 1.\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 70,
"vocab_size": 35
} | https://github.com/ipython/ipython.git |
|
5 | format_datetime | def format_datetime(dt, usegmt=False):
now = dt.timetuple()
if usegmt:
if dt.tzinfo is None or dt.tzinfo != datetime.timezone.utc:
raise ValueError("usegmt option requires a UTC datetime")
zone = 'GMT'
elif dt.tzinfo is None:
zone = '-0000'
else:
zone = dt.strftime("%z")
return _format_timetuple_and_zone(now, zone)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 12 | utils.py | 125 | add python 3.10.4 for windows | 57,131 | 0 | 97 | 72 | 31 | 223,881 | 40 | XX-Net | 13 | python3.10.4/Lib/email/utils.py | Python | 11 | {
"docstring": "Turn a datetime into a date string as specified in RFC 2822.\n\n If usegmt is True, dt must be an aware datetime with an offset of zero. In\n this case 'GMT' will be rendered instead of the normal +0000 required by\n RFC2822. This is to support HTTP headers involving date stamps.\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 51,
"vocab_size": 44
} | https://github.com/XX-net/XX-Net.git |
|
3 | get_controller_target_connections | def get_controller_target_connections(self) -> t.List[SshConnection]:
return list(itertools.chain.from_iterable([target.get_controller_target_connections() for
target in self.target_profiles if isinstance(target, SshTargetHostProfile)]))
| 3eb0485dd92c88cc92152d3656d94492db44b183 | 13 | provisioning.py | 70 | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | 79,309 | 0 | 77 | 44 | 13 | 268,035 | 13 | ansible | 13 | test/lib/ansible_test/_internal/provisioning.py | Python | 4 | {
"docstring": "Return SSH connection(s) for accessing all target hosts from the controller.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/ansible/ansible.git |
|
8 | getAvailableActions | def getAvailableActions(self):
action = list()
for i in range(self.size):
for j in range(self.size):
if self.state[i][j] == 0:
if i > 0:
action.append(2)
if j > 0:
action.append(0)
if i < self.size - 1:
action.append(3)
if j < self.size - 1:
action.append(1)
return action
return action
| f0af0c43340763724f139fa68aa1e5a9ffe458b4 | 15 | eight_puzzle.py | 161 | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 4,328 | 0 | 286 | 100 | 24 | 22,423 | 45 | Python | 10 | Eight_Puzzle_Solver/eight_puzzle.py | Python | 15 | {
"docstring": "\n Parameters: Current State\n Returns: Available Actions for Current State\n 0 - Left 1 - Right 2 - Top 3 - Bottom\n Restrictions: state is self.size x self.size Array\n ",
"language": "en",
"n_whitespaces": 73,
"n_words": 28,
"vocab_size": 22
} | https://github.com/geekcomputers/Python.git |
|
4 | check_picklelib | def check_picklelib(cls, value):
try:
pickler = from_qualified_name(value)
except (ImportError, AttributeError) as exc:
raise ValueError(
f"Failed to import requested pickle library: {value!r}."
) from exc
if not hasattr(pickler, "dumps"):
raise ValueError(
f"Pickle library at {value!r} does not have a 'dumps' method."
)
if not hasattr(pickler, "loads"):
raise ValueError(
f"Pickle library at {value!r} does not have a 'loads' method."
)
return value
| 83002be7b3d6ec51edcb8252484e52d918c514c1 | 12 | serializers.py | 125 | Begin sketch of deployment/packager/manifest relationship | 11,574 | 0 | 224 | 65 | 41 | 56,867 | 60 | prefect | 10 | src/prefect/packaging/serializers.py | Python | 16 | {
"docstring": "\n Check that the given pickle library is importable and has dumps/loads methods.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | https://github.com/PrefectHQ/prefect.git |
|
4 | dates | def dates(self, field_name, kind, order="ASC"):
if kind not in ("year", "month", "week", "day"):
raise ValueError("'kind' must be one of 'year', 'month', 'week', or 'day'.")
if order not in ("ASC", "DESC"):
raise ValueError("'order' must be either 'ASC' or 'DESC'.")
return (
self.annotate(
datefield=Trunc(field_name, kind, output_field=DateField()),
plain_field=F(field_name),
)
.values_list("datefield", flat=True)
.distinct()
.filter(plain_field__isnull=False)
.order_by(("-" if order == "DESC" else "") + "datefield")
)
# RemovedInDjango50Warning: when the deprecation ends, remove is_dst
# argument. | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 22 | query.py | 197 | Refs #33476 -- Reformatted code with Black. | 51,213 | 0 | 229 | 113 | 58 | 205,782 | 70 | django | 19 | django/db/models/query.py | Python | 15 | {
"docstring": "\n Return a list of date objects representing all available dates for\n the given field_name, scoped to 'kind'.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 17
} | https://github.com/django/django.git |
|
62 | commentArgs | def commentArgs():
# A ton of cases to consider, pylint: disable=too-many-branches,too-many-statements
# Inform the user about potential issues with the running version. e.g. unsupported
# version.
if python_version_str not in getSupportedPythonVersions():
# Do not disturb run of automatic tests with, detected from the presence of
# that environment variable.
if "PYTHON" not in os.environ:
Tracing.general.warning(
"The version %r is not currently supported. Expect problems."
% python_version_str,
)
default_reference_mode = (
"runtime" if shallMakeModule() or isStandaloneMode() else "original"
)
if getFileReferenceMode() is None:
options.file_reference_mode = default_reference_mode
else:
if options.file_reference_mode != default_reference_mode:
Tracing.options_logger.warning(
"Using non-default file reference mode '%s' rather than '%s' may cause runtime issues."
% (getFileReferenceMode(), default_reference_mode)
)
else:
Tracing.options_logger.info(
"Using default file reference mode '%s' need not be specified."
% default_reference_mode
)
# TODO: Not all of these are usable with MSYS2 really, split those off.
if getOS() != "Windows":
# Too many Windows specific options clearly, pylint: disable=too-many-boolean-expressions
if (
getWindowsIconExecutablePath()
or shallAskForWindowsAdminRights()
or shallAskForWindowsUIAccessRights()
or getWindowsCompanyName()
or getWindowsProductName()
or getWindowsProductVersion()
or getWindowsFileVersion()
or getForcedStderrPath() # not yet for other platforms
or getForcedStdoutPath()
or getWindowsSplashScreen()
or getIntendedPythonArch()
):
Tracing.options_logger.warning(
"Using Windows specific options has no effect on other platforms."
)
if options.mingw64 or options.msvc_version:
Tracing.options_logger.warning(
"Requesting Windows specific compilers has no effect on other platforms."
)
if isMingw64() and getMsvcVersion():
Tracing.options_logger.sysexit(
"Requesting both Windows specific compilers makes no sense."
)
if isOnefileMode():
standalone_mode = "onefile"
elif isStandaloneMode():
standalone_mode = "standalone"
else:
standalone_mode = None
if standalone_mode and not hasStandaloneSupportedOS():
Tracing.options_logger.warning(
"Standalone mode on %s is not known to be supported, might fail to work."
% getOS()
)
if options.follow_all and standalone_mode:
Tracing.options_logger.info(
"Following all imports is the default for %s mode and need not be specified."
% standalone_mode
)
if options.follow_none and standalone_mode:
Tracing.options_logger.warning(
"Following no imports is unlikely to work for %s mode and should not be specified."
% standalone_mode
)
if options.follow_stdlib and not standalone_mode:
Tracing.options_logger.warning(
"Following imports to stdlib is unlikely to work without --standalone/--onefile and should not be specified."
)
if (
not shallDumpBuiltTreeXML()
and not standalone_mode
and not options.follow_all
and not options.follow_none
and not options.follow_modules
and not options.follow_stdlib
and not options.include_modules
and not options.include_packages
and not options.include_extra
and not options.follow_not_modules
):
Tracing.options_logger.warning(
% ("module" if shallMakeModule() else "program")
)
if options.dependency_tool:
Tracing.options_logger.warning(
"Using removed option '--windows-dependency-tool' is deprecated and has no impact anymore."
)
if shallMakeModule() and options.static_libpython == "yes":
Tracing.options_logger.warning(
"In module mode, providing '--static-libpython' has no effect, it's not used."
)
options.static_libpython = "no"
if (
not isPgoMode()
and not isPythonPgoMode()
and (getPgoArgs() or getPgoExecutable())
):
Tracing.optimization_logger.warning(
"Providing PGO arguments without enabling PGO mode has no effect."
)
if isPgoMode():
if isStandaloneMode():
Tracing.optimization_logger.warning(
"Using PGO with standalone/onefile mode is not currently working. Expect errors."
)
if shallMakeModule():
Tracing.optimization_logger.warning(
"Using PGO with module mode is not currently working. Expect errors."
)
if (
options.static_libpython == "auto"
and not shallMakeModule()
and not shallDumpBuiltTreeXML()
and not shallUseStaticLibPython()
and getSystemStaticLibPythonPath() is not None
):
Tracing.options_logger.info(
)
if not shallExecuteImmediately():
if shallRunInDebugger():
Tracing.options_logger.warning(
"The '--debugger' option has no effect outside of '--debug' without '--run' option."
)
if not shallClearPythonPathEnvironment():
Tracing.options_logger.warning(
"The '--execute-with-pythonpath' option has no effect without '--run' option."
)
| a24d709ad2350c081a9a41cd76db72288b8ab014 | 20 | Options.py | 941 | UI: Added warning when following stdlib in accelerated mode
* That's not going to work at this time, so we should inform the
user to not use it. | 42,687 | 0 | 1,656 | 523 | 221 | 178,405 | 514 | Nuitka | 57 | nuitka/Options.py | Python | 136 | {
"docstring": "Comment on options, where we know something is not having the intended effect.\n\n :meta private:\n\n You did not specify to follow or include anything but main %s. Check options and \\\nmake sure that is intended.Detected static libpython to exist, consider '--static-libpython=yes' for better performance, \\\nbut errors may happen.",
"language": "en",
"n_whitespaces": 53,
"n_words": 50,
"vocab_size": 45
} | https://github.com/Nuitka/Nuitka.git |
|
1 | forward | def forward(self, c):
batch, cond_channels, cond_length = c.shape
c = self.input_conv(c)
c = c + self.residual_conv(c)
k = self.kernel_conv(c)
b = self.bias_conv(c)
kernels = k.contiguous().view(batch,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
cond_length)
bias = b.contiguous().view(batch,
self.conv_layers,
self.conv_out_channels,
cond_length)
return kernels, bias
| 0caed984e39c07849a13662894f4cbdbe0a98091 | 10 | modules.py | 163 | The new vocoder Fre-GAN is now supported (#546)
* The new vocoder Fre-GAN is now supported
* Improved some fregan details | 38,950 | 0 | 389 | 107 | 27 | 161,257 | 39 | MockingBird | 21 | vocoder/fregan/modules.py | Python | 17 | {
"docstring": "\n Args:\n c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)\n Returns:\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 10,
"vocab_size": 10
} | https://github.com/babysor/MockingBird.git |
|
7 | _parse_codestream | def _parse_codestream(fp):
hdr = fp.read(2)
lsiz = struct.unpack(">H", hdr)[0]
siz = hdr + fp.read(lsiz - 2)
lsiz, rsiz, xsiz, ysiz, xosiz, yosiz, _, _, _, _, csiz = struct.unpack_from(
">HHIIIIIIIIH", siz
)
ssiz = [None] * csiz
xrsiz = [None] * csiz
yrsiz = [None] * csiz
for i in range(csiz):
ssiz[i], xrsiz[i], yrsiz[i] = struct.unpack_from(">BBB", siz, 36 + 3 * i)
size = (xsiz - xosiz, ysiz - yosiz)
if csiz == 1:
if (yrsiz[0] & 0x7F) > 8:
mode = "I;16"
else:
mode = "L"
elif csiz == 2:
mode = "LA"
elif csiz == 3:
mode = "RGB"
elif csiz == 4:
mode = "RGBA"
else:
mode = None
return size, mode
| ee85e387bab535e2339b9d3cd1ab87c61d23af15 | 12 | Jpeg2KImagePlugin.py | 311 | Remove redundant parentheses | 69,907 | 0 | 244 | 196 | 67 | 242,744 | 115 | Pillow | 23 | src/PIL/Jpeg2KImagePlugin.py | Python | 27 | {
"docstring": "Parse the JPEG 2000 codestream to extract the size and component\n count from the SIZ marker segment, returning a PIL (size, mode) tuple.",
"language": "en",
"n_whitespaces": 25,
"n_words": 23,
"vocab_size": 21
} | https://github.com/python-pillow/Pillow.git |
|
1 | _get_postgis_func | def _get_postgis_func(self, func):
# Close out the connection. See #9437.
with self.connection.temporary_connection() as cursor:
cursor.execute("SELECT %s()" % func)
return cursor.fetchone()[0]
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 11 | operations.py | 66 | Refs #33476 -- Reformatted code with Black. | 50,549 | 0 | 64 | 36 | 20 | 203,832 | 20 | django | 8 | django/contrib/gis/db/backends/postgis/operations.py | Python | 4 | {
"docstring": "\n Helper routine for calling PostGIS functions and returning their result.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 10
} | https://github.com/django/django.git |
|
5 | can_publish_subpage | def can_publish_subpage(self):
if not self.user.is_active:
return False
specific_class = self.page.specific_class
if specific_class is None or not specific_class.creatable_subpage_models():
return False
return self.user.is_superuser or ("publish" in self.permissions)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 9 | __init__.py | 86 | Reformat with black | 16,134 | 0 | 82 | 51 | 18 | 73,833 | 25 | wagtail | 9 | wagtail/core/models/__init__.py | Python | 7 | {
"docstring": "\n Niggly special case for creating and publishing a page in one go.\n Differs from can_publish in that we want to be able to publish subpages of root, but not\n to be able to publish root itself. (Also, can_publish_subpage returns false if the page\n does not allow subpages at all.)\n ",
"language": "en",
"n_whitespaces": 85,
"n_words": 49,
"vocab_size": 39
} | https://github.com/wagtail/wagtail.git |
|
1 | binary_mask_dice_loss | def binary_mask_dice_loss(self, mask_preds, gt_masks):
mask_preds = mask_preds.flatten(1)
gt_masks = gt_masks.flatten(1).float()
numerator = 2 * torch.einsum('nc,mc->nm', mask_preds, gt_masks)
denominator = mask_preds.sum(-1)[:, None] + gt_masks.sum(-1)[None, :]
loss = 1 - (numerator + self.eps) / (denominator + self.eps)
return loss
| cac356380d505bf15587f07c0529218cc36b9652 | 11 | match_cost.py | 146 | [Feature] Add Maskformer to mmdet (#7212)
* first commit
* add README
* move model description from config to readme
add description for binary_input
add description for dice loss
add a independent panoptic gt processing function
add a independent panoptic gt processing function
remove compatibility of pretrain in maskformer
* update comments in maskformer_head
* update docs format | 70,203 | 0 | 86 | 92 | 28 | 244,031 | 37 | mmdetection | 13 | mmdet/core/bbox/match_costs/match_cost.py | Python | 7 | {
"docstring": "\n Args:\n mask_preds (Tensor): Mask prediction in shape (num_query, *).\n gt_masks (Tensor): Ground truth in shape (num_gt, *)\n store 0 or 1, 0 for negative class and 1 for\n positive class.\n\n Returns:\n Tensor: Dice cost matrix in shape (num_query, num_gt).\n ",
"language": "en",
"n_whitespaces": 124,
"n_words": 39,
"vocab_size": 31
} | https://github.com/open-mmlab/mmdetection.git |
|
5 | _DropCommonSuffixes | def _DropCommonSuffixes(filename):
for suffix in ('test.cc', 'regtest.cc', 'unittest.cc',
'inl.h', 'impl.h', 'internal.h'):
if (filename.endswith(suffix) and len(filename) > len(suffix) and
filename[-len(suffix) - 1] in ('-', '_')):
return filename[:-len(suffix) - 1]
return os.path.splitext(filename)[0]
| cc4d0564756ca067516f71718a3d135996525909 | 15 | cpp_lint.py | 143 | Balanced joint maximum mean discrepancy for deep transfer learning | 12,140 | 0 | 64 | 84 | 25 | 60,412 | 30 | transferlearning | 8 | code/deep/BJMMD/caffe/scripts/cpp_lint.py | Python | 7 | {
"docstring": "Drops common suffixes like _test.cc or -inl.h from filename.\n\n For example:\n >>> _DropCommonSuffixes('foo/foo-inl.h')\n 'foo/foo'\n >>> _DropCommonSuffixes('foo/bar/foo.cc')\n 'foo/bar/foo'\n >>> _DropCommonSuffixes('foo/foo_internal.h')\n 'foo/foo'\n >>> _DropCommonSuffixes('foo/foo_unusualinternal.h')\n 'foo/foo_unusualinternal'\n\n Args:\n filename: The input filename.\n\n Returns:\n The filename with the common suffix removed.\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 36,
"vocab_size": 29
} | https://github.com/jindongwang/transferlearning.git |
|
2 | _text_words | def _text_words(self, length, truncate):
words = self._wrapped.split()
if len(words) > length:
words = words[:length]
return self.add_truncation_text(" ".join(words), truncate)
return " ".join(words)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | text.py | 92 | Refs #33476 -- Reformatted code with Black. | 51,669 | 0 | 71 | 55 | 18 | 206,737 | 21 | django | 10 | django/utils/text.py | Python | 6 | {
"docstring": "\n Truncate a string after a certain number of words.\n\n Strip newlines in the string.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | https://github.com/django/django.git |
|
1 | ulid | def ulid() -> str:
ulid_bytes = int(time.time() * 1000).to_bytes(6, byteorder="big") + int(
getrandbits(80)
).to_bytes(10, byteorder="big")
# This is base32 crockford encoding with the loop unrolled for performance
#
# This code is adapted from:
# https://github.com/ahawker/ulid/blob/06289583e9de4286b4d80b4ad000d137816502ca/ulid/base32.py#L102
#
enc = "0123456789ABCDEFGHJKMNPQRSTVWXYZ"
return (
enc[(ulid_bytes[0] & 224) >> 5]
+ enc[ulid_bytes[0] & 31]
+ enc[(ulid_bytes[1] & 248) >> 3]
+ enc[((ulid_bytes[1] & 7) << 2) | ((ulid_bytes[2] & 192) >> 6)]
+ enc[((ulid_bytes[2] & 62) >> 1)]
+ enc[((ulid_bytes[2] & 1) << 4) | ((ulid_bytes[3] & 240) >> 4)]
+ enc[((ulid_bytes[3] & 15) << 1) | ((ulid_bytes[4] & 128) >> 7)]
+ enc[(ulid_bytes[4] & 124) >> 2]
+ enc[((ulid_bytes[4] & 3) << 3) | ((ulid_bytes[5] & 224) >> 5)]
+ enc[ulid_bytes[5] & 31]
+ enc[(ulid_bytes[6] & 248) >> 3]
+ enc[((ulid_bytes[6] & 7) << 2) | ((ulid_bytes[7] & 192) >> 6)]
+ enc[(ulid_bytes[7] & 62) >> 1]
+ enc[((ulid_bytes[7] & 1) << 4) | ((ulid_bytes[8] & 240) >> 4)]
+ enc[((ulid_bytes[8] & 15) << 1) | ((ulid_bytes[9] & 128) >> 7)]
+ enc[(ulid_bytes[9] & 124) >> 2]
+ enc[((ulid_bytes[9] & 3) << 3) | ((ulid_bytes[10] & 224) >> 5)]
+ enc[ulid_bytes[10] & 31]
+ enc[(ulid_bytes[11] & 248) >> 3]
+ enc[((ulid_bytes[11] & 7) << 2) | ((ulid_bytes[12] & 192) >> 6)]
+ enc[(ulid_bytes[12] & 62) >> 1]
+ enc[((ulid_bytes[12] & 1) << 4) | ((ulid_bytes[13] & 240) >> 4)]
+ enc[((ulid_bytes[13] & 15) << 1) | ((ulid_bytes[14] & 128) >> 7)]
+ enc[(ulid_bytes[14] & 124) >> 2]
+ enc[((ulid_bytes[14] & 3) << 3) | ((ulid_bytes[15] & 224) >> 5)]
+ enc[ulid_bytes[15] & 31]
)
| 2a9f043039dc60fc25bc14bab724419bedf746bb | 36 | ulid.py | 856 | Use ULID short format for context ids (#71119) | 98,556 | 0 | 484 | 614 | 99 | 299,641 | 262 | core | 9 | homeassistant/util/ulid.py | Python | 49 | {
"docstring": "Generate a ULID.\n\n This ulid should not be used for cryptographically secure\n operations.\n\n 01AN4Z07BY 79KA1307SR9X4MV3\n |----------| |----------------|\n Timestamp Randomness\n 48bits 80bits\n\n This string can be loaded directly with https://github.com/ahawker/ulid\n\n import homeassistant.util.ulid as ulid_util\n import ulid\n ulid.parse(ulid_util.ulid())\n ",
"language": "en",
"n_whitespaces": 103,
"n_words": 36,
"vocab_size": 32
} | https://github.com/home-assistant/core.git |
|
2 | _train_with_recompute | def _train_with_recompute(n_steps):
img_dim, n_channels, batch_size = 256, 1, 4
x, y = _get_dummy_data(img_dim, n_channels, batch_size)
# This model is the same model as _get_big_cnn_model but split into 3 parts.
models = _get_split_cnn_model(
img_dim, n_channels, num_partitions=3, blocks_per_partition=2
)
model1, model2, model3 = models
# Apply gradient checkpointing to the submodels using tf.recompute_grad.
model1_re = tf.recompute_grad(model1)
model2_re = tf.recompute_grad(model2)
model3_re = tf.recompute_grad(model3)
optimizer = optimizers.SGD()
tr_vars = (
model1.trainable_variables
+ model2.trainable_variables
+ model3.trainable_variables
)
losses = []
for _ in range(n_steps):
with tf.GradientTape() as tape:
logits1 = model1_re(x)
logits2 = model2_re(logits1)
logits3 = model3_re(logits2)
loss = _compute_loss(logits3, y)
losses.append(loss)
grads = tape.gradient(loss, tr_vars) # tr_vars
optimizer.apply_gradients(zip(grads, tr_vars))
del grads
return losses
@tf_test_utils.with_eager_op_as_function | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | @tf_test_utils.with_eager_op_as_function | 13 | gradient_checkpoint_test.py | 288 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,977 | 1 | 284 | 176 | 82 | 272,207 | 110 | keras | 42 | keras/integration_test/gradient_checkpoint_test.py | Python | 28 | {
"docstring": "Trains a single large model with gradient checkpointing using tf.recompute_grad.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/keras-team/keras.git |
2 | test_edit_post | def test_edit_post(self):
# Send request
response = self.client.post(
reverse("wagtaildocs:edit_multiple", args=(self.doc.id,)),
{
"doc-%d-%s" % (self.doc.id, field): data
for field, data in self.edit_post_data.items()
},
)
# Check response
self.assertEqual(response.status_code, 200)
self.assertEqual(response["Content-Type"], "application/json")
# Check JSON
response_json = json.loads(response.content.decode())
self.assertIn("doc_id", response_json)
self.assertNotIn("form", response_json)
self.assertIn("success", response_json)
self.assertEqual(response_json["doc_id"], self.doc.id)
self.assertTrue(response_json["success"])
self.check_doc_after_edit()
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 14 | test_admin_views.py | 246 | Reformat with black | 16,323 | 0 | 214 | 147 | 38 | 74,807 | 46 | wagtail | 24 | wagtail/documents/tests/test_admin_views.py | Python | 17 | {
"docstring": "\n This tests that a POST request to the edit view edits the document\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 12
} | https://github.com/wagtail/wagtail.git |
|
1 | clamped | def clamped(self) -> Offset:
x, y = self
return Offset(max(x, 0), max(y, 0))
| 7bca184192191689b8a7247c92392d6b238df3d7 | 9 | geometry.py | 48 | tweak for colors | 44,981 | 0 | 34 | 30 | 13 | 185,337 | 13 | textual | 6 | src/textual/geometry.py | Python | 8 | {
"docstring": "Ensure x and y are above zero.\n\n Returns:\n Offset: New offset.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 11,
"vocab_size": 11
} | https://github.com/Textualize/textual.git |
|
1 | make_authors_file_lines | def make_authors_file_lines(git_people):
# define new lines for the file
header = filldedent().lstrip()
header_extra = f"There are a total of {len(git_people)} authors. | 5373c833ee895fb95f791849c6082ceb698b8dcc | 11 | mailmap_check.py | 108 | maint: tweaks in mailmap_check.py | 47,395 | 0 | 29 | 53 | 20 | 195,742 | 21 | sympy | 11 | bin/mailmap_check.py | Python | 15 | {
"docstring": "\n All people who contributed to SymPy by sending at least a patch or\n more (in the order of the date of their first contribution), except\n those who explicitly didn't want to be mentioned. People with a * next\n to their names are not found in the metadata of the git history. This\n file is generated automatically by running `./bin/authors_update.py`.\n \n lines = header.splitlines()\n lines.append('')\n lines.append(header_extra)\n lines.append('')\n lines.extend(git_people)\n return lines\n\n",
"language": "en",
"n_whitespaces": 129,
"n_words": 68,
"vocab_size": 55
} | https://github.com/sympy/sympy.git |