complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | strategy_supports_loss_scaling | def strategy_supports_loss_scaling():
if not tf.distribute.has_strategy():
return True
strategy = tf.distribute.get_strategy()
# Strategies are supported if either there is only one replica or if variables
# are replicated per device. Otherwise, the current model.fit() implementation
# and most custom training loops incorrectly unscale the gradients. Currently,
# gradients are unscaled once per compute replica, but they should be unscaled
# once per variable replica. When there is one variable replica for each
# compute replica, this works fine, but otherwise issues will occur.
# TODO(reedwm): Support all strategies.
return isinstance(
strategy,
(
tf.distribute.MultiWorkerMirroredStrategy,
tf.compat.v1.distribute.experimental.MultiWorkerMirroredStrategy,
tf.distribute.OneDeviceStrategy,
tf.compat.v1.distribute.OneDeviceStrategy,
tf.distribute.MirroredStrategy,
tf.compat.v1.distribute.MirroredStrategy,
),
)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 13 | loss_scale_optimizer.py | 136 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,301 | 0 | 229 | 85 | 75 | 275,052 | 99 | keras | 13 | keras/mixed_precision/loss_scale_optimizer.py | Python | 15 | {
"docstring": "Returns True if the current Strategy supports loss scaling.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/keras-team/keras.git |
|
3 | stream_csv | def stream_csv(self, queryset):
writer = csv.DictWriter(Echo(), fieldnames=self.list_export)
yield writer.writerow(
{field: self.get_heading(queryset, field) for field in self.list_export}
)
for item in queryset:
yield self.write_csv_row(writer, self.to_row_dict(item))
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 12 | mixins.py | 105 | Reformat with black | 15,895 | 0 | 81 | 67 | 21 | 72,433 | 24 | wagtail | 15 | wagtail/admin/views/mixins.py | Python | 7 | {
"docstring": "Generate a csv file line by line from queryset, to be used in a StreamingHTTPResponse",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 13
} | https://github.com/wagtail/wagtail.git |
|
5 | _agg | def _agg(self, agg, axis=0, level=None, **kwargs):
if level is not None or axis != 0:
raise NotImplementedError(
"HDK's aggregation functions does not support 'level' and 'axis' parameters."
)
# TODO: Do filtering on numeric columns if `numeric_only=True`
if not kwargs.get("skipna", True) or kwargs.get("numeric_only"):
raise NotImplementedError(
"HDK's aggregation functions does not support 'skipna' and 'numeric_only' parameters."
)
# Processed above, so can be omitted
kwargs.pop("skipna", None)
kwargs.pop("numeric_only", None)
new_frame = self._modin_frame.agg(agg)
new_frame = new_frame._set_index(
pandas.Index.__new__(
pandas.Index, data=[MODIN_UNNAMED_SERIES_LABEL], dtype="O"
)
)
return self.__constructor__(new_frame, shape_hint="row")
| e5b1888cd932909e49194d58035da34b210b91c4 | 12 | query_compiler.py | 202 | FEAT-#4946: Replace OmniSci with HDK (#4947)
Co-authored-by: Iaroslav Igoshev <[email protected]>
Signed-off-by: Andrey Pavlenko <[email protected]> | 36,114 | 0 | 270 | 121 | 60 | 154,619 | 82 | modin | 20 | modin/experimental/core/storage_formats/hdk/query_compiler.py | Python | 18 | {
"docstring": "\n Perform specified aggregation along rows/columns.\n\n Parameters\n ----------\n agg : str\n Name of the aggregation function to perform.\n axis : {0, 1}, default: 0\n Axis to perform aggregation along. 0 is to apply function against each column,\n all the columns will be reduced into a single scalar. 1 is to aggregate\n across rows.\n *Note:* HDK storage format supports aggregation for 0 axis only, aggregation\n along rows will be defaulted to pandas.\n level : None, default: None\n Serves the compatibility purpose, always have to be None.\n **kwargs : dict\n Additional parameters to pass to the aggregation function.\n\n Returns\n -------\n DFAlgQueryCompiler\n New single-column (``axis=1``) or single-row (``axis=0``) query compiler containing\n the result of aggregation.\n ",
"language": "en",
"n_whitespaces": 299,
"n_words": 111,
"vocab_size": 81
} | https://github.com/modin-project/modin.git |
|
1 | run_once | async def run_once(self) -> None:
raise NotImplementedError("LoopService subclasses must implement this method.")
| 3fd5aef3a1b94ac270e7325aa75d534e4f412d5c | 8 | loop_service.py | 27 | Clean up loop service methods | 11,732 | 0 | 26 | 13 | 12 | 58,169 | 12 | prefect | 3 | src/prefect/orion/services/loop_service.py | Python | 11 | {
"docstring": "\n Represents one loop of the service.\n\n Users should override this method.\n\n To actually run the service once, call `LoopService().start(loops=1)`\n instead of `LoopService().run_once()`, because this method will not invoke setup\n and teardown methods properly.\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 33,
"vocab_size": 30
} | https://github.com/PrefectHQ/prefect.git |
|
1 | test_no_auth | def test_no_auth(self) -> None:
channel = self.make_request("GET", self.url, {})
self.assertEqual(HTTPStatus.UNAUTHORIZED, channel.code, msg=channel.json_body)
self.assertEqual(Codes.MISSING_TOKEN, channel.json_body["errcode"])
| 7a1cefc6e37aa583647f2804c9d9c9765712c59a | 9 | test_user.py | 90 | Add admin API to get users' account data (#11664)
Co-authored-by: reivilibre <[email protected]> | 70,945 | 0 | 42 | 56 | 14 | 246,015 | 14 | synapse | 13 | tests/rest/admin/test_user.py | Python | 5 | {
"docstring": "Try to get information of a user without authentication.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/matrix-org/synapse.git |
|
8 | _is_extrinsic | def _is_extrinsic(seq):
if len(seq) != 3:
raise ValueError("Expected 3 axes, got `{}`.".format(seq))
if type(seq) != str:
raise ValueError('Expected seq to be a string.')
intrinsic = seq.isupper()
extrinsic = seq.islower()
if not (intrinsic or extrinsic):
raise ValueError("seq must either be fully uppercase (for extrinsic "
"rotations), or fully lowercase, for intrinsic "
"rotations).")
i, j, k = seq.lower()
if (i == j) or (j == k):
raise ValueError("Consecutive axes must be different")
bad = set(seq) - set('xyzXYZ')
if bad:
raise ValueError("Expected axes from `seq` to be from "
"['x', 'y', 'z'] or ['X', 'Y', 'Z'], "
"got {}".format(''.join(bad)))
return extrinsic
| 1823aa534e379b9123f70389f5818ac4d24015a0 | 14 | quaternion.py | 231 | Changed _check_sequence to _is_extrinsic
As suggested by @smichr
Co-authored-by: Christopher Smith <[email protected]> | 49,735 | 0 | 263 | 128 | 68 | 200,621 | 99 | sympy | 18 | sympy/algebras/quaternion.py | Python | 20 | {
"docstring": "validate seq and return True if seq is lowercase and False if uppercase",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 10
} | https://github.com/sympy/sympy.git |
|
3 | sep_token | def sep_token(self) -> str:
if self._sep_token is None:
if self.verbose:
logger.error("Using sep_token, but it is not set yet.")
return None
return str(self._sep_token)
| 3eed5530ec74bb60ad9f8f612717d0f6ccf820f2 | 12 | tokenization_utils_base.py | 61 | Fix properties of unset special tokens in non verbose mode (#17797)
Co-authored-by: SaulLu <[email protected]> | 5,763 | 0 | 80 | 35 | 19 | 31,488 | 22 | transformers | 7 | src/transformers/tokenization_utils_base.py | Python | 10 | {
"docstring": "\n `str`: Separation token, to separate context and query in an input sequence. Log an error if used while not\n having been set.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 22,
"vocab_size": 21
} | https://github.com/huggingface/transformers.git |
|
4 | get_year | def get_year(self):
year = self.year
if year is None:
try:
year = self.kwargs["year"]
except KeyError:
try:
year = self.request.GET["year"]
except KeyError:
raise Http404(_("No year specified"))
return year
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 18 | dates.py | 96 | Refs #33476 -- Reformatted code with Black. | 51,751 | 0 | 160 | 54 | 17 | 206,849 | 27 | django | 9 | django/views/generic/dates.py | Python | 11 | {
"docstring": "Return the year for which this view should display data.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/django/django.git |
|
18 | _validate_result_metrics | def _validate_result_metrics(self, result):
if int(os.environ.get("TUNE_DISABLE_STRICT_METRIC_CHECKING", 0)) != 1 and (
len({k for k in result if k not in list(DEBUG_METRICS) + [DONE]}) > 1
):
base_metric = self._metric if self._metric != DEFAULT_METRIC else None
scheduler_metric = (
self._scheduler_alg.metric
if self._scheduler_alg.metric != DEFAULT_METRIC
else None
)
search_metrics = (
self._search_alg.metric
if self._search_alg.metric != DEFAULT_METRIC
else None
)
if isinstance(search_metrics, str):
search_metrics = [search_metrics]
if base_metric and base_metric not in result:
report_metric = base_metric
location = "tune.TuneConfig()"
elif scheduler_metric and scheduler_metric not in result:
report_metric = scheduler_metric
location = type(self._scheduler_alg).__name__
elif search_metrics and any(
search_metric not in result for search_metric in search_metrics
):
report_metric = list(
filter(
lambda search_metric: search_metric not in result,
search_metrics,
)
)
if len(report_metric) == 1:
report_metric = report_metric[0]
location = type(self._search_alg).__name__
else:
report_metric = None
location = None
if report_metric:
raise ValueError(
"Trial returned a result which did not include the "
"specified metric(s) `{}` that `{}` expects. "
"Make sure your calls to `tune.report()` include the "
"metric, or set the "
"TUNE_DISABLE_STRICT_METRIC_CHECKING "
"environment variable to 1. Result: {}".format(
report_metric, location, result
)
)
| de7bd015a4867317569cb0ad775015f6f35fdd1e | 17 | trial_runner.py | 379 | [air/tune/docs] Change Tuner() occurences in rest of ray/tune (#26961) | 27,954 | 0 | 902 | 238 | 88 | 125,703 | 179 | ray | 31 | python/ray/tune/execution/trial_runner.py | Python | 49 | {
"docstring": "\n Check if any of the required metrics was not reported\n in the last result. If the only items are ``done`` or any of\n DEBUG_METRICS, this means that no result was ever received and\n the trial just returned. This is also okay and will not raise\n an error.\n\n This will ignore checking for the DEFAULT_METRIC.\n ",
"language": "en",
"n_whitespaces": 104,
"n_words": 54,
"vocab_size": 43
} | https://github.com/ray-project/ray.git |
|
6 | save | def save(self, must_create=False):
if self.session_key is None:
return self.create()
data = self._get_session(no_load=must_create)
obj = self.create_model_instance(data)
using = router.db_for_write(self.model, instance=obj)
try:
with transaction.atomic(using=using):
obj.save(
force_insert=must_create, force_update=not must_create, using=using
)
except IntegrityError:
if must_create:
raise CreateError
raise
except DatabaseError:
if not must_create:
raise UpdateError
raise
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 13 | db.py | 168 | Refs #33476 -- Reformatted code with Black. | 50,688 | 0 | 244 | 103 | 34 | 204,301 | 43 | django | 23 | django/contrib/sessions/backends/db.py | Python | 19 | {
"docstring": "\n Save the current session data to the database. If 'must_create' is\n True, raise a database error if the saving operation doesn't create a\n new entry (as opposed to possibly updating an existing entry).\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 33,
"vocab_size": 29
} | https://github.com/django/django.git |
|
4 | dag_maker | def dag_maker(request):
import lazy_object_proxy
# IMPORTANT: Delay _all_ imports from `airflow.*` to _inside a method_.
# This fixture is "called" early on in the pytest collection process, and
# if we import airflow.* here the wrong (non-test) config will be loaded
# and "baked" in to various constants
want_serialized = False
# Allow changing default serialized behaviour with `@pytest.mark.need_serialized_dag` or
# `@pytest.mark.need_serialized_dag(False)`
serialized_marker = request.node.get_closest_marker("need_serialized_dag")
if serialized_marker:
(want_serialized,) = serialized_marker.args or (True,)
from airflow.utils.log.logging_mixin import LoggingMixin
| d48a3a357fd89ec805d086d5b6c1f1d4daf77b9a | 10 | conftest.py | 83 | Add TaskMap and TaskInstance.map_id (#20286)
Co-authored-by: Ash Berlin-Taylor <[email protected]> | 8,096 | 0 | 119 | 100 | 60 | 43,921 | 76 | airflow | 13 | tests/conftest.py | Python | 25 | {
"docstring": "\n The dag_maker helps us to create DAG, DagModel, and SerializedDAG automatically.\n\n You have to use the dag_maker as a context manager and it takes\n the same argument as DAG::\n\n with dag_maker(dag_id=\"mydag\") as dag:\n task1 = DummyOperator(task_id='mytask')\n task2 = DummyOperator(task_id='mytask2')\n\n If the DagModel you want to use needs different parameters than the one\n automatically created by the dag_maker, you have to update the DagModel as below::\n\n dag_maker.dag_model.is_active = False\n session.merge(dag_maker.dag_model)\n session.commit()\n\n For any test you use the dag_maker, make sure to create a DagRun::\n\n dag_maker.create_dagrun()\n\n The dag_maker.create_dagrun takes the same arguments as dag.create_dagrun\n\n If you want to operate on serialized DAGs, then either pass ``serialized=True` to the ``dag_maker()``\n call, or you can mark your test/class/file with ``@pytest.mark.need_serialized_dag(True)``. In both of\n these cases the ``dag`` returned by the context manager will be a lazily-evaluated proxy object to the\n SerializedDAG.\n ",
"language": "en",
"n_whitespaces": 231,
"n_words": 137,
"vocab_size": 90
} | https://github.com/apache/airflow.git |
|
11 | rot90 | def rot90(m, k=1, axes=(0, 1)):
axes = tuple(axes)
if len(axes) != 2:
raise ValueError("len(axes) must be 2.")
m = asanyarray(m)
if axes[0] == axes[1] or absolute(axes[0] - axes[1]) == m.ndim:
raise ValueError("Axes must be different.")
if (axes[0] >= m.ndim or axes[0] < -m.ndim
or axes[1] >= m.ndim or axes[1] < -m.ndim):
raise ValueError("Axes={} out of range for array of ndim={}."
.format(axes, m.ndim))
k %= 4
if k == 0:
return m[:]
if k == 2:
return flip(flip(m, axes[0]), axes[1])
axes_list = arange(0, m.ndim)
(axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
axes_list[axes[0]])
if k == 1:
return transpose(flip(m, axes[1]), axes_list)
else:
# k == 3
return flip(transpose(m, axes_list), axes[1])
| f404e9e92e87a3990712d723d5c562a89300ac01 | 12 | function_base.py | 377 | Add space after argument name | 38,560 | 0 | 265 | 250 | 68 | 160,188 | 105 | numpy | 15 | numpy/lib/function_base.py | Python | 79 | {
"docstring": "\n Rotate an array by 90 degrees in the plane specified by axes.\n\n Rotation direction is from the first towards the second axis.\n\n Parameters\n ----------\n m : array_like\n Array of two or more dimensions.\n k : integer\n Number of times the array is rotated by 90 degrees.\n axes : (2,) array_like\n The array is rotated in the plane defined by the axes.\n Axes must be different.\n\n .. versionadded:: 1.12.0\n\n Returns\n -------\n y : ndarray\n A rotated view of `m`.\n\n See Also\n --------\n flip : Reverse the order of elements in an array along the given axis.\n fliplr : Flip an array horizontally.\n flipud : Flip an array vertically.\n\n Notes\n -----\n ``rot90(m, k=1, axes=(1,0))`` is the reverse of\n ``rot90(m, k=1, axes=(0,1))``\n\n ``rot90(m, k=1, axes=(1,0))`` is equivalent to\n ``rot90(m, k=-1, axes=(0,1))``\n\n Examples\n --------\n >>> m = np.array([[1,2],[3,4]], int)\n >>> m\n array([[1, 2],\n [3, 4]])\n >>> np.rot90(m)\n array([[2, 4],\n [1, 3]])\n >>> np.rot90(m, 2)\n array([[4, 3],\n [2, 1]])\n >>> m = np.arange(8).reshape((2,2,2))\n >>> np.rot90(m, 1, (1,2))\n array([[[1, 3],\n [0, 2]],\n [[5, 7],\n [4, 6]]])\n\n ",
"language": "en",
"n_whitespaces": 378,
"n_words": 170,
"vocab_size": 108
} | https://github.com/numpy/numpy.git |
|
7 | aug_test_rpn | def aug_test_rpn(self, feats, img_metas):
samples_per_gpu = len(img_metas[0])
aug_proposals = [[] for _ in range(samples_per_gpu)]
for x, img_meta in zip(feats, img_metas):
results_list = self.simple_test_rpn(x, img_meta)
for i, results in enumerate(results_list):
proposals = torch.cat(
[results.bboxes, results.scores[:, None]], dim=-1)
aug_proposals[i].append(proposals)
# reorganize the order of 'img_metas' to match the dimensions
# of 'aug_proposals'
aug_img_metas = []
for i in range(samples_per_gpu):
aug_img_meta = []
for j in range(len(img_metas)):
aug_img_meta.append(img_metas[j][i])
aug_img_metas.append(aug_img_meta)
# after merging, proposals will be rescaled to the original image size
merged_proposals = []
for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas):
merged_proposal = merge_aug_proposals(proposals, aug_img_meta,
self.test_cfg)
results = InstanceData()
results.bboxes = merged_proposal[:, :4]
results.scores = merged_proposal[:, 4]
merged_proposals.append(results)
return merged_proposals
if sys.version_info >= (3, 7):
| 9a3bf7660e6ced54672741095f96df07919f9ba7 | 15 | dense_test_mixins.py | 335 | [Refactor] Refactor dense head outputs to InstanceResults. | 70,342 | 0 | 421 | 206 | 77 | 244,350 | 111 | mmdetection | 34 | mmdet/models/dense_heads/dense_test_mixins.py | Python | 24 | {
"docstring": "Test with augmentation for only for ``RPNHead`` and its variants,\n e.g., ``GARPNHead``, etc.\n\n Args:\n feats (tuple[Tensor]): Features from the upstream network, each is\n a 4D-tensor.\n img_metas (list[dict]): Meta info of each image.\n\n Returns:\n list[Tensor]: Proposals of each image, each item has shape (n, 5),\n where 5 represent (tl_x, tl_y, br_x, br_y, score).\n ",
"language": "en",
"n_whitespaces": 151,
"n_words": 52,
"vocab_size": 47
} | https://github.com/open-mmlab/mmdetection.git |
|
5 | show_job_status | def show_job_status(failed_history, deserialized_data, to_doctype):
if not failed_history:
frappe.msgprint(
_("Creation of {0} successful").format(to_doctype),
title="Successful",
indicator="green",
)
if len(failed_history) != 0 and len(failed_history) < len(deserialized_data):
frappe.msgprint(
_().format(
to_doctype
),
title="Partially successful",
indicator="orange",
)
if len(failed_history) == len(deserialized_data):
frappe.msgprint(
_().format(
to_doctype
),
title="Failed",
indicator="red",
)
| a3e69cf75d27198132d05c7c10475a0297b1e190 | 14 | bulk_transaction.py | 187 | feat: Bulk Transaction Processing (#28580)
* feat: Bulk Transaction Processing
* fix: add flags to ignore validations and exception handling correction
* fix: remove duplicate code, added logger functionality and improved notifications
* fix: linting and sider issues
* test: added tests
* fix: linter issues
* fix: failing test case
* fix: sider issues and test cases
* refactor: mapping function calls to create order/invoice
* fix: added more test cases to increase coverage
* fix: test cases
* fix: sider issue
* fix: rename doctype, improve formatting and minor refactor
* fix: update doctype name in hooks and sider issues
* fix: entry log test case
* fix: typos, translations and company name in tests
* fix: linter issues and translations
* fix: linter issue
* fix: split into separate function for marking failed transaction
* fix: typos, retry failed transaction logic and make log read only
* fix: hide retry button when no failed transactions and remove test cases not rrelevant
* fix: sider issues and indentation to tabs
Co-authored-by: Ankush Menat <[email protected]> | 13,603 | 0 | 19 | 111 | 30 | 64,314 | 42 | erpnext | 11 | erpnext/utilities/bulk_transaction.py | Python | 25 | {
"docstring": "Creation of {0} partially successful.\n\t\t\t\tCheck <b><a href=\"/app/bulk-transaction-log\">Bulk Transaction Log</a></b>Creation of {0} failed.\n\t\t\t\tCheck <b><a href=\"/app/bulk-transaction-log\">Bulk Transaction Log</a></b>",
"language": "en",
"n_whitespaces": 15,
"n_words": 18,
"vocab_size": 12
} | https://github.com/frappe/erpnext.git |
|
2 | _make_prop_dict | def _make_prop_dict(self) -> pd.DataFrame:
pd = import_required("pandas", "Structure graphs require Pandas (http://pandas.pydata.org) to be installed")
df = pd.DataFrame()
for x in self._graph.nodes(data=True):
M = self._model.select_one(dict(id=x[0]))
Z = pd.DataFrame(self._obj_props_to_df2(M))
Z["id"] = x[0]
Z["model"] = str(M)
Z["values"] = Z["values"].map(lambda x: str(x))
Z["types"] = Z["types"].map(lambda x: str(x))
df = pd.concat([df, Z])
return df
| 560a57e166a1f54319df57127502d48ee4ecc72e | 14 | structure.py | 239 | Generalize filtering on CDS views (#12054)
* Generalize filtering on CDS views
* Add type information to us_{counties,states}
* Add plotting/file/filtering example
* Add a migration note
* Update models.util.structure and tests
* Fix a pandas' deprecation warning
* Update CDSView.{filters->filter}
* Update documentation
* Add more unit tests for BitSet (Indices)
* Add unit tests
* Add CDSView.filters back-compat to bokehjs | 53,207 | 0 | 162 | 142 | 38 | 212,228 | 50 | bokeh | 20 | bokeh/models/util/structure.py | Python | 16 | {
"docstring": " Returns a dataframe containing all the properties of all the submodels of the model being\n analyzed. Used as datasource to show attributes.\n\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 22,
"vocab_size": 18
} | https://github.com/bokeh/bokeh.git |
|
3 | encode_to_file | def encode_to_file(self, fh, bufsize):
errcode = 0
while errcode == 0:
status, errcode, buf = self.encode(bufsize)
if status > 0:
fh.write(buf[status:])
return errcode
| a0e1fde1eddf45f26653e2ff6080d31e177adbec | 13 | ImageFile.py | 75 | Added PyEncoder | 69,858 | 0 | 88 | 47 | 19 | 242,436 | 23 | Pillow | 9 | src/PIL/ImageFile.py | Python | 7 | {
"docstring": "\n :param fh: File handle.\n :param bufsize: Buffer size.\n\n :returns: If finished successfully, return 0.\n Otherwise, return an error code. Err codes are from\n :data:`.ImageFile.ERRORS`.\n ",
"language": "en",
"n_whitespaces": 75,
"n_words": 24,
"vocab_size": 22
} | https://github.com/python-pillow/Pillow.git |
|
9 | count_params | def count_params(weights):
unique_weights = {id(w): w for w in weights}.values()
# Ignore TrackableWeightHandlers, which will not have a shape defined.
unique_weights = [w for w in unique_weights if hasattr(w, "shape")]
weight_shapes = [w.shape.as_list() for w in unique_weights]
standardized_weight_shapes = [
[0 if w_i is None else w_i for w_i in w] for w in weight_shapes
]
return int(sum(np.prod(p) for p in standardized_weight_shapes))
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 12 | layer_utils.py | 145 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,800 | 0 | 93 | 93 | 39 | 276,953 | 62 | keras | 17 | keras/utils/layer_utils.py | Python | 8 | {
"docstring": "Count the total number of scalars composing the weights.\n\n Args:\n weights: An iterable containing the weights on which to compute params\n\n Returns:\n The total number of scalars composing the weights\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 30,
"vocab_size": 21
} | https://github.com/keras-team/keras.git |
|
3 | render | def render(self, template_name, extra_context=None):
if extra_context is None:
extra_context = {}
elif not isinstance(extra_context, dict):
raise TypeError("extra_context must be a dictionary")
return get_template(template_name).render({**self.context, **extra_context})
| e7f54c5867cf49126bbf95e28633e4283c2bbcb2 | 11 | templates.py | 87 | Reorganize plugin resources | 78,268 | 0 | 74 | 53 | 23 | 266,015 | 24 | netbox | 9 | netbox/extras/plugins/templates.py | Python | 6 | {
"docstring": "\n Convenience method for rendering the specified Django template using the default context data. An additional\n context dictionary may be passed as `extra_context`.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 22,
"vocab_size": 20
} | https://github.com/netbox-community/netbox.git |
|
7 | deal_bb | def deal_bb(result_token):
# find out <thead></thead> parts.
thead_pattern = '<thead>(.*?)</thead>'
if re.search(thead_pattern, result_token) is None:
return result_token
thead_part = re.search(thead_pattern, result_token).group()
origin_thead_part = copy.deepcopy(thead_part)
# check "rowspan" or "colspan" occur in <thead></thead> parts or not .
span_pattern = "<td rowspan=\"(\d)+\" colspan=\"(\d)+\">|<td colspan=\"(\d)+\" rowspan=\"(\d)+\">|<td rowspan=\"(\d)+\">|<td colspan=\"(\d)+\">"
span_iter = re.finditer(span_pattern, thead_part)
span_list = [s.group() for s in span_iter]
has_span_in_head = True if len(span_list) > 0 else False
if not has_span_in_head:
# <thead></thead> not include "rowspan" or "colspan" branch 1.
# 1. replace <td> to <td><b>, and </td> to </b></td>
# 2. it is possible to predict text include <b> or </b> by Text-line recognition,
# so we replace <b><b> to <b>, and </b></b> to </b>
thead_part = thead_part.replace('<td>', '<td><b>')\
.replace('</td>', '</b></td>')\
.replace('<b><b>', '<b>')\
.replace('</b></b>', '</b>')
else:
# <thead></thead> include "rowspan" or "colspan" branch 2.
# Firstly, we deal rowspan or colspan cases.
# 1. replace > to ><b>
# 2. replace </td> to </b></td>
# 3. it is possible to predict text include <b> or </b> by Text-line recognition,
# so we replace <b><b> to <b>, and </b><b> to </b>
# Secondly, deal ordinary cases like branch 1
# replace ">" to "<b>"
replaced_span_list = []
for sp in span_list:
replaced_span_list.append(sp.replace('>', '><b>'))
for sp, rsp in zip(span_list, replaced_span_list):
thead_part = thead_part.replace(sp, rsp)
# replace "</td>" to "</b></td>"
thead_part = thead_part.replace('</td>', '</b></td>')
# remove duplicated <b> by re.sub
mb_pattern = "(<b>)+"
single_b_string = "<b>"
thead_part = re.sub(mb_pattern, single_b_string, thead_part)
mgb_pattern = "(</b>)+"
single_gb_string = "</b>"
thead_part = re.sub(mgb_pattern, single_gb_string, thead_part)
# ordinary cases like branch 1
thead_part = thead_part.replace('<td>', '<td><b>').replace('<b><b>',
'<b>')
# convert <tb><b></b></tb> back to <tb></tb>, empty cell has no <b></b>.
# but space cell(<tb> </tb>) is suitable for <td><b> </b></td>
thead_part = thead_part.replace('<td><b></b></td>', '<td></td>')
# deal with duplicated <b></b>
thead_part = deal_duplicate_bb(thead_part)
# deal with isolate span tokens, which causes by wrong predict by structure prediction.
# eg.PMC5994107_011_00.png
thead_part = deal_isolate_span(thead_part)
# replace original result with new thead part.
result_token = result_token.replace(origin_thead_part, thead_part)
return result_token
| ddaa2c2552e19635cd6cdf38619f1f176c358f89 | 17 | table_master_match.py | 484 | add SLANet | 4,740 | 0 | 720 | 264 | 170 | 24,488 | 324 | PaddleOCR | 30 | ppstructure/table/table_master_match.py | Python | 35 | {
"docstring": "\n In our opinion, <b></b> always occurs in <thead></thead> text's context.\n This function will find out all tokens in <thead></thead> and insert <b></b> by manual.\n :param result_token:\n :return:\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 27,
"vocab_size": 24
} | https://github.com/PaddlePaddle/PaddleOCR.git |
|
7 | _rm_rs_action | def _rm_rs_action(self) -> HVACAction | None:
if (running_state := self._thrm.running_state) is None:
return None
if running_state & (
T.RunningState.Heat_State_On | T.RunningState.Heat_2nd_Stage_On
):
return HVACAction.HEATING
if running_state & (
T.RunningState.Cool_State_On | T.RunningState.Cool_2nd_Stage_On
):
return HVACAction.COOLING
if running_state & (
T.RunningState.Fan_State_On
| T.RunningState.Fan_2nd_Stage_On
| T.RunningState.Fan_3rd_Stage_On
):
return HVACAction.FAN
if running_state & T.RunningState.Idle:
return HVACAction.IDLE
if self.hvac_mode != HVACMode.OFF:
return HVACAction.IDLE
return HVACAction.OFF
| 8745401af59da209e6304911f81e5416d4f18bd7 | 11 | climate.py | 193 | Use climate enums in zha (#70754) | 97,918 | 0 | 258 | 124 | 33 | 298,979 | 60 | core | 22 | homeassistant/components/zha/climate.py | Python | 23 | {
"docstring": "Return the current HVAC action based on running mode and running state.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/home-assistant/core.git |
|
2 | mousePressEvent | def mousePressEvent(self, e):
if e.button() == Qt.MouseButton.LeftButton:
e.accept()
self.toggle()
else:
super().mousePressEvent(e)
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 12 | miscwidgets.py | 72 | Run scripts/dev/rewrite_enums.py | 117,657 | 0 | 65 | 41 | 11 | 321,317 | 11 | qutebrowser | 10 | qutebrowser/misc/miscwidgets.py | Python | 6 | {
"docstring": "Toggle the fold if the widget was pressed.\n\n Args:\n e: The QMouseEvent.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 12,
"vocab_size": 11
} | https://github.com/qutebrowser/qutebrowser.git |
|
2 | get_text_size | def get_text_size(self, text):
font = self.fonts['NORMAL']
if hasattr(font, 'getbbox'): # Pillow >= 9.2.0
return font.getbbox(text)[2:4]
else:
return font.getsize(text)
| 99eab68bf959e4c71c2688e4b1675ce9147ee785 | 10 | img.py | 77 | Upgrade pygments to 2.13.0 | 41,534 | 0 | 69 | 45 | 17 | 174,994 | 18 | pip | 8 | src/pip/_vendor/pygments/formatters/img.py | Python | 6 | {
"docstring": "\n Get the text size (width, height).\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 6,
"vocab_size": 6
} | https://github.com/pypa/pip.git |
|
1 | test_power_levels | def test_power_levels(self):
# The other user doesn't have the proper power level.
channel = self._upgrade_room(self.other_token)
self.assertEqual(403, channel.code, channel.result)
# Increase the power levels so that this user can upgrade.
power_levels = self.helper.get_state(
self.room_id,
"m.room.power_levels",
tok=self.creator_token,
)
power_levels["users"][self.other] = 100
self.helper.send_state(
self.room_id,
"m.room.power_levels",
body=power_levels,
tok=self.creator_token,
)
# The upgrade should succeed!
channel = self._upgrade_room(self.other_token)
self.assertEqual(200, channel.code, channel.result)
| 02d708568b476f2f7716000b35c0adfa4cbd31b3 | 10 | test_upgrade_room.py | 172 | Replace assertEquals and friends with non-deprecated versions. (#12092) | 71,409 | 0 | 224 | 109 | 39 | 246,925 | 56 | synapse | 17 | tests/rest/client/test_upgrade_room.py | Python | 17 | {
"docstring": "\n Another user can upgrade the room if their power level is increased.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | https://github.com/matrix-org/synapse.git |
|
5 | wheel_graph | def wheel_graph(n, create_using=None):
_, nodes = n
G = empty_graph(nodes, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
if len(nodes) > 1:
hub, *rim = nodes
G.add_edges_from((hub, node) for node in rim)
if len(rim) > 1:
G.add_edges_from(pairwise(rim, cyclic=True))
return G
| de1d00f20e0bc14f1cc911b3486e50225a8fa168 | 14 | classic.py | 139 | Adjust the usage of nodes_or_number decorator (#5599)
* recorrect typo in decorators.py
* Update tests to show troubles in current code
* fix troubles with usage of nodes_or_number
* fix typo
* remove nodes_or_number where that makes sense
* Reinclude nodes_or_numbers and add some tests for nonstandard usage
* fix typowq
* hopefully final tweaks (no behavior changes
* Update test_classic.py
Co-authored-by: Jarrod Millman <[email protected]> | 42,010 | 0 | 97 | 86 | 32 | 176,628 | 40 | networkx | 16 | networkx/generators/classic.py | Python | 11 | {
"docstring": "Return the wheel graph\n\n The wheel graph consists of a hub node connected to a cycle of (n-1) nodes.\n\n Parameters\n ----------\n n : int or iterable\n If an integer, node labels are 0 to n with center 0.\n If an iterable of nodes, the center is the first.\n create_using : NetworkX graph constructor, optional (default=nx.Graph)\n Graph type to create. If graph instance, then cleared before populated.\n\n Node labels are the integers 0 to n - 1.\n ",
"language": "en",
"n_whitespaces": 117,
"n_words": 76,
"vocab_size": 51
} | https://github.com/networkx/networkx.git |
|
1 | test_checkpointing_by_steps | def test_checkpointing_by_steps(self):
testargs = f.split()
_ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE, env=os.environ)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir, "step_4")))
| 23c0341262bd396a3ba9265614b3818d6e08a6c1 | 12 | test_examples.py | 104 | Refactor tests to use accelerate launch (#373)
Co-authored-by: Sylvain Gugger <[email protected]> | 121,081 | 0 | 34 | 61 | 13 | 337,582 | 14 | accelerate | 18 | tests/test_examples.py | Python | 8 | {
"docstring": "\n examples/by_feature/checkpointing.py\n --checkpointing_steps 2\n --output_dir {self.tmpdir}\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 5,
"vocab_size": 5
} | https://github.com/huggingface/accelerate.git |
|
1 | test_exception | async def test_exception(hass):
flow = config_flow.SomaFlowHandler()
flow.hass = hass
with patch.object(SomaApi, "list_devices", side_effect=RequestException()):
result = await flow.async_step_import({"host": MOCK_HOST, "port": MOCK_PORT})
assert result["type"] == data_entry_flow.FlowResultType.ABORT
assert result["reason"] == "connection_error"
| 7cd68381f1d4f58930ffd631dfbfc7159d459832 | 14 | test_config_flow.py | 124 | Search/replace RESULT_TYPE_* by FlowResultType enum (#74642) | 114,853 | 0 | 53 | 69 | 24 | 316,275 | 28 | core | 17 | tests/components/soma/test_config_flow.py | Python | 7 | {
"docstring": "Test if RequestException fires when no connection can be made.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/home-assistant/core.git |
|
1 | test_cf_data | def test_cf_data(self):
site = Site(name='Test Site', slug='test-site')
# Check custom field data on new instance
site.custom_field_data['foo'] = 'abc'
self.assertEqual(site.cf['foo'], 'abc')
# Check custom field data from database
site.save()
site = Site.objects.get(name='Test Site')
self.assertEqual(site.cf['foo'], 'abc')
| ea6d86e6c4bb6037465410db6205a7471bc81a6c | 10 | test_customfields.py | 129 | Closes #10052: The cf attribute now returns deserialized custom field data | 78,273 | 0 | 97 | 69 | 24 | 266,036 | 34 | netbox | 12 | netbox/extras/tests/test_customfields.py | Python | 7 | {
"docstring": "\n Check that custom field data is present on the instance immediately after being set and after being fetched\n from the database.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 18
} | https://github.com/netbox-community/netbox.git |
|
8 | tokenize | def tokenize(self, text, never_split=None):
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
| 841d979190319098adc8101f9820a02ee3be4c8b | 16 | tokenization_realm.py | 232 | Add FastTokenizer to REALM (#15211)
* Remove BertTokenizer abstraction
* Add FastTokenizer to REALM
* Fix config archive map
* Fix copies
* Update realm.mdx
* Apply suggestions from code review | 6,238 | 0 | 396 | 140 | 89 | 34,277 | 141 | transformers | 21 | src/transformers/models/realm/tokenization_realm.py | Python | 18 | {
"docstring": "\n Basic Tokenization of a piece of text. Split on \"white spaces\" only, for sub-word tokenization, see\n WordPieceTokenizer.\n\n Args:\n never_split (`List[str]`, *optional*)\n Kept for backward compatibility purposes. Now implemented directly at the base class level (see\n [`PreTrainedTokenizer.tokenize`]) List of token not to split.\n ",
"language": "en",
"n_whitespaces": 112,
"n_words": 42,
"vocab_size": 39
} | https://github.com/huggingface/transformers.git |
|
2 | async_mqtt_connect | def async_mqtt_connect(self) -> None:
if not self.hass.is_stopping:
self.async_write_ha_state()
| 2f1138562720cd50343d2fedd4981913a9ef6bd9 | 9 | mixins.py | 38 | Add typing hints for MQTT mixins (#80702)
* Add typing hints for MQTT mixins
* Follow up comments
* config_entry is always set
* typing discovery_data - substate None assignment
* Rename `config[CONF_DEVICE]` -> specifications | 88,869 | 0 | 33 | 21 | 8 | 289,733 | 8 | core | 5 | homeassistant/components/mqtt/mixins.py | Python | 4 | {
"docstring": "Update state on connection/disconnection to MQTT broker.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/home-assistant/core.git |
|
1 | test_count_characters | def test_count_characters(self):
validator = RichTextMaxLengthValidator(50)
self.assertEqual(validator.clean("<p>Plain text</p>"), 10)
# HTML entities should be un-escaped.
self.assertEqual(validator.clean("<p>There's quote</p>"), 13)
# BR should be ignored.
self.assertEqual(validator.clean("<p>Line<br/>break</p>"), 9)
# Content over multiple blocks should be treated as a single line of text with no joiner.
self.assertEqual(validator.clean("<p>Multi</p><p>blocks</p>"), 11)
# Empty blocks should be ignored.
self.assertEqual(validator.clean("<p>Empty</p><p></p><p>blocks</p>"), 11)
# HR should be ignored.
self.assertEqual(validator.clean("<p>With</p><hr/><p>HR</p>"), 6)
# Embed blocks should be ignored.
self.assertEqual(validator.clean("<p>With</p><embed/><p>embed</p>"), 9)
# Counts symbols with multiple code units (heart unicode + variation selector).
self.assertEqual(validator.clean("<p>U+2764 U+FE0F ❤️</p>"), 16)
# Counts symbols with zero-width joiners.
self.assertEqual(validator.clean("<p>👨👨👧</p>"), 5)
| 8a7e0884d789449ddbbd08ddae48374d92a14d11 | 10 | test_rich_text.py | 229 | Finish implementing rich text max length with identical client & server count | 16,821 | 0 | 223 | 129 | 61 | 78,814 | 90 | wagtail | 6 | wagtail/tests/test_rich_text.py | Python | 11 | {
"docstring": "Keep those tests up-to-date with MaxLength tests client-side.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 7
} | https://github.com/wagtail/wagtail.git |
|
3 | test_already_created_plus_written_results | def test_already_created_plus_written_results(indexer, indexer_cache) -> None:
org_id = 1234
raw_indexer = indexer
indexer = CachingIndexer(indexer_cache, indexer)
v0 = raw_indexer.record(use_case_id, org_id, "v1.2.0")
v1 = raw_indexer.record(use_case_id, org_id, "v1.2.1")
v2 = raw_indexer.record(use_case_id, org_id, "v1.2.2")
expected_mapping = {"v1.2.0": v0, "v1.2.1": v1, "v1.2.2": v2}
results = indexer.bulk_record(
use_case_id=use_case_id, org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2"}}
)
assert len(results[org_id]) == len(expected_mapping) == 3
for string, id in results[org_id].items():
assert expected_mapping[string] == id
results = indexer.bulk_record(
use_case_id=use_case_id,
org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2", "v1.2.3"}},
)
v3 = raw_indexer.resolve(use_case_id, org_id, "v1.2.3")
expected_mapping["v1.2.3"] = v3
assert len(results[org_id]) == len(expected_mapping) == 4
for string, id in results[org_id].items():
assert expected_mapping[string] == id
fetch_meta = results.get_fetch_metadata()
assert_fetch_type_for_tag_string_set(
fetch_meta[org_id], FetchType.CACHE_HIT, {"v1.2.0", "v1.2.1", "v1.2.2"}
)
assert_fetch_type_for_tag_string_set(fetch_meta[org_id], FetchType.FIRST_SEEN, {"v1.2.3"})
| 7bbb85a0d95d23620228a02bb4401fc09658f5f1 | 13 | test_all_indexers.py | 411 | ref(metrics): Split caching out of indexers, random test refactoring [sns-1606] (#37714) | 19,097 | 0 | 216 | 257 | 62 | 94,500 | 108 | sentry | 27 | tests/sentry/sentry_metrics/test_all_indexers.py | Python | 32 | {
"docstring": "\n Test that we correctly combine db read results with db write results\n for the same organization.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 14
} | https://github.com/getsentry/sentry.git |
|
1 | url_to_file_path | def url_to_file_path(url, filecache):
key = CacheController.cache_url(url)
return filecache._fn(key)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 8 | file_cache.py | 39 | upd; format | 12,586 | 0 | 17 | 23 | 8 | 61,474 | 8 | transferlearning | 7 | .venv/lib/python3.8/site-packages/pip/_vendor/cachecontrol/caches/file_cache.py | Python | 3 | {
"docstring": "Return the file cache path based on the URL.\n\n This does not ensure the file exists!\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 16,
"vocab_size": 13
} | https://github.com/jindongwang/transferlearning.git |
|
7 | validate_multi_return | def validate_multi_return(outputs_list, output_value, callback_id):
if not isinstance(output_value, (list, tuple)):
raise exceptions.InvalidCallbackReturnValue(
dedent(
f
)
)
if len(output_value) != len(outputs_list):
raise exceptions.InvalidCallbackReturnValue(
f
)
for i, outi in enumerate(outputs_list):
if isinstance(outi, list):
vi = output_value[i]
if not isinstance(vi, (list, tuple)):
raise exceptions.InvalidCallbackReturnValue(
dedent(
f
)
)
if len(vi) != len(outi):
raise exceptions.InvalidCallbackReturnValue(
dedent(
f
)
)
| c3c84b9ecf16bcc61ed80ec39d511af92fe07f2c | 19 | _validate.py | 275 | f-strings everywhere! fffff | 7,339 | 0 | 361 | 122 | 30 | 40,175 | 55 | dash | 15 | dash/_validate.py | Python | 43 | {
"docstring": "\n The callback {callback_id} is a multi-output.\n Expected the output type to be a list or tuple but got:\n {output_value!r}.\n \n Invalid number of output values for {callback_id}.\n Expected {len(outputs_list)}, got {len(output_value)}\n \n The callback {callback_id} output {i} is a wildcard multi-output.\n Expected the output type to be a list or tuple but got:\n {vi!r}.\n output spec: {outi!r}\n \n Invalid number of output values for {callback_id} item {i}.\n Expected {len(vi)}, got {len(outi)}\n output spec: {outi!r}\n output value: {vi!r}\n ",
"language": "en",
"n_whitespaces": 401,
"n_words": 74,
"vocab_size": 38
} | https://github.com/plotly/dash.git |
|
3 | test_pipe_leakage | def test_pipe_leakage():
from psutil import Process
parent = Process()
# Get this platform's *count open handles* method.
open_fds = parent.num_handles if os.name == "nt" else parent.num_fds
old = open_fds()
# Creating an isolated.Python() does nothing.
child = isolated.Python()
assert open_fds() == old
# Entering its context creates the child process and 4 handles for sending/receiving to/from it. Then on Windows,
# opening the parent's ends of the two pipes creates another two handles and starting the subprocess adds another
# two (although I don't know what for).
EXPECTED_INCREASE_IN_FDS = (4 if os.name != "nt" else 8)
with child:
assert open_fds() == old + EXPECTED_INCREASE_IN_FDS
# Exiting must close them all immediately. No implicit closure by garbage collect.
assert open_fds() == old
# Do it again just to be sure that the context manager properly restarts.
with child:
assert open_fds() == old + EXPECTED_INCREASE_IN_FDS
assert open_fds() == old
| 1a7d704ffbabb433007e3ba04750c2f13ade48e5 | 10 | test_isolation.py | 171 | Fix typos (#6782) [skip ci] | 77,412 | 0 | 218 | 94 | 96 | 262,862 | 147 | pyinstaller | 14 | tests/unit/test_isolation.py | Python | 14 | {
"docstring": "\n There is a finite number of open pipes/file handles/file descriptors allowed per process. Ensure that all\n opened handles eventually get closed to prevent such *leakages* causing crashes in very long processes (such as\n the rest of our test suite).\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 39,
"vocab_size": 38
} | https://github.com/pyinstaller/pyinstaller.git |
|
1 | test_visit_collection_with_private_pydantic | async def test_visit_collection_with_private_pydantic(self):
input = PrivatePydantic(x=1)
input._y = 2
input._z = 4
result = await visit_collection(
input, visit_fn=visit_even_numbers, return_data=False
)
assert result is None
assert EVEN == {2, 4}
result = await visit_collection(
input, visit_fn=negative_even_numbers, return_data=True
)
assert result == input
assert result.__private_attributes__ == input.__private_attributes__
breakpoint()
assert result._y == -2
assert result._z == -4
| c33f87fc7e0b6fb4714a88b492e7545f4dbd821f | 10 | test_collections.py | 150 | get private attrs working | 11,499 | 0 | 181 | 95 | 33 | 56,293 | 54 | prefect | 16 | tests/utilities/test_collections.py | Python | 17 | {
"docstring": "Check that we successfully capture private pydantic fields",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/PrefectHQ/prefect.git |
|
28 | search_packages_info | def search_packages_info(query):
# type: (List[str]) -> Iterator[Dict[str, str]]
installed = {}
for p in pkg_resources.working_set:
installed[canonicalize_name(p.project_name)] = p
query_names = [canonicalize_name(name) for name in query]
missing = sorted(
[name for name, pkg in zip(query, query_names) if pkg not in installed]
)
if missing:
logger.warning('Package(s) not found: %s', ', '.join(missing))
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 12 | show.py | 130 | upd; format | 12,227 | 0 | 94 | 483 | 37 | 60,651 | 49 | transferlearning | 17 | .venv/lib/python3.8/site-packages/pip/_internal/commands/show.py | Python | 58 | {
"docstring": "\n Gather details from installed distributions. Print distribution name,\n version, location, and installed files. Installed files requires a\n pip generated 'installed-files.txt' in the distributions '.egg-info'\n directory.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 25,
"vocab_size": 24
} | https://github.com/jindongwang/transferlearning.git |
|
1 | get_series_to_preserve | def get_series_to_preserve(doctype):
series_to_preserve = frappe.db.sql_list(
.format(
doctype=doctype
)
)
series_to_preserve.sort()
return series_to_preserve
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 11 | refactor_naming_series.py | 50 | style: format code with black | 14,213 | 0 | 4 | 29 | 10 | 66,552 | 12 | erpnext | 8 | erpnext/patches/v11_0/refactor_naming_series.py | Python | 8 | {
"docstring": "select distinct naming_series from `tab{doctype}` where ifnull(naming_series, '') != ''",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/frappe/erpnext.git |
|
7 | extractRegexResult | def extractRegexResult(regex, content, flags=0):
retVal = None
if regex and content and "?P<result>" in regex:
if isinstance(content, six.binary_type) and isinstance(regex, six.text_type):
regex = getBytes(regex)
match = re.search(regex, content, flags)
if match:
retVal = match.group("result")
return retVal
| 63977ebdffb9e54978da337a7ec3ce8200723162 | 13 | common.py | 119 | Minor update | 27,333 | 0 | 91 | 74 | 25 | 123,306 | 36 | sqlmap | 14 | lib/core/common.py | Python | 9 | {
"docstring": "\n Returns 'result' group value from a possible match with regex on a given\n content\n\n >>> extractRegexResult(r'a(?P<result>[^g]+)g', 'abcdefg')\n 'bcdef'\n >>> extractRegexResult(r'a(?P<result>[^g]+)g', 'ABCDEFG', re.I)\n 'BCDEF'\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 23,
"vocab_size": 20
} | https://github.com/sqlmapproject/sqlmap.git |
|
2 | loss_cardinality | def loss_cardinality(self, outputs, targets, indices, num_boxes):
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
| 59407bbeb31fff8340938768051c9daabd38d7a7 | 13 | modeling_deformable_detr.py | 167 | Add Deformable DETR (#17281)
* First draft
* More improvements
* Improve model, add custom CUDA code
* Import torch before
* Add script that imports custom layer
* Add everything in new ops directory
* Import custom layer in modeling file
* Fix ARCHIVE_MAP typo
* Creating the custom kernel on the fly.
* Import custom layer in modeling file
* More improvements
* Fix CUDA loading
* More improvements
* Improve conversion script
* Improve conversion script
* Make it work until encoder_outputs
* Make forward pass work
* More improvements
* Make logits match original implementation
* Make implementation also support single_scale model
* Add support for single_scale and dilation checkpoint
* Add support for with_box_refine model
* Support also two stage model
* Improve tests
* Fix more tests
* Make more tests pass
* Upload all models to the hub
* Clean up some code
* Improve decoder outputs
* Rename intermediate hidden states and reference points
* Improve model outputs
* Move tests to dedicated folder
* Improve model outputs
* Fix retain_grad test
* Improve docs
* Clean up and make test_initialization pass
* Improve variable names
* Add copied from statements
* Improve docs
* Fix style
* Improve docs
* Improve docs, move tests to model folder
* Fix rebase
* Remove DetrForSegmentation from auto mapping
* Apply suggestions from code review
* Improve variable names and docstrings
* Apply some more suggestions from code review
* Apply suggestion from code review
* better docs and variables names
* hint to num_queries and two_stage confusion
* remove asserts and code refactor
* add exception if two_stage is True and with_box_refine is False
* use f-strings
* Improve docs and variable names
* Fix code quality
* Fix rebase
* Add require_torch_gpu decorator
* Add pip install ninja to CI jobs
* Apply suggestion of @sgugger
* Remove DeformableDetrForObjectDetection from auto mapping
* Remove DeformableDetrModel from auto mapping
* Add model to toctree
* Add model back to mappings, skip model in pipeline tests
* Apply @sgugger's suggestion
* Fix imports in the init
* Fix copies
* Add CPU implementation
* Comment out GPU function
* Undo previous change
* Apply more suggestions
* Remove require_torch_gpu annotator
* Fix quality
* Add logger.info
* Fix logger
* Fix variable names
* Fix initializaztion
* Add missing initialization
* Update checkpoint name
* Add model to doc tests
* Add CPU/GPU equivalence test
* Add Deformable DETR to pipeline tests
* Skip model for object detection pipeline
Co-authored-by: Nicolas Patry <[email protected]>
Co-authored-by: Nouamane Tazi <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | 6,125 | 0 | 115 | 104 | 45 | 33,630 | 52 | transformers | 23 | src/transformers/models/deformable_detr/modeling_deformable_detr.py | Python | 8 | {
"docstring": "\n Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.\n\n This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 32,
"vocab_size": 29
} | https://github.com/huggingface/transformers.git |
|
1 | test_duplicated_txn_id_one_call | def test_duplicated_txn_id_one_call(self):
txn_id = "something_else_suitably_random"
# Create two duplicate events to persist at the same time
event1, context1 = self._create_duplicate_event(txn_id)
event2, context2 = self._create_duplicate_event(txn_id)
# Ensure their event IDs are different to start with
self.assertNotEqual(event1.event_id, event2.event_id)
events, _ = self.get_success(
self._persist_event_storage_controller.persist_events(
[(event1, context1), (event2, context2)]
)
)
# Check that we've deduplicated the events.
self.assertEqual(len(events), 2)
self.assertEqual(events[0].event_id, events[1].event_id)
| 1e453053cb12ff084fdcdc2f75c08ced274dff21 | 12 | test_message.py | 158 | Rename storage classes (#12913) | 72,277 | 0 | 179 | 99 | 49 | 248,428 | 58 | synapse | 17 | tests/handlers/test_message.py | Python | 12 | {
"docstring": "Test that we correctly handle duplicates that we try and persist at\n the same time.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 15,
"vocab_size": 13
} | https://github.com/matrix-org/synapse.git |
|
1 | test_tutte_polynomial_disjoint_K1 | def test_tutte_polynomial_disjoint_K1():
g = nx.complete_graph(1)
t_g = nx.tutte_polynomial(g)
h = nx.disjoint_union(g, g)
t_h = nx.tutte_polynomial(h)
assert sympy.simplify(t_g * t_g).equals(t_h)
| f11068c0115ede0c7b631f771c10be7efd0b950b | 10 | test_polynomials.py | 88 | Add Tutte polynomial (#5265)
Add a new polynomial module to algorithms for characteristic polynomials.
Adds the Tutte polynomial, which is computed and ultimate represented as a
sympy expression.
Co-authored-by: Dan Schult <[email protected]>
Co-authored-by: Ross Barnowski <[email protected]> | 41,896 | 0 | 37 | 53 | 16 | 176,433 | 19 | networkx | 12 | networkx/algorithms/tests/test_polynomials.py | Python | 6 | {
"docstring": "Tutte polynomial factors into the Tutte polynomials of its components.\n Verify this property with the disjoint union of two copies of `K_1`.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 22,
"vocab_size": 18
} | https://github.com/networkx/networkx.git |
|
1 | perspective | def perspective(aspect_ratio, fov_y, near_clip, far_clip):
focal_lengths_y = 1.0 / np.tan(fov_y * (math.pi / 360.0))
depth_range = far_clip - near_clip
p_22 = -(far_clip + near_clip) / depth_range
p_23 = -2.0 * (far_clip * near_clip / depth_range)
zeros = np.zeros_like(p_23, dtype=np.float32)
# pyformat: disable
perspective_transform = np.concatenate(
[
focal_lengths_y / aspect_ratio, zeros, zeros, zeros,
zeros, focal_lengths_y, zeros, zeros,
zeros, zeros, p_22, p_23,
zeros, zeros, -np.ones_like(p_23, dtype=np.float32), zeros
], axis=0)
# pyformat: enable
perspective_transform = np.reshape(perspective_transform, [4, 4, -1])
return np.transpose(perspective_transform, [2, 0, 1])
| 7375ee364e0df2a417f92593e09557f1b2a3575a | 14 | ganfit_camera.py | 229 | initialize ostec | 1,634 | 0 | 160 | 167 | 53 | 9,559 | 81 | insightface | 23 | reconstruction/ostec/utils/ganfit_camera.py | Python | 15 | {
"docstring": "Computes perspective transformation matrices.\n Functionality mimes gluPerspective (third_party/GL/glu/include/GLU/glu.h).\n Args:\n aspect_ratio: float value specifying the image aspect ratio (width/height).\n fov_y: 1-D float32 Tensor with shape [batch_size] specifying output vertical\n field of views in degrees.\n near_clip: 1-D float32 Tensor with shape [batch_size] specifying near\n clipping plane distance.\n far_clip: 1-D float32 Tensor with shape [batch_size] specifying far clipping\n plane distance.\n Returns:\n A [batch_size, 4, 4] float tensor that maps from right-handed points in eye\n space to left-handed points in clip space.\n ",
"language": "en",
"n_whitespaces": 147,
"n_words": 78,
"vocab_size": 56
} | https://github.com/deepinsight/insightface.git |
|
2 | _test_tkinter | def _test_tkinter(cls) -> None:
try:
import tkinter # noqa pylint: disable=unused-import,import-outside-toplevel
except ImportError as err:
logger.error("It looks like TkInter isn't installed for your OS, so the GUI has been "
"disabled. To enable the GUI please install the TkInter application. You "
"can try:")
logger.info("Anaconda: conda install tk")
logger.info("Windows/macOS: Install ActiveTcl Community Edition from "
"http://www.activestate.com")
logger.info("Ubuntu/Mint/Debian: sudo apt install python3-tk")
logger.info("Arch: sudo pacman -S tk")
logger.info("CentOS/Redhat: sudo yum install tkinter")
logger.info("Fedora: sudo dnf install python3-tkinter")
raise FaceswapError("TkInter not found") from err
| 26e26c628803e592ce876e101a45033c87a5a97b | 12 | launcher.py | 141 | Update TF to 2.9
- Update TF to 2.7 to 2.9
- Bump dependencies
- Remove decode from pynvml calls
- force keras predict functions to non-verbose
- update tests
- update Tensorboard logging
- Update docs | 20,568 | 0 | 274 | 69 | 67 | 101,138 | 82 | faceswap | 9 | lib/cli/launcher.py | Python | 26 | {
"docstring": " If the user is running the GUI, test whether the tkinter app is available on their\n machine. If not exit gracefully.\n\n This avoids having to import every tkinter function within the GUI in a wrapper and\n potentially spamming traceback errors to console.\n\n Raises\n ------\n FaceswapError\n If tkinter cannot be imported\n ",
"language": "en",
"n_whitespaces": 111,
"n_words": 50,
"vocab_size": 41
} | https://github.com/deepfakes/faceswap.git |
|
1 | is_monotonic_increasing | def is_monotonic_increasing(self) -> bool:
from pandas import Index
return Index(self).is_monotonic_increasing
| acd7218f67fbe31308db7482e11fb9c8f30b51a8 | 8 | base.py | 34 | DEPR: Index.is_monotonic for Index.is_monotonic_increasing (#45422) | 39,484 | 0 | 31 | 19 | 10 | 163,673 | 10 | pandas | 5 | pandas/core/base.py | Python | 11 | {
"docstring": "\n Return boolean if values in the object are\n monotonic_increasing.\n\n Returns\n -------\n bool\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 12,
"vocab_size": 12
} | https://github.com/pandas-dev/pandas.git |
|
3 | check_yaml_c_exts | def check_yaml_c_exts():
if testutils.ON_CI and sys.version_info[:2] != (3, 10):
from yaml import CLoader # pylint: disable=unused-import
@pytest.hookimpl(tryfirst=True, hookwrapper=True) | 9c4169c7b7d96a10012a72c70fc38c6154f7481f | @pytest.hookimpl(tryfirst=True, hookwrapper=True) | 9 | conftest.py | 68 | tests: Remove some unused imports | 117,234 | 1 | 31 | 28 | 18 | 320,623 | 18 | qutebrowser | 11 | tests/conftest.py | Python | 3 | {
"docstring": "Make sure PyYAML C extensions are available on CI.\n\n Not available yet with a nightly Python, see:\n https://github.com/yaml/pyyaml/issues/416\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 18,
"vocab_size": 17
} | https://github.com/qutebrowser/qutebrowser.git |
3 | custom_generator_multi_io_temporal | def custom_generator_multi_io_temporal(self, sample_weights=None):
batch_size = 3
num_samples = 3
iteration = 0
while True:
batch_index = iteration * batch_size % num_samples
iteration += 1
start = batch_index
end = start + batch_size
x = [self.x[start:end], self.x[start:end]]
y = [self.y1[start:end], self.y2[start:end]]
if sample_weights:
sw = tf.nest.map_structure(
lambda w: w[start:end], sample_weights
)
else:
sw = None
yield x, y, sw
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 15 | temporal_sample_weights_correctness_test.py | 180 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,689 | 0 | 256 | 116 | 39 | 276,584 | 58 | keras | 18 | keras/tests/temporal_sample_weights_correctness_test.py | Python | 18 | {
"docstring": "Generator for getting data for temporal multi io model.\n\n Args:\n sample_weights: List of sample_weights.\n\n Yields:\n Tuple of inputs, label, sample weights data.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 22,
"vocab_size": 20
} | https://github.com/keras-team/keras.git |
|
1 | ping_google | def ping_google(sitemap_url=None, ping_url=PING_URL, sitemap_uses_https=True):
sitemap_full_url = _get_sitemap_full_url(sitemap_url, sitemap_uses_https)
params = urlencode({"sitemap": sitemap_full_url})
urlopen("%s?%s" % (ping_url, params))
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 11 | __init__.py | 73 | Refs #33476 -- Reformatted code with Black. | 50,695 | 0 | 28 | 44 | 15 | 204,321 | 16 | django | 10 | django/contrib/sitemaps/__init__.py | Python | 4 | {
"docstring": "\n Alert Google that the sitemap for the current site has been updated.\n If sitemap_url is provided, it should be an absolute path to the sitemap\n for this site -- e.g., '/sitemap.xml'. If sitemap_url is not provided, this\n function will attempt to deduce it by using urls.reverse().\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 46,
"vocab_size": 34
} | https://github.com/django/django.git |
|
1 | test_sensors_no_data | async def test_sensors_no_data(self):
# Setup platform with default responses
await self._setup_platform(use_default_responses=True)
# Change mock responses to empty data and refresh the coordinator
self.picnic_mock().get_user.return_value = {}
self.picnic_mock().get_cart.return_value = None
self.picnic_mock().get_deliveries.return_value = None
self.picnic_mock().get_delivery_position.side_effect = ValueError
await self._coordinator.async_refresh()
# Assert all default-enabled sensors have STATE_UNAVAILABLE because the last update failed
assert self._coordinator.last_update_success is False
self._assert_sensor("sensor.picnic_cart_total_price", STATE_UNAVAILABLE)
self._assert_sensor("sensor.picnic_selected_slot_start", STATE_UNAVAILABLE)
self._assert_sensor("sensor.picnic_selected_slot_end", STATE_UNAVAILABLE)
self._assert_sensor(
"sensor.picnic_selected_slot_max_order_time", STATE_UNAVAILABLE
)
self._assert_sensor(
"sensor.picnic_selected_slot_min_order_value", STATE_UNAVAILABLE
)
self._assert_sensor(
"sensor.picnic_last_order_max_order_time", STATE_UNAVAILABLE
)
self._assert_sensor("sensor.picnic_last_order_delivery_time", STATE_UNAVAILABLE)
self._assert_sensor("sensor.picnic_next_delivery_eta_start", STATE_UNAVAILABLE)
self._assert_sensor("sensor.picnic_next_delivery_eta_end", STATE_UNAVAILABLE)
| 137793c06748b3914ae4906c9d11599dbd83d1fd | 10 | test_sensor.py | 258 | Add sensors for next Picnic deliveries (#66474) | 91,520 | 0 | 270 | 148 | 55 | 292,434 | 76 | core | 17 | tests/components/picnic/test_sensor.py | Python | 23 | {
"docstring": "Test sensor states when the api only returns empty objects.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/home-assistant/core.git |
|
2 | get_rollback | def get_rollback(self):
if not self.in_atomic_block:
raise TransactionManagementError(
"The rollback flag doesn't work outside of an 'atomic' block."
)
return self.needs_rollback
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 10 | base.py | 39 | Refs #33476 -- Reformatted code with Black. | 50,899 | 0 | 78 | 21 | 20 | 204,814 | 20 | django | 5 | django/db/backends/base/base.py | Python | 6 | {
"docstring": "Get the \"needs rollback\" flag -- for *advanced use* only.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/django/django.git |
|
2 | get_file_breaks | def get_file_breaks(self, filename):
filename = self.canonic(filename)
if filename in self.breaks:
return self.breaks[filename]
else:
return []
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 9 | bdb.py | 58 | add python 3.10.4 for windows | 56,206 | 0 | 65 | 35 | 13 | 221,103 | 15 | XX-Net | 5 | python3.10.4/Lib/bdb.py | Python | 6 | {
"docstring": "Return all lines with breakpoints for filename.\n\n If no breakpoints are set, return an empty list.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 16,
"vocab_size": 15
} | https://github.com/XX-net/XX-Net.git |
|
1 | get | def get(self, request, **kwargs):
instance = self.get_object(**kwargs)
return render(request, self.get_template_name(), {
'object': instance,
**self.get_extra_context(request, instance),
})
| 54834c47f8870e7faabcd847c3270da0bd3d2884 | 11 | object_views.py | 76 | Refactor generic views; add plugins dev documentation | 77,673 | 0 | 66 | 48 | 16 | 264,301 | 16 | netbox | 9 | netbox/netbox/views/generic/object_views.py | Python | 6 | {
"docstring": "\n GET request handler. `*args` and `**kwargs` are passed to identify the object being queried.\n\n Args:\n request: The current request\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 19,
"vocab_size": 18
} | https://github.com/netbox-community/netbox.git |
|
3 | dup_eval | def dup_eval(f, a, K):
result = K.zero
for c in f:
result *= a
result += c
return result
| c52d6ce2c8d5eecc5b891d05b1c32a456c4cd308 | 8 | densetools.py | 45 | fixed error in primitive_element for some case when ext=False | 48,415 | 0 | 45 | 40 | 15 | 197,261 | 19 | sympy | 7 | sympy/polys/densetools.py | Python | 8 | {
"docstring": "\n Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.\n\n Examples\n ========\n\n >>> from sympy.polys import ring, ZZ\n >>> R, x = ring(\"x\", ZZ)\n\n >>> R.dup_eval(x**2 + 2*x + 3, 2)\n 11\n\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 34,
"vocab_size": 30
} | https://github.com/sympy/sympy.git |
|
1 | map_relation | def map_relation(self, w):
array = w.array_form
s1 = array[0][0]
s2 = array[1][0]
key = ((s2, -1), (s1, 1), (s2, 1))
key = self.free_group.dtype(key)
return self.pc_presentation[key]
| 498015021131af4dbb07eb110e5badaba8250c7b | 9 | pc_groups.py | 104 | Updated import locations | 47,616 | 0 | 74 | 70 | 20 | 196,116 | 25 | sympy | 11 | sympy/combinatorics/pc_groups.py | Python | 7 | {
"docstring": "\n Return a conjugate relation.\n\n Explanation\n ===========\n\n Given a word formed by two free group elements, the\n corresponding conjugate relation with those free\n group elements is formed and mapped with the collected\n word in the polycyclic presentation.\n\n Examples\n ========\n\n >>> from sympy.combinatorics.named_groups import SymmetricGroup\n >>> from sympy.combinatorics import free_group\n >>> G = SymmetricGroup(3)\n >>> PcGroup = G.polycyclic_group()\n >>> collector = PcGroup.collector\n >>> F, x0, x1 = free_group(\"x0, x1\")\n >>> w = x1*x0\n >>> collector.map_relation(w)\n x1**2\n\n See Also\n ========\n\n pc_presentation\n\n ",
"language": "en",
"n_whitespaces": 233,
"n_words": 78,
"vocab_size": 55
} | https://github.com/sympy/sympy.git |
|
7 | applied_filters | def applied_filters(context, model, form, query_params):
user = context['request'].user
form.is_valid() # Ensure cleaned_data has been set
applied_filters = []
for filter_name in form.changed_data:
if filter_name not in form.cleaned_data:
continue
querydict = query_params.copy()
if filter_name not in querydict:
continue
bound_field = form.fields[filter_name].get_bound_field(form, filter_name)
querydict.pop(filter_name)
display_value = ', '.join([str(v) for v in get_selected_values(form, filter_name)])
applied_filters.append({
'name': filter_name,
'value': form.cleaned_data[filter_name],
'link_url': f'?{querydict.urlencode()}',
'link_text': f'{bound_field.label}: {display_value}',
})
save_link = None
if user.has_perm('extras.add_savedfilter') and 'filter' not in context['request'].GET:
content_type = ContentType.objects.get_for_model(model).pk
parameters = context['request'].GET.urlencode()
url = reverse('extras:savedfilter_add')
save_link = f"{url}?content_types={content_type}¶meters={quote(parameters)}"
return {
'applied_filters': applied_filters,
'save_link': save_link,
}
| 484efdaf75f267a43f9321b938fda1bc967b9e53 | 15 | helpers.py | 370 | Closes #9623: Implement saved filters (#10801)
* Initial work on saved filters
* Return only enabled/shared filters
* Add tests
* Clean up filtering of usable SavedFilters | 78,255 | 0 | 283 | 198 | 69 | 265,988 | 91 | netbox | 36 | netbox/utilities/templatetags/helpers.py | Python | 29 | {
"docstring": "\n Display the active filters for a given filter form.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 9,
"vocab_size": 9
} | https://github.com/netbox-community/netbox.git |
|
4 | text | def text(self) -> str:
control = {
Qt.Key_Space: ' ',
Qt.Key_Tab: '\t',
Qt.Key_Backspace: '\b',
Qt.Key_Return: '\r',
Qt.Key_Enter: '\r',
Qt.Key_Escape: '\x1b',
}
if self.key in control:
return control[self.key]
elif not _is_printable(self.key):
return ''
text = QKeySequence(self.key).toString()
if not self.modifiers & Qt.ShiftModifier:
text = text.lower()
return text
| a20bb67a878b2e68abf8268c1b0a27f018d01352 | 11 | keyutils.py | 180 | mypy: Upgrade to PyQt5-stubs 5.15.6.0
For some unknown reason, those new stubs cause a *lot* of things now to be
checked by mypy which formerly probably got skipped due to Any being implied
somewhere.
The stubs themselves mainly improved, with a couple of regressions too.
In total, there were some 337 (!) new mypy errors. This commit fixes almost all
of them, and the next commit improves a fix to get things down to 0 errors
again.
Overview of the changes:
==== qutebrowser/app.py
- Drop type ignore due to improved stubs.
==== qutebrowser/browser/browsertab.py
- Specify the type of _widget members more closely than just QWidget.
This is debatable: I suppose the abstract stuff shouldn't need to know
anything about the concrete backends at all. But it seems like we cut some
corners when initially implementing things, and put some code in browsertab.py
just because the APIs of both backends happened to be compatible. Perhaps
something to reconsider once we drop QtWebKit and hopefully implement a dummy
backend.
- Add an additional assertion in AbstractAction.run_string. This is already
covered by the isinstance(member, self.action_base) above it, but that's too
dynamic for mypy to understand.
- Fix the return type of AbstractScroller.pos_px, which is a QPoint (with x
and y components), not a single int.
- Fix the return type of AbstractScroller.pos_perc, which is a Tuple (with x
and y components), not a single int.
- Fix the argument types of AbstractScroller.to_perc, as it's possible to pass
fractional percentages too.
- Specify the type for AbstractHistoryPrivate._history. See above (_widget) re
this being debatable.
- Fix the return type of AbstractTabPrivate.event_target(), which can be None
(see #3888).
- Fix the return type of AbstractTabPrivate.run_js_sync, which is Any (the JS
return value), not None.
- Fix the argument type for AbstractTabPrivate.toggle_inspector: position can
be None to use the last used position.
- Declare the type of sub-objects of AbstractTab.
- Fix the return value of AbstractTab.icon(), which is the QIcon, not None.
==== qutebrowser/browser/commands.py
- Make sure the active window is a MainWindow (with a .win_id attribute).
==== qutebrowser/browser/downloadview.py
- Add _model() which makes sure that self.model() is a DownloadModel, not None
or any other model. This is needed because other methods access a variety of
custom attributes on it, e.g. last_index().
==== qutebrowser/browser/greasemonkey.py
- Add an ignore for AbstractDownload.requested_url which we patch onto the
downloads. Probably would be nicer to add it as a proper attribute which always
gets set by the DownloadManager.
==== qutebrowser/browser/hints.py
- Remove type ignores for QUrl.toString().
- Add a new type ignore for combining different URL flags (which works, but is
not exactly type safe... still probably a regression in the stubs).
- Make sure the things we get back from self._get_keyparser are what we actually
expect. Probably should introduce a TypedDict (and/or overloads for
_get_keyparser with typing.Literal) to teach mypy about the exact return value.
See #7098.
This is needed because we access Hint/NormalKeyParser-specific attributes such
as .set_inhibited_timout() or .update_bindings().
==== qutebrowser/browser/inspector.py
- Similar changes than in browsertab.py to make some types where we share API
(e.g. .setPage()) more concrete. Didn't work out unfortunately, see next
commit.
==== qutebrowser/browser/network/pac.py
- Remove now unneeded type ignore for signal.
==== qutebrowser/browser/qtnetworkdownloads.py
- Make sure that downloads is a qtnetworkdownloads.DownloadItem (rather than an
AbstractDownload), so that we can call ._uses_nam() on it.
==== qutebrowser/browser/qutescheme.py
- Remove now unneeded type ignore for QUrl flags.
==== qutebrowser/browser/urlmarks.py
- Specify the type of UrlMarkManager._lineparser, as those only get initialized
in _init_lineparser of subclasses, so mypy doesn't know it's supposed to exist.
==== qutebrowser/browser/webelem.py
- New casts to turn single KeyboardModifier (enum) entries into
KeyboardModifiers (flags). Might not be needed anymore with Qt 6.
- With that, casting the final value is now unneeded.
==== qutebrowser/browser/webengine/notification.py
- Remove now unneeded type ignore for signal.
- Make sure the self.sender() we get in HerbeNotificationAdapter._on_finished()
is a QProcess, not just any QObject.
==== qutebrowser/browser/webengine/webenginedownloads.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/browser/webengine/webengineelem.py
- Specify the type of WebEngineElement._tab.
- Remove now unneeded type ignore for mixed flags.
==== qutebrowser/browser/webengine/webengineinspector.py
- See changes to inspector.py and next commit.
- Remove now unneeded type ignore for signal.
==== qutebrowser/browser/webengine/webenginequtescheme.py
- Remove now unneeded type ignore for mixed flags.
==== qutebrowser/browser/webengine/webenginesettings.py
- Ignore access of .setter attribute which we patch onto QWebEngineProfile.
Would be nice to have a subclass or wrapper-class instead.
==== qutebrowser/browser/webengine/webenginetab.py
- Specified the type of _widget members more closely than just QWidget.
See browsertab.py changes for details.
- Remove some now-unneeded type ignores for creating FindFlags.
- Specify more concrete types for WebEngineTab members where we actually need to
access WebEngine-specific attributes.
- Make sure the page we get is our custom WebEnginePage subclass, not just any
QWebEnginePage. This is needed because we access custom attributes on it.
==== qutebrowser/browser/webengine/webview.py
- Make sure the page we get is our custom WebEnginePage subclass, not just any
QWebEnginePage. This is needed because we access custom attributes on it.
==== qutebrowser/browser/webkit/network/networkreply.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/browser/webkit/webkitinspector.py
- See changes to inspector.py and next commit.
==== qutebrowser/browser/webkit/webkittab.py
- Specify the type of _widget members more closely than just QWidget.
See browsertab.py changes for details.
- Add a type ignore for WebKitAction because our workaround needs to
treat them as ints (which is allowed by PyQt, even if not type-safe).
- Add new ignores for findText calls: The text is a QString and can be None; the
flags are valid despite mypy thinking they aren't (stubs regression?).
- Specify the type for WebKitHistoryPrivate._history, because we access
WebKit-specific attributes. See above (_widget) re this being debatable.
- Make mypy aware that .currentFrame() and .frameAt() can return None (stubs
regression?).
- Make sure the .page() and .page().networkAccessManager() are our subclasses
rather than the more generic QtWebKit objects, as we use custom attributes.
- Add new type ignores for signals (stubs regression!)
==== qutebrowser/browser/webkit/webpage.py
- Make sure the .networkAccessManager() is our subclass rather than the more
generic QtWebKit object, as we use custom attributes.
- Replace a cast by a type ignore. The cast didn't work anymore.
==== qutebrowser/browser/webkit/webview.py
- Make sure the .page() is our subclass rather than the more generic QtWebKit
object, as we use custom attributes.
==== qutebrowser/commands/userscripts.py
- Remove now unneeded type ignore for signal.
==== qutebrowser/completion/completer.py
- Add a new _completion() getter (which ensures it actually gets the completion
view) rather than accessing the .parent() directly (which could be any QObject).
==== qutebrowser/completion/completiondelegate.py
- Make sure self.parent() is a CompletionView (no helper method as there is only
one instance).
- Remove a now-unneeded type ignore for adding QSizes.
==== qutebrowser/completion/completionwidget.py
- Add a ._model() getter which ensures that we get a CompletionModel (with
custom attributes) rather than Qt's .model() which can be any QAbstractItemModel
(or None).
- Removed a now-unneeded type ignore for OR-ing flags.
==== qutebrowser/completion/models/completionmodel.py
- Remove now unneeded type ignores for signals.
- Ignore a complaint about .set_pattern() not being defined. Completion
categories don't share any common parent class, so it would be good to introduce
a typing.Protocol for this. See #7098.
==== qutebrowser/components/misccommands.py
- Removed a now-unneeded type ignore for OR-ing flags.
==== qutebrowser/components/readlinecommands.py
- Make sure QApplication.instance() is a QApplication (and not just a
QCoreApplication). This includes the former "not None" check.
==== qutebrowser/components/scrollcommands.py
- Add basic annotation for "funcs" dict. Could have a callable protocol to
specify it needs a count kwarg, see #7098.
==== qutebrowser/config/stylesheet.py
- Correctly specify that stylesheet apply to QWidgets, not any QObject.
- Ignore an attr-defined for obj.STYLESHEET. Perhaps could somehow teach mypy
about this with overloads and protocols (stylesheet for set_register being None
=> STYLESHEET needs to be defined, otherwise anything goes), but perhaps not
worth the troble. See #7098.
==== qutebrowser/keyinput/keyutils.py
- Remove some now-unneeded type ignores and add a cast for using a single enum
value as flags. Might need to look at this again with Qt 6 support.
==== qutebrowser/keyinput/modeman.py
- Add a FIXME for using a TypedDict, see comments for hints.py above.
==== qutebrowser/mainwindow/mainwindow.py
- Remove now-unneeded type ignores for calling with OR-ed flags.
- Improve where we cast from WindowType to WindowFlags, no int needed
- Use new .tab_bar() getter, see below.
==== qutebrowser/mainwindow/prompt.py
- Remove now-unneeded type ignores for calling with OR-ed flags.
==== qutebrowser/mainwindow/statusbar/bar.py
- Adjust type ignores around @pyqtProperty. The fact one is still needed seems
like a stub regression.
==== qutebrowser/mainwindow/statusbar/command.py
- Fix type for setText() override (from QLineEdit): text can be None
(QString in C++).
==== qutebrowser/mainwindow/statusbar/url.py
- Adjust type ignores around @pyqtProperty. The fact one is still needed seems
like a stub regression.
==== qutebrowser/mainwindow/tabbedbrowser.py
- Specify that TabDeque manages browser tabs, not any QWidgets. It accesses
AbstractTab-specific attributes.
- Make sure that the .tabBar() we get is a tabwidget.TabBar, as we access
.maybe_hide.
- Fix the annotations for stored marks: Scroll positions are a QPoint, not int.
- Add _current_tab() and _tab_by_idx() wrappers for .currentWidget() and
.widget(), which ensures that the return values are valid AbstractTabs (or None
for _tab_by_idx). This is needed because we access AbstractTab-specific
attributes.
- For some places, where the tab can be None, continue using .currentTab() but
add asserts.
- Remove some now-unneeded [unreachable] ignores, as mypy knows about the None
possibility now.
==== qutebrowser/mainwindow/tabwidget.py
- Add new tab_bar() and _tab_by_idx() helpers which check that the .tabBar() and
.widget() are of type TabBar and AbstractTab, respectively.
- Add additional assertions where we expect ._tab_by_idx() to never be None.
- Remove dead code in get_tab_fields for handling a None y scroll position. I
was unable to find any place in the code where this could be set to None.
- Remove some now-unneeded type ignores and casts, as mypy now knows that
_type_by_idx() could be None.
- Work around a strange instance where mypy complains about not being able to
find the type of TabBar.drag_in_progress from TabWidget._toggle_visibility,
despite it clearly being shown as a bool *inside* that class without any
annotation.
- Add a ._tab_widget() getter in TabBar which ensures that the .parent() is in
fact a TabWidget.
==== qutebrowser/misc/crashsignal.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/misc/editor.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/misc/ipc.py
- Remove now unneeded type ignores for signals.
- Add new type ignores for .error() which is both a signal and a getter
(stub regression?). Won't be relevant for Qt 6 anymore, as the signal was
renamed to errorOccurred in 5.15.
==== qutebrowser/misc/objects.py
- Make sure mypy knows that objects.app is our custom Application (with custom
attributes) rather than any QApplication.
==== qutebrowser/utils/objreg.py
- Ignore attr-defined for .win_id attributes. Maybe could add a typing.Protocol,
but ideally, the whole objreg stuff should die one day anyways.
==== tests/unit/completion/test_completer.py
- Make CompletionWidgetStub inherit from CompletionView so that it passes the
new isinstance() asserts in completer.py (see above). | 117,350 | 0 | 200 | 104 | 36 | 320,783 | 45 | qutebrowser | 18 | qutebrowser/keyinput/keyutils.py | Python | 18 | {
"docstring": "Get the text which would be displayed when pressing this key.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/qutebrowser/qutebrowser.git |
|
5 | train_one_step | def train_one_step(trainer, train_batch, policies_to_train=None) -> Dict:
config = trainer.config
workers = trainer.workers
local_worker = workers.local_worker()
num_sgd_iter = config.get("num_sgd_iter", 1)
sgd_minibatch_size = config.get("sgd_minibatch_size", 0)
learn_timer = trainer._timers[LEARN_ON_BATCH_TIMER]
with learn_timer:
# Subsample minibatches (size=`sgd_minibatch_size`) from the
# train batch and loop through train batch `num_sgd_iter` times.
if num_sgd_iter > 1 or sgd_minibatch_size > 0:
info = do_minibatch_sgd(
train_batch,
{
pid: local_worker.get_policy(pid)
for pid in policies_to_train
or local_worker.get_policies_to_train(train_batch)
},
local_worker,
num_sgd_iter,
sgd_minibatch_size,
[],
)
# Single update step using train batch.
else:
info = local_worker.learn_on_batch(train_batch)
learn_timer.push_units_processed(train_batch.count)
trainer._counters[NUM_ENV_STEPS_TRAINED] += train_batch.count
trainer._counters[NUM_AGENT_STEPS_TRAINED] += train_batch.agent_steps()
return info
@DeveloperAPI | 00922817b66ee14ba215972a98f416f3d6fef1ba | @DeveloperAPI | 17 | train_ops.py | 245 | [RLlib] Rewrite PPO to use training_iteration + enable DD-PPO for Win32. (#23673) | 34,101 | 1 | 357 | 151 | 72 | 147,843 | 92 | ray | 27 | rllib/execution/train_ops.py | Python | 40 | {
"docstring": "Function that improves the all policies in `train_batch` on the local worker.\n\n Examples:\n >>> from ray.rllib.execution.rollout_ops import synchronous_parallel_sample\n >>> trainer = [...] # doctest: +SKIP\n >>> train_batch = synchronous_parallel_sample(trainer.workers) # doctest: +SKIP\n >>> # This trains the policy on one batch.\n >>> results = train_one_step(trainer, train_batch)) # doctest: +SKIP\n {\"default_policy\": ...}\n\n Updates the NUM_ENV_STEPS_TRAINED and NUM_AGENT_STEPS_TRAINED counters as well as\n the LEARN_ON_BATCH_TIMER timer of the `trainer` object.\n ",
"language": "en",
"n_whitespaces": 121,
"n_words": 67,
"vocab_size": 47
} | https://github.com/ray-project/ray.git |
11 | _preprocess | def _preprocess(expr, func=None, hint='_Integral'):
if isinstance(expr, Pow):
# if f(x)**p=0 then f(x)=0 (p>0)
if (expr.exp).is_positive:
expr = expr.base
derivs = expr.atoms(Derivative)
if not func:
funcs = set().union(*[d.atoms(AppliedUndef) for d in derivs])
if len(funcs) != 1:
raise ValueError('The function cannot be '
'automatically detected for %s.' % expr)
func = funcs.pop()
fvars = set(func.args)
if hint is None:
return expr, func
reps = [(d, d.doit()) for d in derivs if not hint.endswith('_Integral') or
d.has(func) or set(d.variables) & fvars]
eq = expr.subs(reps)
return eq, func
| 65be461082dda54c8748922f9c29a19af1279fe1 | 14 | deutils.py | 268 | Remove abbreviations in documentation | 48,503 | 0 | 200 | 163 | 61 | 197,360 | 83 | sympy | 29 | sympy/solvers/deutils.py | Python | 18 | {
"docstring": "Prepare expr for solving by making sure that differentiation\n is done so that only func remains in unevaluated derivatives and\n (if hint does not end with _Integral) that doit is applied to all\n other derivatives. If hint is None, do not do any differentiation.\n (Currently this may cause some simple differential equations to\n fail.)\n\n In case func is None, an attempt will be made to autodetect the\n function to be solved for.\n\n >>> from sympy.solvers.deutils import _preprocess\n >>> from sympy import Derivative, Function\n >>> from sympy.abc import x, y, z\n >>> f, g = map(Function, 'fg')\n\n If f(x)**p == 0 and p>0 then we can solve for f(x)=0\n >>> _preprocess((f(x).diff(x)-4)**5, f(x))\n (Derivative(f(x), x) - 4, f(x))\n\n Apply doit to derivatives that contain more than the function\n of interest:\n\n >>> _preprocess(Derivative(f(x) + x, x))\n (Derivative(f(x), x) + 1, f(x))\n\n Do others if the differentiation variable(s) intersect with those\n of the function of interest or contain the function of interest:\n\n >>> _preprocess(Derivative(g(x), y, z), f(y))\n (0, f(y))\n >>> _preprocess(Derivative(f(y), z), f(y))\n (0, f(y))\n\n Do others if the hint does not end in '_Integral' (the default\n assumes that it does):\n\n >>> _preprocess(Derivative(g(x), y), f(x))\n (Derivative(g(x), y), f(x))\n >>> _preprocess(Derivative(f(x), y), f(x), hint='')\n (0, f(x))\n\n Do not do any derivatives if hint is None:\n\n >>> eq = Derivative(f(x) + 1, x) + Derivative(f(x), y)\n >>> _preprocess(eq, f(x), hint=None)\n (Derivative(f(x) + 1, x) + Derivative(f(x), y), f(x))\n\n If it's not clear what the function of interest is, it must be given:\n\n >>> eq = Derivative(f(x) + g(x), x)\n >>> _preprocess(eq, g(x))\n (Derivative(f(x), x) + Derivative(g(x), x), g(x))\n >>> try: _preprocess(eq)\n ... except ValueError: print(\"A ValueError was raised.\")\n A ValueError was raised.\n\n ",
"language": "en",
"n_whitespaces": 402,
"n_words": 276,
"vocab_size": 153
} | https://github.com/sympy/sympy.git |
|
5 | _clean_yaml | def _clean_yaml(self, data):
records = []
try:
for data in yaml.load_all(data, Loader=yaml.SafeLoader):
if type(data) == list:
records.extend(data)
elif type(data) == dict:
records.append(data)
else:
raise forms.ValidationError({
self.data_field: _(
"Invalid YAML data. Data must be in the form of multiple documents, or a single document "
"comprising a list of dictionaries."
)
})
except yaml.error.YAMLError as err:
raise forms.ValidationError({
self.data_field: f"Invalid YAML data: {err}"
})
return records
| 80ced6b782e15179e7f35f0ef6737a65ddd60f92 | 20 | forms.py | 174 | Closes #11163: Auto-detect data format during bulk import | 78,362 | 0 | 369 | 102 | 54 | 266,301 | 65 | netbox | 20 | netbox/utilities/forms/forms.py | Python | 20 | {
"docstring": "\n Clean YAML-formatted data. Data must be either\n a) A single document comprising a list of dictionaries (each representing an object), or\n b) Multiple documents, separated with the '---' token\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 29,
"vocab_size": 29
} | https://github.com/netbox-community/netbox.git |
|
1 | test_requester_is_no_admin | def test_requester_is_no_admin(self):
url = self.url_prefix % "@bob:test"
channel = self.make_request(
"GET",
url,
access_token=self.other_user_token,
)
self.assertEqual(HTTPStatus.FORBIDDEN, channel.code, msg=channel.json_body)
self.assertEqual("You are not a server admin", channel.json_body["error"])
channel = self.make_request(
"PUT",
url,
access_token=self.other_user_token,
content=b"{}",
)
self.assertEqual(HTTPStatus.FORBIDDEN, channel.code, msg=channel.json_body)
self.assertEqual("You are not a server admin", channel.json_body["error"])
| 18862f20b5495bdc556c54e92fd4b1efdc718ba7 | 10 | test_user.py | 183 | Remove the 'password_hash' from the Users Admin API endpoint response dictionary (#11576) | 70,969 | 0 | 189 | 114 | 25 | 246,053 | 42 | synapse | 15 | tests/rest/admin/test_user.py | Python | 17 | {
"docstring": "\n If the user is not a server admin, an error is returned.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 11
} | https://github.com/matrix-org/synapse.git |
|
2 | axis0_safe_slice | def axis0_safe_slice(X, mask, len_mask):
if len_mask != 0:
return X[safe_mask(X, mask), :]
return np.zeros(shape=(0, X.shape[1]))
| 537c325f2927895449ce418b3a77750135c0ba7b | 11 | __init__.py | 68 | DOC Ensure that sklearn.utils.axis0_safe_slice passes numpydoc (#24561) | 76,691 | 0 | 31 | 45 | 14 | 261,218 | 15 | scikit-learn | 8 | sklearn/utils/__init__.py | Python | 4 | {
"docstring": "Return a mask which is safer to use on X than safe_mask.\n\n This mask is safer than safe_mask since it returns an\n empty array, when a sparse matrix is sliced with a boolean mask\n with all False, instead of raising an unhelpful error in older\n versions of SciPy.\n\n See: https://github.com/scipy/scipy/issues/5361\n\n Also note that we can avoid doing the dot product by checking if\n the len_mask is not zero in _huber_loss_and_gradient but this\n is not going to be the bottleneck, since the number of outliers\n and non_outliers are typically non-zero and it makes the code\n tougher to follow.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}\n Data on which to apply mask.\n\n mask : ndarray\n Mask to be used on X.\n\n len_mask : int\n The length of the mask.\n\n Returns\n -------\n mask : ndarray\n Array that is safe to use on X.\n ",
"language": "en",
"n_whitespaces": 225,
"n_words": 140,
"vocab_size": 91
} | https://github.com/scikit-learn/scikit-learn.git |
|
1 | test_binary_serialization | def test_binary_serialization() -> None:
uid = UID(value=uuid.UUID(int=333779996850170035686993356951732753684))
obj = SpecificLocation(id=uid, name="Test")
assert sy.serialize(obj, to_bytes=True) == blob_bytes
| b61c1fc4b83fc740d3d9d0d84d0ca6022a3c49bb | 12 | specific_test.py | 78 | Refactored store interface to eliminate confusion with __getitem__
- Fixed serde tests effected by protobuf magic bytes | 118 | 0 | 28 | 47 | 15 | 780 | 16 | PySyft | 15 | packages/syft/tests/syft/core/io/location/specific_test.py | Python | 5 | {
"docstring": "Tests that binary SpecificLocation serializes as expected",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/OpenMined/PySyft.git |
|
2 | col_op | def col_op(self, j, f):
for i in range(self.rows):
self[i, j] = f(self[i, j], i)
| 59d22b6bb7287613d598611027f640d068ca5748 | 11 | repmatrix.py | 56 | Moved imports to higher level | 47,900 | 0 | 39 | 38 | 14 | 196,400 | 14 | sympy | 7 | sympy/matrices/repmatrix.py | Python | 3 | {
"docstring": "In-place operation on col j using two-arg functor whose args are\n interpreted as (self[i, j], i).\n\n Examples\n ========\n\n >>> from sympy import eye\n >>> M = eye(3)\n >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M\n Matrix([\n [1, 2, 0],\n [0, 1, 0],\n [0, 0, 1]])\n\n See Also\n ========\n col\n row_op\n ",
"language": "en",
"n_whitespaces": 157,
"n_words": 52,
"vocab_size": 45
} | https://github.com/sympy/sympy.git |
|
1 | update_sub | def update_sub(x, decrement):
return tf.compat.v1.assign_sub(x, decrement)
@keras_export("keras.backend.moving_average_update")
@doc_controls.do_not_generate_docs | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | @keras_export("keras.backend.moving_average_update")
@doc_controls.do_not_generate_docs | 9 | backend.py | 51 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,190 | 1 | 12 | 21 | 8 | 269,566 | 8 | keras | 10 | keras/backend.py | Python | 2 | {
"docstring": "Update the value of `x` by subtracting `decrement`.\n\n Args:\n x: A Variable.\n decrement: A tensor of same shape as `x`.\n\n Returns:\n The variable `x` updated.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 25,
"vocab_size": 22
} | https://github.com/keras-team/keras.git |
11 | _insert_layers | def _insert_layers(self, layers, relevant_nodes=None):
layers = tf.nest.flatten(layers)
tf_utils.assert_no_legacy_layers(layers)
node_to_depth = {}
for depth, nodes in self._nodes_by_depth.items():
node_to_depth.update({node: depth for node in nodes})
# The nodes of these Layers that are relevant to this Network. If not
# provided, assume all Nodes are relevant
if not relevant_nodes:
relevant_nodes = tf.nest.flatten(
[layer._inbound_nodes for layer in layers]
)
network_nodes = set(relevant_nodes + list(node_to_depth.keys()))
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 13 | functional.py | 155 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,733 | 0 | 171 | 275 | 48 | 271,241 | 60 | keras | 22 | keras/engine/functional.py | Python | 44 | {
"docstring": "Inserts Layers into the Network after Network creation.\n\n This is only valid for Keras Graph Networks. Layers added via this function\n will be included in the `call` computation and `get_config` of this Network.\n They will not be added to the Network's outputs.\n\n Args:\n layers: Arbitrary nested structure of Layers. Layers must be reachable\n from one or more of the `keras.Input` Tensors that correspond to this\n Network's inputs.\n relevant_nodes: Nodes from the Layers that should be considered part of\n this Network. If `None`, all Nodes will be considered part of this\n Network.\n\n Raises:\n ValueError: If the layers depend on `Input`s not found in this Model.\n ",
"language": "en",
"n_whitespaces": 218,
"n_words": 104,
"vocab_size": 67
} | https://github.com/keras-team/keras.git |
|
5 | test_previewing_multiple_kubernetes_deployments_from_python | def test_previewing_multiple_kubernetes_deployments_from_python():
result = invoke_and_assert(
[
"deployment",
"preview",
"./tests/deployment_test_files/multiple_kubernetes_deployments.py",
],
expected_output_contains="kind: Job",
)
assert result.stdout.endswith("\n")
previews = [p.strip() for p in re.split("Preview for .+:", result.stdout) if p]
assert len(previews) == 4 # there should be 3 K8s and 1 non-K8s in the file
# spot-check a few attributes of the first one
manifest = yaml.load(previews[0], yaml.SafeLoader)
assert manifest["apiVersion"] == "batch/v1"
assert manifest["kind"] == "Job"
assert manifest["metadata"]["generateName"] == "cool-name"
container = manifest["spec"]["template"]["spec"]["containers"][0]
assert "PREFECT_TEST_MODE" in [variable["name"] for variable in container["env"]]
# spot-check a few attributes of the third one, which is customized
manifest = yaml.load(previews[2], yaml.SafeLoader)
assert manifest["apiVersion"] == "batch/v1"
assert manifest["kind"] == "Job"
assert manifest["metadata"]["generateName"] == "cool-name"
container = manifest["spec"]["template"]["spec"]["containers"][0]
assert "MY_ENV_VAR" in [variable["name"] for variable in container["env"]]
| 5afded9fe6724d9e336f59792ee1d60656a2d94d | 12 | test_deployment_preview.py | 375 | Add a CLI command to preview how a FlowRun will appear in any FlowRunner's execution environment (PrefectHQ/orion#1971)
Co-authored-by: Terrence Dorsey <[email protected]>
Co-authored-by: Michael Adkins <[email protected]> | 11,494 | 0 | 233 | 209 | 68 | 56,283 | 118 | prefect | 18 | tests/cli/test_deployment_preview.py | Python | 24 | {
"docstring": "`prefect deployment preview my-flow-file.py` should render multiple\n Kubernetes Jobs from a deployment file",
"language": "en",
"n_whitespaces": 15,
"n_words": 13,
"vocab_size": 12
} | https://github.com/PrefectHQ/prefect.git |
|
2 | restore | def restore(self, parameters):
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
| ca86da3a30c4e080d4db8c25fca73de843663cb4 | 10 | ema.py | 51 | release more models | 36,941 | 0 | 35 | 32 | 9 | 157,475 | 10 | stablediffusion | 9 | ldm/modules/ema.py | Python | 3 | {
"docstring": "\n Restore the parameters stored with the `store` method.\n Useful to validate the model with EMA parameters without affecting the\n original optimization process. Store the parameters before the\n `copy_to` method. After validation (or model saving), use this to\n restore the former parameters.\n Args:\n parameters: Iterable of `torch.nn.Parameter`; the parameters to be\n updated with the stored parameters.\n ",
"language": "en",
"n_whitespaces": 125,
"n_words": 55,
"vocab_size": 36
} | https://github.com/Stability-AI/stablediffusion.git |
|
1 | test_lassolarsic_alpha_selection | def test_lassolarsic_alpha_selection(criterion):
model = make_pipeline(StandardScaler(), LassoLarsIC(criterion=criterion))
model.fit(X, y)
best_alpha_selected = np.argmin(model[-1].criterion_)
assert best_alpha_selected == 7
@pytest.mark.parametrize("fit_intercept", [True, False]) | e41753ebd57c44ae91b389f190c43ddc0b384a75 | @pytest.mark.parametrize("fit_intercept", [True, False]) | 11 | test_least_angle.py | 101 | MAINT Clean deprecation for 1.2: normalize in linear models (#24391) | 76,733 | 1 | 32 | 47 | 16 | 261,292 | 18 | scikit-learn | 16 | sklearn/linear_model/tests/test_least_angle.py | Python | 5 | {
"docstring": "Check that we properly compute the AIC and BIC score.\n\n In this test, we reproduce the example of the Fig. 2 of Zou et al.\n (reference [1] in LassoLarsIC) In this example, only 7 features should be\n selected.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 38,
"vocab_size": 32
} | https://github.com/scikit-learn/scikit-learn.git |
5 | equals | def equals(self, *args, **kwargs):
args = tuple(arg.table if isinstance(arg, Table) else arg for arg in args)
kwargs = {k: v.table if isinstance(v, Table) else v for k, v in kwargs}
return self.table.equals(*args, **kwargs)
| e35be138148333078284b942ccc9ed7b1d826f97 | 11 | table.py | 105 | Update docs to new frontend/UI (#3690)
* WIP: update docs to new UI
* make style
* Rm unused
* inject_arrow_table_documentation __annotations__
* hasattr(arrow_table_method, "__annotations__")
* Update task_template.rst
* Codeblock PT-TF-SPLIT
* Convert loading scripts
* Convert docs to mdx
* Fix mdx
* Add <Tip>
* Convert mdx tables
* Fix codeblock
* Rm unneded hashlinks
* Update index.mdx
* Redo dev change
* Rm circle ci `build_doc` & `deploy_doc`
* Rm unneeded files
* Update docs reamde
* Standardize to `Example::`
* mdx logging levels doc
* Table properties inject_arrow_table_documentation
* ``` to ```py mdx
* Add Tips mdx
* important,None -> <Tip warning={true}>
* More misc
* Center imgs
* Update instllation page
* `setup.py` docs section
* Rm imgs since they are in hf.co
* Update docs/source/access.mdx
Co-authored-by: Steven Liu <[email protected]>
* Update index mdx
* Update docs/source/access.mdx
Co-authored-by: Steven Liu <[email protected]>
* just `Dataset` obj
* Addedversion just italics
* Update ReadInstruction doc example syntax
* Change docstring for `prepare_for_task`
* Chore
* Remove `code` syntax from headings
* Rm `code` syntax from headings
* Hashlink backward compatability
* S3FileSystem doc
* S3FileSystem doc updates
* index.mdx updates
* Add darkmode gifs
* Index logo img css classes
* Index mdx dataset logo img size
* Docs for DownloadMode class
* Doc DownloadMode table
* format docstrings
* style
* Add doc builder scripts (#3790)
* add doc builder scripts
* fix docker image
* Docs new UI actions no self hosted (#3793)
* No self hosted
* replace doc injection by actual docstrings
* Docstring formatted
Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Mishig Davaadorj <[email protected]>
Co-authored-by: Lysandre Debut <[email protected]>
Co-authored-by: Mishig Davaadorj <[email protected]>
* Rm notebooks from docs actions since they dont exi
* Update tsting branch
* More docstring
* Chore
* bump up node version
* bump up node
* ``` -> ```py for audio_process.mdx
* Update .github/workflows/build_documentation.yml
Co-authored-by: Quentin Lhoest <[email protected]>
* Uodate dev doc build
* remove run on PR
* fix action
* Fix gh doc workflow
* forgot this change when merging master
* Update build doc
Co-authored-by: Steven Liu <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Lysandre Debut <[email protected]> | 21,851 | 0 | 61 | 70 | 25 | 104,415 | 33 | datasets | 11 | src/datasets/table.py | Python | 4 | {
"docstring": "\n Check if contents of two tables are equal.\n\n Args:\n other (:class:`datasets.table.Table`):\n Table to compare against.\n check_metadata (:obj:`bool`, defaults to :obj:`False`):\n Whether schema metadata equality should be checked as well.\n\n Returns:\n :obj:`bool`\n ",
"language": "en",
"n_whitespaces": 123,
"n_words": 31,
"vocab_size": 30
} | https://github.com/huggingface/datasets.git |
|
6 | makelink | def makelink(self, tarinfo, targetpath):
try:
# For systems that support symbolic and hard links.
if tarinfo.issym():
os.symlink(tarinfo.linkname, targetpath)
else:
# See extract().
if os.path.exists(tarinfo._link_target):
os.link(tarinfo._link_target, targetpath)
else:
self._extract_member(self._find_link_target(tarinfo),
targetpath)
except symlink_exception:
if tarinfo.issym():
linkpath = os.path.join(os.path.dirname(tarinfo.name),
tarinfo.linkname)
else:
linkpath = tarinfo.linkname
else:
try:
self._extract_member(self._find_link_target(tarinfo),
targetpath)
except KeyError:
raise ExtractError("unable to resolve link inside archive")
| c69d55f7c82d5ae2cce542bcfb98d043ca4836a0 | 17 | tarfile.py | 219 | Vendor in pip 22.1.2 | 3,804 | 0 | 432 | 133 | 39 | 21,391 | 54 | pipenv | 21 | pipenv/patched/notpip/_vendor/distlib/_backport/tarfile.py | Python | 22 | {
"docstring": "Make a (symbolic) link called targetpath. If it cannot be created\n (platform limitation), we try to make a copy of the referenced file\n instead of a link.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 27,
"vocab_size": 24
} | https://github.com/pypa/pipenv.git |
|
2 | getincrementaldecoder | def getincrementaldecoder(encoding):
decoder = lookup(encoding).incrementaldecoder
if decoder is None:
raise LookupError(encoding)
return decoder
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 9 | codecs.py | 45 | add python 3.10.4 for windows | 56,378 | 0 | 32 | 26 | 11 | 221,364 | 13 | XX-Net | 6 | python3.10.4/Lib/codecs.py | Python | 5 | {
"docstring": " Lookup up the codec for the given encoding and return\n its IncrementalDecoder class or factory function.\n\n Raises a LookupError in case the encoding cannot be found\n or the codecs doesn't provide an incremental decoder.\n\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 34,
"vocab_size": 29
} | https://github.com/XX-net/XX-Net.git |
|
4 | _check_expected_dtype | def _check_expected_dtype(self, obj, label):
if isinstance(obj, Index):
assert obj.dtype == label
elif isinstance(obj, Series):
if label.startswith("period"):
assert obj.dtype == "Period[M]"
else:
assert obj.dtype == label
else:
raise ValueError
| ee6b0a09fff7789879c3322edffe9f84d10acee3 | 13 | test_append_common.py | 96 | ENH: Index[bool] (#45061) | 39,575 | 0 | 130 | 58 | 18 | 164,583 | 28 | pandas | 10 | pandas/tests/reshape/concat/test_append_common.py | Python | 10 | {
"docstring": "\n Check whether obj has expected dtype depending on label\n considering not-supported dtypes\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 12,
"vocab_size": 12
} | https://github.com/pandas-dev/pandas.git |
|
1 | test_no_duplicates_for_m2m_in_list_filter | def test_no_duplicates_for_m2m_in_list_filter(self):
blues = Genre.objects.create(name="Blues")
band = Band.objects.create(name="B.B. King Review", nr_of_members=11)
band.genres.add(blues)
band.genres.add(blues)
m = BandAdmin(Band, custom_site)
request = self.factory.get("/band/", data={"genres": blues.pk})
request.user = self.superuser
cl = m.get_changelist_instance(request)
cl.get_results(request)
# There's only one Group instance
self.assertEqual(cl.result_count, 1)
# Queryset must be deletable.
self.assertIs(cl.queryset.query.distinct, False)
cl.queryset.delete()
self.assertEqual(cl.queryset.count(), 0)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | tests.py | 238 | Refs #33476 -- Reformatted code with Black. | 51,826 | 0 | 159 | 144 | 40 | 206,991 | 47 | django | 33 | tests/admin_changelist/tests.py | Python | 14 | {
"docstring": "\n Regression test for #13902: When using a ManyToMany in list_filter,\n results shouldn't appear more than once. Basic ManyToMany.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 18
} | https://github.com/django/django.git |
|
14 | handle_transforms | def _handle_transforms(self, element, mobject):
if element.hasAttribute("x") and element.hasAttribute("y"):
x = self._attribute_to_float(element.getAttribute("x"))
# Flip y
y = -self._attribute_to_float(element.getAttribute("y"))
mobject.shift(x * RIGHT + y * UP)
transform_attr_value = element.getAttribute("transform")
# parse the various transforms in the attribute value
transform_names = ["matrix", "translate", "scale", "rotate", "skewX", "skewY"]
# Borrowed/Inspired from:
# https://github.com/cjlano/svg/blob/3ea3384457c9780fa7d67837c9c5fd4ebc42cb3b/svg/svg.py#L75
# match any SVG transformation with its parameter (until final parenthesis)
# [^)]* == anything but a closing parenthesis
# '|'.join == OR-list of SVG transformations
transform_regex = "|".join([x + r"[^)]*\)" for x in transform_names])
transforms = re.findall(transform_regex, transform_attr_value)
number_regex = r"[-+]?(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][-+]?\d+)?"
for t in transforms:
op_name, op_args = t.split("(")
op_name = op_name.strip()
op_args = [float(x) for x in re.findall(number_regex, op_args)]
if op_name == "matrix":
transform_args = np.array(op_args).reshape([3, 2])
x = transform_args[2][0]
y = -transform_args[2][1]
matrix = np.identity(self.dim)
matrix[:2, :2] = transform_args[:2, :]
matrix[1] *= -1
matrix[:, 1] *= -1
for mob in mobject.family_members_with_points():
if config["renderer"] == "opengl":
mob.points = np.dot(mob.points, matrix)
else:
mob.points = np.dot(mob.points, matrix)
mobject.shift(x * RIGHT + y * UP)
elif op_name == "scale":
scale_values = op_args
if len(scale_values) == 2:
scale_x, scale_y = scale_values
mobject.scale(np.array([scale_x, scale_y, 1]), about_point=ORIGIN)
elif len(scale_values) == 1:
scale = scale_values[0]
mobject.scale(np.array([scale, scale, 1]), about_point=ORIGIN)
elif op_name == "translate":
if len(op_args) == 2:
x, y = op_args
else:
x = op_args
y = 0
mobject.shift(x * RIGHT + y * DOWN)
else:
# TODO: handle rotate, skewX and skewY
# for now adding a warning message
logger.warning(
"Handling of %s transform is not supported yet!",
op_name,
)
| 902e7eb4f0147b5882a613b67467e38a1d47f01e | 18 | svg_mobject.py | 706 | Hide more private methods from the docs. (#2468)
* hide privs from text_mobject.py
* hide privs from tex_mobject.py
* hide privs from code_mobject.py
* hide privs from svg_mobject.py
* remove SVGPath and utils from __init__.py
* don't import string_to_numbers
* hide privs from geometry.py
* hide privs from matrix.py
* hide privs from numbers.py
* hide privs from three_dimensions.py
* forgot underscore under set_stroke_width_from_length
* there were more i missed
* unhidea method that was used in docs
* forgot other text2hash
* remove svg_path from docs | 46,070 | 0 | 1,007 | 429 | 143 | 189,462 | 245 | manim | 48 | manim/mobject/svg/svg_mobject.py | Python | 48 | {
"docstring": "Applies the SVG transform to the specified mobject. Transforms include:\n ``matrix``, ``translate``, and ``scale``.\n\n Parameters\n ----------\n element : :class:`minidom.Element`\n The transform command to perform\n\n mobject : :class:`Mobject`\n The Mobject to transform.\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 31,
"vocab_size": 25
} | https://github.com/ManimCommunity/manim.git |
|
1 | fit_predict | def fit_predict(self, features, target, sample_weight=None, groups=None):
self.fit(features, target, sample_weight=sample_weight, groups=groups)
return self.predict(features)
| 388616b6247ca4ea8de4e2f340d6206aee523541 | 8 | base.py | 60 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 43,611 | 0 | 33 | 41 | 11 | 181,835 | 12 | tpot | 8 | tpot/base.py | Python | 3 | {
"docstring": "Call fit and predict in sequence.\n\n Parameters\n ----------\n features: array-like {n_samples, n_features}\n Feature matrix\n target: array-like {n_samples}\n List of class labels for prediction\n sample_weight: array-like {n_samples}, optional\n Per-sample weights. Higher weights force TPOT to put more emphasis on those points\n groups: array-like, with shape {n_samples, }, optional\n Group labels for the samples used when performing cross-validation.\n This parameter should only be used in conjunction with sklearn's Group cross-validation\n functions, such as sklearn.model_selection.GroupKFold\n\n Returns\n ----------\n array-like: {n_samples}\n Predicted target for the provided features\n\n ",
"language": "en",
"n_whitespaces": 229,
"n_words": 82,
"vocab_size": 68
} | https://github.com/EpistasisLab/tpot.git |
|
1 | test_thermostat_missing_set_point | async def test_thermostat_missing_set_point(hass):
await setup_climate(
hass,
{
"sdm.devices.traits.ThermostatHvac": {"status": "OFF"},
"sdm.devices.traits.ThermostatMode": {
"availableModes": ["HEAT", "COOL", "HEATCOOL", "OFF"],
"mode": "HEATCOOL",
},
},
)
assert len(hass.states.async_all()) == 1
thermostat = hass.states.get("climate.my_thermostat")
assert thermostat is not None
assert thermostat.state == HVAC_MODE_HEAT_COOL
assert thermostat.attributes[ATTR_HVAC_ACTION] == CURRENT_HVAC_IDLE
assert thermostat.attributes[ATTR_CURRENT_TEMPERATURE] is None
assert set(thermostat.attributes[ATTR_HVAC_MODES]) == {
HVAC_MODE_HEAT,
HVAC_MODE_COOL,
HVAC_MODE_HEAT_COOL,
HVAC_MODE_OFF,
}
assert thermostat.attributes[ATTR_TEMPERATURE] is None
assert thermostat.attributes[ATTR_TARGET_TEMP_LOW] is None
assert thermostat.attributes[ATTR_TARGET_TEMP_HIGH] is None
assert ATTR_PRESET_MODE not in thermostat.attributes
assert ATTR_PRESET_MODES not in thermostat.attributes
assert ATTR_FAN_MODE not in thermostat.attributes
assert ATTR_FAN_MODES not in thermostat.attributes
| 0bcad5579b806284ae0c565bb27ca59ea061b4a1 | 14 | test_climate_sdm.py | 275 | Set nest climate hvac_action to report idle when hvac mode is not off (#62811) | 107,367 | 0 | 253 | 172 | 49 | 308,619 | 87 | core | 26 | tests/components/nest/test_climate_sdm.py | Python | 30 | {
"docstring": "Test a thermostat missing many thermostat traits in api response.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
|
1 | setacl | def setacl(self, mailbox, who, what):
return self._simple_command('SETACL', mailbox, who, what)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 8 | imaplib.py | 38 | add python 3.10.4 for windows | 55,029 | 0 | 24 | 25 | 8 | 217,944 | 10 | XX-Net | 6 | python3.10.4/Lib/imaplib.py | Python | 2 | {
"docstring": "Set a mailbox acl.\n\n (typ, [data]) = <instance>.setacl(mailbox, who, what)\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 10,
"vocab_size": 10
} | https://github.com/XX-net/XX-Net.git |
|
2 | _disable_autolayout | def _disable_autolayout():
# This is a workaround for an issue in matplotlib, for details see
# https://github.com/mwaskom/seaborn/issues/2914
# The only affect of this rcParam is to set the default value for
# layout= in plt.figure, so we could just do that instead.
# But then we would need to own the complexity of the transition
# from tight_layout=True -> layout="tight". This seems easier,
# but can be removed when (if) that is simpler on the matplotlib side,
# or if the layout algorithms are improved to handle figure legends.
orig_val = mpl.rcParams["figure.autolayout"]
try:
mpl.rcParams["figure.autolayout"] = False
yield
finally:
mpl.rcParams["figure.autolayout"] = orig_val
| 6460a21555ba6557e1f6f06f4d677d9c19148169 | 11 | utils.py | 73 | Workaround for matplotlib rc_context issue (#2925)
* Workaround for matplotlib rc_context issue
Fixes #2914
* Add some additional comments about this workaround | 7,478 | 0 | 158 | 34 | 74 | 42,078 | 101 | seaborn | 4 | seaborn/utils.py | Python | 7 | {
"docstring": "Context manager for preventing rc-controlled auto-layout behavior.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/mwaskom/seaborn.git |
|
9 | _get_frame_ranges | def _get_frame_ranges(self) -> Optional[List[Tuple[int, int]]]:
if not self._args.frame_ranges:
logger.debug("No frame range set")
return None
minframe, maxframe = None, None
if self._images.is_video:
minframe, maxframe = 1, self._images.count
else:
indices = [int(self._imageidxre.findall(os.path.basename(filename))[0])
for filename in self._images.file_list]
if indices:
minframe, maxframe = min(indices), max(indices)
logger.debug("minframe: %s, maxframe: %s", minframe, maxframe)
if minframe is None or maxframe is None:
raise FaceswapError("Frame Ranges specified, but could not determine frame numbering "
"from filenames")
retval = []
for rng in self._args.frame_ranges:
if "-" not in rng:
raise FaceswapError("Frame Ranges not specified in the correct format")
start, end = rng.split("-")
retval.append((max(int(start), minframe), min(int(end), maxframe)))
logger.debug("frame ranges: %s", retval)
return retval
| 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | 18 | convert.py | 336 | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | 20,778 | 0 | 362 | 206 | 70 | 101,363 | 103 | faceswap | 32 | scripts/convert.py | Python | 34 | {
"docstring": " Obtain the frame ranges that are to be converted.\n\n If frame ranges have been specified, then split the command line formatted arguments into\n ranges that can be used.\n\n Returns\n list or ``None``\n A list of frames to be processed, or ``None`` if the command line argument was not\n used\n ",
"language": "en",
"n_whitespaces": 108,
"n_words": 49,
"vocab_size": 35
} | https://github.com/deepfakes/faceswap.git |
|
1 | test_run_translation_no_trainer | def test_run_translation_no_trainer(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f.split()
run_command(self._launch_args + testargs)
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_bleu"], 30)
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "translation_no_trainer")))
| 99eb9b523f9b9ea6096323ce5610ce6633acc88a | 12 | test_accelerate_examples.py | 159 | Fix `no_trainer` CI (#18242)
* Fix all tests | 5,908 | 0 | 68 | 89 | 17 | 32,334 | 20 | transformers | 17 | examples/pytorch/test_accelerate_examples.py | Python | 25 | {
"docstring": "\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ",
"language": "en",
"n_whitespaces": 209,
"n_words": 25,
"vocab_size": 22
} | https://github.com/huggingface/transformers.git |
|
3 | convert_example | def convert_example(example, tokenizer, is_test=False, language='en'):
if language == 'ch':
q_name = "query"
t_name = "title"
label = "label"
else:
q_name = "sentence1"
t_name = "sentence2"
label = "labels"
query, title = example[q_name], example[t_name]
query_ids = np.array(tokenizer.encode(query), dtype="int64")
query_seq_len = np.array(len(query_ids), dtype="int64")
title_ids = np.array(tokenizer.encode(title), dtype="int64")
title_seq_len = np.array(len(title_ids), dtype="int64")
result = [query_ids, title_ids, query_seq_len, title_seq_len]
if not is_test:
label = np.array(example[label], dtype="int64")
result.append(label)
return result
| 93cae49c0c572b5c1ac972759140fbe924b0374d | 12 | utils.py | 266 | Add NLP model interpretation (#1752)
* upload NLP interpretation
* fix problems and relocate project
* remove abandoned picture
* remove abandoned picture
* fix dead link in README
* fix dead link in README
* fix code style problems
* fix CR round 1
* remove .gitkeep files
* fix code style
* fix file encoding problem
* fix code style
* delete duplicated files due to directory rebuild
* fix CR round 2
* fix code style
* fix ernie tokenizer
* fix code style
* fix problem from CR round 1
* fix bugs
* fix README
* remove duplicated files
* deal with diff of old and new tokenizer results
* fix CR round 4
* fix code style
* add missing dependence
* fix broken import path
* move some data file to cloud
* MRC upper case to lower case
Co-authored-by: Zeyu Chen <[email protected]>
Co-authored-by: binlinquge <xxx>
Co-authored-by: Guo Sheng <[email protected]> | 118,323 | 0 | 154 | 156 | 43 | 322,992 | 65 | PaddleNLP | 21 | examples/model_interpretation/task/similarity/simnet/utils.py | Python | 19 | {
"docstring": "\n Builds model inputs from a sequence for sequence classification tasks. \n It use `jieba.cut` to tokenize text.\n\n Args:\n example(obj:`list[str]`): List of input data, containing text and label if it have label.\n tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.\n is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.\n\n Returns:\n query_ids(obj:`list[int]`): The list of query ids.\n title_ids(obj:`list[int]`): The list of title ids.\n query_seq_len(obj:`int`): The input sequence query length.\n title_seq_len(obj:`int`): The input sequence title length.\n label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.\n ",
"language": "en",
"n_whitespaces": 161,
"n_words": 88,
"vocab_size": 62
} | https://github.com/PaddlePaddle/PaddleNLP.git |
|
9 | _load_included_file | def _load_included_file(self, included_file, iterator, is_handler=False):
display.debug("loading included file: %s" % included_file._filename)
try:
data = self._loader.load_from_file(included_file._filename)
if data is None:
return []
elif not isinstance(data, list):
raise AnsibleError("included task files must contain a list of tasks")
ti_copy = self._copy_included_file(included_file)
block_list = load_list_of_blocks(
data,
play=iterator._play,
parent_block=ti_copy.build_parent_block(),
role=included_file._task._role,
use_handlers=is_handler,
loader=self._loader,
variable_manager=self._variable_manager,
)
# since we skip incrementing the stats when the task result is
# first processed, we do so now for each host in the list
for host in included_file._hosts:
self._tqm._stats.increment('ok', host.name)
except AnsibleParserError:
raise
except AnsibleError as e:
if isinstance(e, AnsibleFileNotFound):
reason = "Could not find or access '%s' on the Ansible Controller." % to_text(e.file_name)
else:
reason = to_text(e)
for r in included_file._results:
r._result['failed'] = True
for host in included_file._hosts:
tr = TaskResult(host=host, task=included_file._task, return_data=dict(failed=True, reason=reason))
self._tqm._stats.increment('failures', host.name)
self._tqm.send_callback('v2_runner_on_failed', tr)
raise AnsibleError(reason) from e
# finally, send the callback and return the list of blocks loaded
self._tqm.send_callback('v2_playbook_on_include', included_file)
display.debug("done processing included file")
return block_list
| 42d8a9daa89907545ebd208f4fd0a9192738c6a6 | 17 | __init__.py | 427 | Prevent double failing hosts for includes in loops (#76928)
Fixes #23161 | 79,472 | 0 | 621 | 267 | 112 | 268,291 | 153 | ansible | 51 | lib/ansible/plugins/strategy/__init__.py | Python | 37 | {
"docstring": "\n Loads an included YAML file of tasks, applying the optional set of variables.\n\n Raises AnsibleError exception in case of a failure during including a file,\n in such case the caller is responsible for marking the host(s) as failed\n using PlayIterator.mark_host_failed().\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 40,
"vocab_size": 33
} | https://github.com/ansible/ansible.git |
|
1 | test_named_group_field_choices_change_list | def test_named_group_field_choices_change_list(self):
link1 = reverse("admin:admin_views_fabric_change", args=(self.fab1.pk,))
link2 = reverse("admin:admin_views_fabric_change", args=(self.fab2.pk,))
response = self.client.get(reverse("admin:admin_views_fabric_changelist"))
fail_msg = (
"Changelist table isn't showing the right human-readable values "
"set by a model field 'choices' option named group."
)
self.assertContains(
response,
'<a href="%s">Horizontal</a>' % link1,
msg_prefix=fail_msg,
html=True,
)
self.assertContains(
response,
'<a href="%s">Vertical</a>' % link2,
msg_prefix=fail_msg,
html=True,
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | tests.py | 160 | Refs #33476 -- Reformatted code with Black. | 52,047 | 0 | 233 | 97 | 41 | 207,677 | 53 | django | 16 | tests/admin_views/tests.py | Python | 20 | {
"docstring": "\n Ensures the admin changelist shows correct values in the relevant column\n for rows corresponding to instances of a model in which a named group\n has been used in the choices option of a field.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 34,
"vocab_size": 27
} | https://github.com/django/django.git |
|
1 | test_nonconflicting_mixed_basenames | def test_nonconflicting_mixed_basenames(self):
self.router.register(r'notes', NoteViewSet)
self.router.register(r'notes_kwduplicate', KWargedNoteViewSet, basename='routertestmodel_kwduplicate')
self.router.register(r'notes_duplicate', NoteViewSet, basename='routertestmodel_duplicate')
| 48a21aa0eb3a95d32456c2a927eff9552a04231e | 9 | test_routers.py | 78 | raise ImproperlyConfigured exception if `basename` is not unique (#8438)
* raise ImproperlyConfigured if basename already exists
* rename already_registered function; return True/False
* additional basename tests
* additional basename tests
* Update rest_framework/routers.py
Co-authored-by: David Graves <[email protected]>
Co-authored-by: Asif Saif Uddin <[email protected]> | 9,586 | 0 | 38 | 47 | 10 | 48,735 | 10 | django-rest-framework | 7 | tests/test_routers.py | Python | 4 | {
"docstring": "\n Ensure 2 routers with the same model, and a distinct basename\n specified on the second router does not fail\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 18
} | https://github.com/encode/django-rest-framework.git |
|
3 | find_most_preferred_tag | def find_most_preferred_tag(self, tags, tag_to_priority):
# type: (List[Tag], Dict[Tag, int]) -> int
return min(
tag_to_priority[tag] for tag in self.file_tags if tag in tag_to_priority
)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 9 | wheel.py | 44 | upd; format | 12,306 | 0 | 62 | 28 | 21 | 60,859 | 23 | transferlearning | 7 | .venv/lib/python3.8/site-packages/pip/_internal/models/wheel.py | Python | 4 | {
"docstring": "Return the priority of the most preferred tag that one of the wheel's file\n tag combinations acheives in the given list of supported tags using the given\n tag_to_priority mapping, where lower priorities are more-preferred.\n\n This is used in place of support_index_min in some cases in order to avoid\n an expensive linear scan of a large list of tags.\n\n :param tags: the PEP 425 tags to check the wheel against.\n :param tag_to_priority: a mapping from tag to priority of that tag, where\n lower is more preferred.\n\n :raises ValueError: If none of the wheel's file tags match one of\n the supported tags.\n ",
"language": "en",
"n_whitespaces": 178,
"n_words": 100,
"vocab_size": 61
} | https://github.com/jindongwang/transferlearning.git |
|
7 | _finalize_config_layers | def _finalize_config_layers(layers):
for layer in layers:
# It is assumed that layers define their unconditional losses after being
# recreated from the config and built. The exceptions to this
# are Functional and Sequential models, which only store conditional losses
# (losses dependent on the inputs) in the config. Unconditional losses like
# weight regularization must be revived from the SavedModel.
if _is_graph_network(layer):
_restore_layer_unconditional_losses(layer)
# Some layers, like Dense, record their activation loss function in the
# config. However, not all layers do this, so the activation loss may be
# missing when restored from the config/hdf5.
# TODO(kathywu): Investigate ways to improve the config to ensure consistent
# loading behavior between HDF5 and SavedModel.
_restore_layer_activation_loss(layer)
# Restore metrics list.
_restore_layer_metrics(layer)
# Restore RNN layer states.
if (isinstance(layer, base_rnn.RNN) and
layer.stateful and
hasattr(_get_keras_attr(layer), 'states')):
layer.states = getattr(_get_keras_attr(layer), 'states', None)
for variable in tf.nest.flatten(layer.states):
backend.track_variable(variable)
# Perform any layer defined finalization of the layer state.
layer.finalize_state()
| 01c906c4178db5ae03b7eb2d298a052c952a0667 | 14 | load.py | 169 | Reorganize RNN layers, cells and wrappers into smaller logically organized files hosted under an `rnn` directory.
PiperOrigin-RevId: 428841673 | 79,804 | 0 | 247 | 95 | 107 | 268,984 | 155 | keras | 22 | keras/saving/saved_model/load.py | Python | 13 | {
"docstring": "Runs the final steps of loading Keras Layers from config.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/keras-team/keras.git |
|
7 | local_node_connectivity | def local_node_connectivity(G, source, target, cutoff=None):
if target == source:
raise nx.NetworkXError("source and target have to be different nodes.")
# Maximum possible node independent paths
if G.is_directed():
possible = min(G.out_degree(source), G.in_degree(target))
else:
possible = min(G.degree(source), G.degree(target))
K = 0
if not possible:
return K
if cutoff is None:
cutoff = float("inf")
exclude = set()
for i in range(min(possible, cutoff)):
try:
path = _bidirectional_shortest_path(G, source, target, exclude)
exclude.update(set(path))
K += 1
except nx.NetworkXNoPath:
break
return K
| cc1db275efc709cb964ce88abbfa877798d58c10 | 13 | connectivity.py | 232 | Minor improvements from general code readthrough (#5414)
* Add deprecated directive to reversed docstring.
* Add missing dep directives to shpfiles.
* Remove defn of INF sentinel.
* typo.
* str -> comment in forloop.
* STY: appropriate casing for var name. | 41,908 | 0 | 200 | 143 | 56 | 176,447 | 74 | networkx | 23 | networkx/algorithms/approximation/connectivity.py | Python | 21 | {
"docstring": "Compute node connectivity between source and target.\n\n Pairwise or local node connectivity between two distinct and nonadjacent\n nodes is the minimum number of nodes that must be removed (minimum\n separating cutset) to disconnect them. By Menger's theorem, this is equal\n to the number of node independent paths (paths that share no nodes other\n than source and target). Which is what we compute in this function.\n\n This algorithm is a fast approximation that gives an strict lower\n bound on the actual number of node independent paths between two nodes [1]_.\n It works for both directed and undirected graphs.\n\n Parameters\n ----------\n\n G : NetworkX graph\n\n source : node\n Starting node for node connectivity\n\n target : node\n Ending node for node connectivity\n\n cutoff : integer\n Maximum node connectivity to consider. If None, the minimum degree\n of source or target is used as a cutoff. Default value None.\n\n Returns\n -------\n k: integer\n pairwise node connectivity\n\n Examples\n --------\n >>> # Platonic octahedral graph has node connectivity 4\n >>> # for each non adjacent node pair\n >>> from networkx.algorithms import approximation as approx\n >>> G = nx.octahedral_graph()\n >>> approx.local_node_connectivity(G, 0, 5)\n 4\n\n Notes\n -----\n This algorithm [1]_ finds node independents paths between two nodes by\n computing their shortest path using BFS, marking the nodes of the path\n found as 'used' and then searching other shortest paths excluding the\n nodes marked as used until no more paths exist. It is not exact because\n a shortest path could use nodes that, if the path were longer, may belong\n to two different node independent paths. Thus it only guarantees an\n strict lower bound on node connectivity.\n\n Note that the authors propose a further refinement, losing accuracy and\n gaining speed, which is not implemented yet.\n\n See also\n --------\n all_pairs_node_connectivity\n node_connectivity\n\n References\n ----------\n .. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for\n Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035\n http://eclectic.ss.uci.edu/~drwhite/working.pdf\n\n ",
"language": "en",
"n_whitespaces": 494,
"n_words": 314,
"vocab_size": 192
} | https://github.com/networkx/networkx.git |
|
1 | easy_print | def easy_print(*args, size=(None, None), end=None, sep=None, location=(None, None), relative_location=(None, None), font=None, no_titlebar=False,
no_button=False, grab_anywhere=False, keep_on_top=None, do_not_reroute_stdout=True, echo_stdout=False, text_color=None, background_color=None, colors=None, c=None,
erase_all=False, resizable=True, blocking=None):
if _DebugWin.debug_window is None:
_DebugWin.debug_window = _DebugWin(size=size, location=location, relative_location=relative_location, font=font, no_titlebar=no_titlebar,
no_button=no_button, grab_anywhere=grab_anywhere, keep_on_top=keep_on_top,
do_not_reroute_stdout=do_not_reroute_stdout, echo_stdout=echo_stdout, resizable=resizable, blocking=blocking)
txt_color, bg_color = _parse_colors_parm(c or colors)
_DebugWin.debug_window.Print(*args, end=end, sep=sep, text_color=text_color or txt_color, background_color=background_color or bg_color,
erase_all=erase_all, font=font, blocking=blocking)
| 935e430420f5ac18df67233040ba86359d98a579 | 11 | PySimpleGUI.py | 279 | Addition of blocking parameter to debug printing. IF True, then execution of your code is stopped until the "Quit" button / "X" is clicked on the Debug Window. | 53,492 | 0 | 223 | 94 | 51 | 212,886 | 60 | PySimpleGUI | 27 | PySimpleGUI.py | Python | 3 | {
"docstring": "\n Works like a \"print\" statement but with windowing options. Routes output to the \"Debug Window\"\n\n In addition to the normal text and background colors, you can use a \"colors\" tuple/string\n The \"colors\" or \"c\" parameter defines both the text and background in a single parm.\n It can be a tuple or a single single. Both text and background colors need to be specified\n colors -(str, str) or str. A combined text/background color definition in a single parameter\n c - (str, str) - Colors tuple has format (foreground, backgrouned)\n c - str - can also be a string of the format \"foreground on background\" (\"white on red\")\n\n :param *args: stuff to output\n :type *args: (Any)\n :param size: (w,h) w=characters-wide, h=rows-high\n :type size: (int, int)\n :param end: end character\n :type end: (str)\n :param sep: separator character\n :type sep: (str)\n :param location: Location of upper left corner of the window\n :type location: (int, int)\n :param relative_location: (x,y) location relative to the default location of the window, in pixels. Normally the window centers. This location is relative to the location the window would be created. Note they can be negative.\n :type relative_location: (int, int)\n :param font: specifies the font family, size, etc. Tuple or Single string format 'name size styles'. Styles: italic * roman bold normal underline overstrike\n :type font: (str or (str, int[, str]) or None)\n :param no_titlebar: If True no titlebar will be shown\n :type no_titlebar: (bool)\n :param no_button: don't show button\n :type no_button: (bool)\n :param grab_anywhere: If True: can grab anywhere to move the window (Default = False)\n :type grab_anywhere: (bool)\n :param background_color: color of background\n :type background_color: (str)\n :param text_color: color of the text\n :type text_color: (str)\n :param keep_on_top: If True the window will remain above all current windows\n :type keep_on_top: (bool)\n :param location: Location of upper left corner of the window\n :type location: (int, int)\n :param do_not_reroute_stdout: do not reroute stdout and stderr. If False, both stdout and stderr will reroute to here\n :type do_not_reroute_stdout: (bool)\n :param echo_stdout: If True stdout is sent to both the console and the debug window\n :type echo_stdout: (bool)\n :param colors: Either a tuple or a string that has both the text and background colors\n :type colors: (str) or (str, str)\n :param c: Either a tuple or a string that has both the text and background colors\n :type c: (str) or (str, str)\n :param resizable: if True, the user can resize the debug window. Default is True\n :type resizable: (bool)\n :param erase_all: If True when erase the output before printing\n :type erase_all: (bool)\n :param blocking: if True, makes the window block instead of returning immediately. The \"Quit\" button changers to \"More\"\n :type blocking: (bool | None)\n :return:\n :rtype:\n ",
"language": "en",
"n_whitespaces": 1135,
"n_words": 444,
"vocab_size": 200
} | https://github.com/PySimpleGUI/PySimpleGUI.git |
|
2 | load_version_info_from_text_file | def load_version_info_from_text_file(filename):
# Read and parse the version file. It may have a byte order marker or encoding cookie - respect it if it does.
import PyInstaller.utils.misc as miscutils
with open(filename, 'rb') as fp:
text = miscutils.decode(fp.read())
# Deserialize via eval()
try:
info = eval(text)
except Exception as e:
raise ValueError("Failed to deserialize VSVersionInfo from text-based representation!") from e
# Sanity check
assert isinstance(info, VSVersionInfo), \
f"Loaded incompatible structure type! Expected VSVersionInfo, got: {type(info)!r}"
return info
| f57e15ae14d2370cba7a14cfae97d2c29b5c8154 | 12 | versioninfo.py | 129 | building: EXE: load version info structure before comparing guts
Load the version information structure in `EXE` constructor, so that
the comparison against cached state is done with the structure instead
of the filen name. This way, changing the contents of the version
information file triggers rebuild of the EXE.
Split and clean-up related functions in the `utils.win32.versioninfo`
module as well as in `pyi-grab_version` and `pyi-set_version`
utility scripts. | 77,609 | 0 | 134 | 69 | 68 | 264,108 | 76 | pyinstaller | 19 | PyInstaller/utils/win32/versioninfo.py | Python | 11 | {
"docstring": "\n Load the `VSVersionInfo` structure from its string-based (`VSVersionInfo.__str__`) serialization by reading the\n text from the file and running it through `eval()`.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 21,
"vocab_size": 18
} | https://github.com/pyinstaller/pyinstaller.git |
|
3 | intercept | def intercept(self):
if self.intercepted:
return
self.intercepted = True
if self._resume_event is not None:
self._resume_event.clear()
| ede269fce40ec4000a4717d5f5aec7835d9931c2 | 10 | flow.py | 55 | Flow.intercept: use an Event instead of the reply system
This is patch 3/4 of the reply-ectomy. | 73,511 | 0 | 64 | 32 | 13 | 250,580 | 14 | mitmproxy | 5 | mitmproxy/flow.py | Python | 6 | {
"docstring": "\n Intercept this Flow. Processing will stop until resume is\n called.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 10,
"vocab_size": 10
} | https://github.com/mitmproxy/mitmproxy.git |
|
7 | _autodetect_num_gpus | def _autodetect_num_gpus():
result = 0
if sys.platform.startswith("linux"):
if importlib.util.find_spec("GPUtil"):
gpu_list = GPUtil.getGPUs()
result = len(gpu_list)
else:
proc_gpus_path = "/proc/driver/nvidia/gpus"
if os.path.isdir(proc_gpus_path):
result = len(os.listdir(proc_gpus_path))
elif sys.platform == "win32":
props = "AdapterCompatibility"
cmdargs = ["WMIC", "PATH", "Win32_VideoController", "GET", props]
lines = subprocess.check_output(cmdargs).splitlines()[1:]
result = len([x.rstrip() for x in lines if x.startswith(b"NVIDIA")])
return result
| 6f68c74a5dbfbb936cb675781acb2a36eae10984 | 17 | resource_spec.py | 231 | Use GPUtil for gpu detection when available (#18938)
In Envs with K8S and enabled SELinux there is a bug:
"/proc/nvidia/" is not allowed to mount in container
So, i made a rework for GPU detection based on GPutil package.
## Checks
- [x] I've run `scripts/format.sh` to lint the changes in this PR.
- [x] I've made sure the tests are passing. Note that there might be a few flaky tests, see the recent failures at https://flakey-tests.ray.io/
- Testing Strategy
- [x] Release tests
Co-authored-by: Mopga <[email protected]>
Co-authored-by: Julius <[email protected]> | 33,474 | 0 | 168 | 132 | 36 | 145,520 | 52 | ray | 25 | python/ray/_private/resource_spec.py | Python | 16 | {
"docstring": "Attempt to detect the number of GPUs on this machine.\n\n TODO(rkn): This currently assumes NVIDIA GPUs on Linux.\n TODO(mehrdadn): Use a better mechanism for Windows.\n\n Returns:\n The number of GPUs if any were detected, otherwise 0.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 36,
"vocab_size": 31
} | https://github.com/ray-project/ray.git |
|
3 | execute | def execute():
work_order = frappe.qb.DocType("Work Order")
query = (
frappe.qb.from_(work_order)
.select(
work_order.name, work_order.produced_qty,
work_order.material_request,
work_order.material_request_item,
work_order.sales_order
).where(
(work_order.material_request.isnotnull())
& (work_order.material_request_item.isnotnull())
& (work_order.sales_order.isnotnull())
& (work_order.docstatus == 1)
& (work_order.produced_qty > 0)
)
)
results = query.run(as_dict=True)
for row in results:
so_item = frappe.get_value(
"Material Request Item", row.material_request_item, "sales_order_item"
)
frappe.db.set_value("Work Order", row.name, "sales_order_item", so_item)
if so_item:
wo = frappe.get_doc("Work Order", row.name)
wo.update_work_order_qty_in_so()
| 0ca58d762715fd10c751c4497f3037908f4dfb20 | 17 | set_work_order_qty_in_so_from_mr.py | 264 | chore: Patch to update SO work_order_qty and Linter fix | 13,623 | 0 | 267 | 164 | 51 | 64,391 | 61 | erpnext | 27 | erpnext/patches/v14_0/set_work_order_qty_in_so_from_mr.py | Python | 26 | {
"docstring": "\n 1. Get submitted Work Orders with MR, MR Item and SO set\n 2. Get SO Item detail from MR Item detail in WO, and set in WO\n 3. Update work_order_qty in SO\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 32,
"vocab_size": 21
} | https://github.com/frappe/erpnext.git |
|
11 | _get_packed_offsets | def _get_packed_offsets(widths, total, sep, mode="fixed"):
r
_api.check_in_list(["fixed", "expand", "equal"], mode=mode)
if mode == "fixed":
offsets_ = np.cumsum([0] + [w + sep for w in widths])
offsets = offsets_[:-1]
if total is None:
total = offsets_[-1] - sep
return total, offsets
elif mode == "expand":
# This is a bit of a hack to avoid a TypeError when *total*
# is None and used in conjugation with tight layout.
if total is None:
total = 1
if len(widths) > 1:
sep = (total - sum(widths)) / (len(widths) - 1)
else:
sep = 0
offsets_ = np.cumsum([0] + [w + sep for w in widths])
offsets = offsets_[:-1]
return total, offsets
elif mode == "equal":
maxh = max(widths)
if total is None:
if sep is None:
raise ValueError("total and sep cannot both be None when "
"using layout mode 'equal'")
total = (maxh + sep) * len(widths)
else:
sep = total / len(widths) - maxh
offsets = (maxh + sep) * np.arange(len(widths))
return total, offsets
| 8ef4e017f8a95db8704728a5fffd2c0384afc525 | 16 | offsetbox.py | 381 | Don't pass unused xdescent to _get_packed_offsets.
Instead of passing a list of (widths, xdescents) where xdescent is
unused, just pass a list of widths. This helper is private so we just
need to adjust the call sites and tests with no deprecation.
This patch is preliminary work for some further cleanup on the offsetbox
module. | 23,960 | 0 | 420 | 231 | 79 | 110,170 | 163 | matplotlib | 18 | lib/matplotlib/offsetbox.py | Python | 74 | {
"docstring": "\n Pack boxes specified by their *widths*.\n\n For simplicity of the description, the terminology used here assumes a\n horizontal layout, but the function works equally for a vertical layout.\n\n There are three packing *mode*\\s:\n\n - 'fixed': The elements are packed tight to the left with a spacing of\n *sep* in between. If *total* is *None* the returned total will be the\n right edge of the last box. A non-*None* total will be passed unchecked\n to the output. In particular this means that right edge of the last\n box may be further to the right than the returned total.\n\n - 'expand': Distribute the boxes with equal spacing so that the left edge\n of the first box is at 0, and the right edge of the last box is at\n *total*. The parameter *sep* is ignored in this mode. A total of *None*\n is accepted and considered equal to 1. The total is returned unchanged\n (except for the conversion *None* to 1). If the total is smaller than\n the sum of the widths, the laid out boxes will overlap.\n\n - 'equal': If *total* is given, the total space is divided in N equal\n ranges and each box is left-aligned within its subspace.\n Otherwise (*total* is *None*), *sep* must be provided and each box is\n left-aligned in its subspace of width ``(max(widths) + sep)``. The\n total width is then calculated to be ``N * (max(widths) + sep)``.\n\n Parameters\n ----------\n widths : list of float\n Widths of boxes to be packed.\n total : float or None\n Intended total length. *None* if not used.\n sep : float\n Spacing between boxes.\n mode : {'fixed', 'expand', 'equal'}\n The packing mode.\n\n Returns\n -------\n total : float\n The total width needed to accommodate the laid out boxes.\n offsets : array of float\n The left offsets of the boxes.\n ",
"language": "en",
"n_whitespaces": 460,
"n_words": 298,
"vocab_size": 150
} | https://github.com/matplotlib/matplotlib.git |
|
7 | del_tracking | def del_tracking(self):
# Now that the node object has been fully loaded, and the checkpoint has
# been restored, the object no longer needs to track objects added from
# SerializedAttributes. (Note that saving a training checkpoint still
# functions correctly, because layers and variables are tracked
# separately by the Layer object.)
# TODO(kathywu): Instead of outright deleting these nodes (which would
# make restoring from a different checkpoint tricky), mark them as extra
# dependencies that are OK to overwrite.
for node in self.loaded_nodes.values():
node = node[0]
if not isinstance(node, base_layer.Layer):
# Loaded nodes can contain other trackable objects created when
# loading layers from the config, such as variables.
continue
for name in PUBLIC_ATTRIBUTES:
node._delete_tracking(name) # pylint: disable=protected-access
if isinstance(node, functional_lib.Functional):
# Delete the temporary layer dependencies, which were used to
# restore the checkpointed values. When the model is live, the
# user can delete or add layers to the model at any time, so
# these layer dependencies may be obsolete.
dependencies = list(
node._self_unconditional_dependency_names
) # pylint: disable=protected-access
for name in dependencies:
if (
re.match(r"^layer(_with_weights)?-[\d+]", name)
is not None
):
node._delete_tracking(
name
) # pylint: disable=protected-access
| b0ffc0031e9c1964e7398ca47c6666bbfc0d5086 | 16 | load.py | 161 | resolve line-too-long in saving | 82,463 | 0 | 650 | 91 | 122 | 278,305 | 192 | keras | 18 | keras/saving/saved_model/load.py | Python | 19 | {
"docstring": "Removes tracked references that are only used when loading the\n model.",
"language": "en",
"n_whitespaces": 17,
"n_words": 11,
"vocab_size": 11
} | https://github.com/keras-team/keras.git |
|
3 | all_data | def all_data(request, data, data_missing):
if request.param == "data":
return data
elif request.param == "data_missing":
return data_missing
| 89be1f053b695c4ce1c0569f737caf3f03c12128 | 8 | conftest.py | 49 | DOC: Added docstrings to fixtures defined in array module (#47211) | 39,882 | 0 | 39 | 28 | 13 | 166,950 | 16 | pandas | 5 | pandas/tests/arrays/floating/conftest.py | Python | 5 | {
"docstring": "Parametrized fixture returning 'data' or 'data_missing' float arrays.\n\n Used to test dtype conversion with and without missing values.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 18,
"vocab_size": 18
} | https://github.com/pandas-dev/pandas.git |
|
1 | iteritems | def iteritems(self) -> Iterable[tuple[Hashable, Any]]:
warnings.warn(
"iteritems is deprecated and will be removed in a future version. "
"Use .items instead.",
FutureWarning,
stacklevel=find_stack_level(inspect.currentframe()),
)
return self.items()
# ----------------------------------------------------------------------
# Misc public methods
| f77dbfb5af93faf9425c5d717a93ea7f6f26b3fd | 12 | series.py | 74 | DOC: Add deprecation marks to deprecated functions (#48183)
* DOC: Add deprecation marks to deprecated functions
* Address docs
* docstrings | 40,335 | 0 | 110 | 43 | 31 | 168,829 | 32 | pandas | 14 | pandas/core/series.py | Python | 30 | {
"docstring": "\n Lazily iterate over (index, value) tuples.\n\n .. deprecated:: 1.5.0\n iteritems is deprecated and will be removed in a future version.\n Use .items instead.\n\n This method returns an iterable tuple (index, value). This is\n convenient if you want to create a lazy iterator.\n\n Returns\n -------\n iterable\n Iterable of tuples containing the (index, value) pairs from a\n Series.\n\n See Also\n --------\n Series.items : Recommended alternative.\n DataFrame.items : Iterate over (column name, Series) pairs.\n DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs.\n ",
"language": "en",
"n_whitespaces": 217,
"n_words": 81,
"vocab_size": 65
} | https://github.com/pandas-dev/pandas.git |
|
4 | checkAndReturnConsistentLogs | def checkAndReturnConsistentLogs(self, results, sleep_per_iter=None):
class_results = copy.deepcopy(results)
function_results = copy.deepcopy(results)
class_output = []
function_output = []
scheduler_notif = []
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 8 | test_api.py | 67 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,747 | 0 | 61 | 306 | 12 | 132,382 | 19 | ray | 11 | python/ray/tune/tests/test_api.py | Python | 63 | {
"docstring": "Checks logging is the same between APIs.\n\n Ignore \"DONE\" for logging but checks that the\n scheduler is notified properly with the last result.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 23,
"vocab_size": 19
} | https://github.com/ray-project/ray.git |
|
1 | test_tags_help_text_spaces_allowed | def test_tags_help_text_spaces_allowed(self):
widget = widgets.AdminTagWidget()
help_text = widget.get_context(None, None, {})["widget"]["help_text"]
html = widget.render("tags", None, {})
help_text_html_element = self.get_help_text_html_element(html)
self.assertEqual(
help_text,
'Multi-word tags with spaces will automatically be enclosed in double quotes (").',
)
self.assertHTMLEqual(
help_text_html_element,
% help_text,
)
| 1822d7eee23cf5fceff8b1f58f3ca2f0a32c6e34 | 11 | test_widgets.py | 123 | display help text message for tag field
- resolves #1874
- ensure message is dynamic based on the setting TAG_SPACES_ALLOWED
- Update wagtail/admin/templates/wagtailadmin/widgets/tag_widget.html | 16,620 | 0 | 146 | 73 | 32 | 77,078 | 38 | wagtail | 13 | wagtail/admin/tests/test_widgets.py | Python | 13 | {
"docstring": "Checks that the tags help text html element content is correct when TAG_SPACES_ALLOWED is True<p class=\"help\">%s</p>",
"language": "en",
"n_whitespaces": 15,
"n_words": 16,
"vocab_size": 15
} | https://github.com/wagtail/wagtail.git |
|
3 | clean_pipeline_string | def clean_pipeline_string(self, individual):
dirty_string = str(individual)
# There are many parameter prefixes in the pipeline strings, used solely for
# making the terminal name unique, eg. LinearSVC__.
parameter_prefixes = [
(m.start(), m.end()) for m in re.finditer(", [\w]+__", dirty_string)
]
# We handle them in reverse so we do not mess up indices
pretty = dirty_string
for (start, end) in reversed(parameter_prefixes):
pretty = pretty[: start + 2] + pretty[end:]
return pretty
| 388616b6247ca4ea8de4e2f340d6206aee523541 | 12 | base.py | 120 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 43,614 | 0 | 162 | 74 | 55 | 181,840 | 70 | tpot | 13 | tpot/base.py | Python | 9 | {
"docstring": "Provide a string of the individual without the parameter prefixes.\n\n Parameters\n ----------\n individual: individual\n Individual which should be represented by a pretty string\n\n Returns\n -------\n A string like str(individual), but with parameter prefixes removed.\n\n ",
"language": "en",
"n_whitespaces": 94,
"n_words": 34,
"vocab_size": 28
} | https://github.com/EpistasisLab/tpot.git |
|
2 | put_timestamp | def put_timestamp(self, feed_id, timestamp):
self._fetch_data()
with self._lock, open(self._data_file, "wb") as myfile:
self._data.update({feed_id: timestamp})
_LOGGER.debug(
"Overwriting feed %s timestamp in storage file %s",
feed_id,
self._data_file,
)
try:
pickle.dump(self._data, myfile)
except Exception: # pylint: disable=broad-except
_LOGGER.error("Error saving pickled data to %s", self._data_file)
self._cache_outdated = True
| 62a5854e40cb554fecb1eec897d7bcb4c94628fe | 13 | __init__.py | 144 | Fix bare except (#72906) | 100,706 | 0 | 202 | 86 | 41 | 301,868 | 43 | core | 18 | homeassistant/components/feedreader/__init__.py | Python | 14 | {
"docstring": "Update timestamp for given feed id (usually the url).",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
|
1 | test_deploy_with_transient_constructor_failure | def test_deploy_with_transient_constructor_failure(mock_deployment_state):
deployment_state, timer, goal_manager = mock_deployment_state
b_info_1, b_version_1 = deployment_info(num_replicas=2)
create_goal, updating = deployment_state.deploy(b_info_1)
goal_obj = goal_manager.get_goal(create_goal)
# Burn 4 retries from both replicas.
deleted = _constructor_failure_loop_two_replica(deployment_state, 2)
assert not deleted
# Let both replicas succeed in last try.
deployment_state.update()
check_counts(deployment_state, total=2, by_state=[(ReplicaState.STARTING, 2)])
assert deployment_state._replica_constructor_retry_counter == 4
replica_1 = deployment_state._replicas.get()[0]
replica_2 = deployment_state._replicas.get()[1]
replica_1._actor.set_ready()
replica_2._actor.set_ready()
deployment_state.update()
check_counts(deployment_state, total=2, by_state=[(ReplicaState.RUNNING, 2)])
assert deployment_state._replica_constructor_retry_counter == 4
assert goal_manager.check_complete(create_goal)
assert goal_obj.exception is None
@pytest.fixture | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | @pytest.fixture | 11 | test_deployment_state.py | 268 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,444 | 1 | 135 | 165 | 52 | 130,998 | 73 | ray | 34 | python/ray/serve/tests/test_deployment_state.py | Python | 19 | {
"docstring": "\n Test deploy() multiple replicas with transient constructor failure.\n Ensures:\n 1) Async goal manager can correctly recognize deployment goal as\n successful\n 2) There should be expected # of RUNNING replicas eventually that\n matches user intent\n 3) Replica counter set as -1 to stop tracking current goal as it's\n already completed\n\n Same testing for same test case in test_deploy.py.\n ",
"language": "en",
"n_whitespaces": 124,
"n_words": 57,
"vocab_size": 52
} | https://github.com/ray-project/ray.git |