complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11 | filter_queryset | def filter_queryset(self, request, queryset, view):
fields = set(view.get_available_fields(queryset.model, db_fields_only=True))
# Locale is a database field, but we provide a separate filter for it
if "locale" in fields:
fields.remove("locale")
for field_name, value in request.GET.items():
if field_name in fields:
try:
field = queryset.model._meta.get_field(field_name)
except LookupError:
field = None
# Convert value into python
try:
if isinstance(
field, (models.BooleanField, models.NullBooleanField)
):
value = parse_boolean(value)
elif isinstance(field, (models.IntegerField, models.AutoField)):
value = int(value)
elif isinstance(field, models.ForeignKey):
value = field.target_field.get_prep_value(value)
except ValueError as e:
raise BadRequestError(
"field filter error. '%s' is not a valid value for %s (%s)"
% (value, field_name, str(e))
)
if isinstance(field, TaggableManager):
for tag in value.split(","):
queryset = queryset.filter(**{field_name + "__name": tag})
# Stick a message on the queryset to indicate that tag filtering has been performed
# This will let the do_search method know that it must raise an error as searching
# and tag filtering at the same time is not supported
queryset._filtered_by_tag = True
else:
queryset = queryset.filter(**{field_name: value})
return queryset
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 21 | filters.py | 359 | Reformat with black | 15,909 | 0 | 758 | 220 | 108 | 72,652 | 162 | wagtail | 39 | wagtail/api/v2/filters.py | Python | 31 | {
"docstring": "\n This performs field level filtering on the result set\n Eg: ?title=James Joyce\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 12,
"vocab_size": 12
} | https://github.com/wagtail/wagtail.git |
|
2 | generate_operation_regex | def generate_operation_regex():
operations = []
for item in OP_TO_SNUBA_FUNCTION.values():
operations += list(item.keys())
return rf"({'|'.join(map(str, operations))})"
OP_REGEX = generate_operation_regex()
AVAILABLE_OPERATIONS = {
type_: sorted(mapping.keys()) for type_, mapping in OP_TO_SNUBA_FUNCTION.items()
}
OPERATIONS_TO_ENTITY = {
op: entity for entity, operations in AVAILABLE_OPERATIONS.items() for op in operations
}
# ToDo add guages/summaries
METRIC_TYPE_TO_ENTITY: Mapping[MetricType, EntityKey] = {
"counter": EntityKey.MetricsCounters,
"set": EntityKey.MetricsSets,
"distribution": EntityKey.MetricsDistributions,
}
FIELD_ALIAS_MAPPINGS = {"project": "project_id"}
| 3535fa83a743f6967a92e0afdbba2b633236bf67 | 12 | utils.py | 216 | fix(metrics): Restrict public name regex [TET-111] (#35305)
* fix(metrics): Restrict public name regex
Restricts the public name regex for metrics
by separating out the public name regex
and the mri name regex from the shared field
regex and removing characters that are not
expected to be in public facing names
* Update mri regex and public regex + add tests
* Add better tests
* PR comments | 18,716 | 0 | 89 | 31 | 46 | 91,126 | 64 | sentry | 27 | src/sentry/snuba/metrics/utils.py | Python | 5 | {
"docstring": "\n Generates a regex of all supported operations defined in OP_TO_SNUBA_FUNCTION\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | https://github.com/getsentry/sentry.git |
|
1 | getbbox | def getbbox(self, text, *args, **kwargs):
width, height = self.font.getsize(text)
return 0, 0, width, height
| c854bf8d1c05022bec4309fbf6b547e494db9373 | 9 | ImageFont.py | 52 | add getbbox and getlength to basic ImageFont and update related tests | 69,963 | 0 | 35 | 34 | 11 | 243,053 | 14 | Pillow | 9 | src/PIL/ImageFont.py | Python | 3 | {
"docstring": "\n Returns bounding box (in pixels) of given text.\n\n .. versionadded:: 9.2.0\n\n :param text: Text to render.\n :param mode: Used by some graphics drivers to indicate what mode the\n driver prefers; if empty, the renderer may return either\n mode. Note that the mode is always a string, to simplify\n C-level implementations.\n\n :return: ``(left, top, right, bottom)`` bounding box\n ",
"language": "en",
"n_whitespaces": 160,
"n_words": 57,
"vocab_size": 49
} | https://github.com/python-pillow/Pillow.git |
|
5 | _validate | def _validate(self) -> None:
if self._job == "missing-frames" and self._output == "move":
logger.warning("Missing_frames was selected with move output, but there will "
"be nothing to move. Defaulting to output: console")
self._output = "console"
if self._type == "faces" and self._job != "multi-faces":
logger.error("The selected folder is not valid. Faces folder (-fc) is only "
"supported for 'multi-faces'")
sys.exit(1)
| e2a77e7c6e84e81f642cb22f528e25e3f2d2dbc1 | 11 | jobs.py | 116 | Alignments Tool - Typing, Documentation + Re-org | 21,124 | 0 | 172 | 59 | 46 | 101,720 | 57 | faceswap | 10 | tools/alignments/jobs.py | Python | 10 | {
"docstring": " Check that the selected type is valid for selected task and job ",
"language": "en",
"n_whitespaces": 13,
"n_words": 12,
"vocab_size": 11
} | https://github.com/deepfakes/faceswap.git |
|
2 | pagerank_numpy | def pagerank_numpy(G, alpha=0.85, personalization=None, weight="weight", dangling=None):
msg = "networkx.pagerank_numpy is deprecated and will be removed in NetworkX 3.0, use networkx.pagerank instead."
warn(msg, DeprecationWarning, stacklevel=2)
import numpy as np
if len(G) == 0:
return {}
M = google_matrix(
G, alpha, personalization=personalization, weight=weight, dangling=dangling
)
# use numpy LAPACK solver
eigenvalues, eigenvectors = np.linalg.eig(M.T)
ind = np.argmax(eigenvalues)
# eigenvector of largest eigenvalue is at ind, normalized
largest = np.array(eigenvectors[:, ind]).flatten().real
norm = largest.sum()
return dict(zip(G, map(float, largest / norm)))
| 2a05ccdb07cff88e56661dee8a9271859354027f | 13 | pagerank_alg.py | 212 | Remove redundant py2 numeric conversions (#5661)
* Remove redundant float conversion
* Remove redundant int conversion
* Use integer division
Co-authored-by: Miroslav Šedivý <[email protected]> | 42,053 | 0 | 133 | 137 | 65 | 176,718 | 77 | networkx | 32 | networkx/algorithms/link_analysis/pagerank_alg.py | Python | 14 | {
"docstring": "Returns the PageRank of the nodes in the graph.\n\n PageRank computes a ranking of the nodes in the graph G based on\n the structure of the incoming links. It was originally designed as\n an algorithm to rank web pages.\n\n Parameters\n ----------\n G : graph\n A NetworkX graph. Undirected graphs will be converted to a directed\n graph with two directed edges for each undirected edge.\n\n alpha : float, optional\n Damping parameter for PageRank, default=0.85.\n\n personalization: dict, optional\n The \"personalization vector\" consisting of a dictionary with a\n key some subset of graph nodes and personalization value each of those.\n At least one personalization value must be non-zero.\n If not specfiied, a nodes personalization value will be zero.\n By default, a uniform distribution is used.\n\n weight : key, optional\n Edge data key to use as weight. If None weights are set to 1.\n\n dangling: dict, optional\n The outedges to be assigned to any \"dangling\" nodes, i.e., nodes without\n any outedges. The dict key is the node the outedge points to and the dict\n value is the weight of that outedge. By default, dangling nodes are given\n outedges according to the personalization vector (uniform if not\n specified) This must be selected to result in an irreducible transition\n matrix (see notes under google_matrix). It may be common to have the\n dangling dict to be the same as the personalization dict.\n\n Returns\n -------\n pagerank : dictionary\n Dictionary of nodes with PageRank as value.\n\n Examples\n --------\n >>> G = nx.DiGraph(nx.path_graph(4))\n >>> pr = nx.pagerank_numpy(G, alpha=0.9)\n\n Notes\n -----\n The eigenvector calculation uses NumPy's interface to the LAPACK\n eigenvalue solvers. This will be the fastest and most accurate\n for small graphs.\n\n This implementation works with Multi(Di)Graphs. For multigraphs the\n weight between two nodes is set to be the sum of all edge weights\n between those nodes.\n\n See Also\n --------\n pagerank, pagerank_scipy, google_matrix\n\n References\n ----------\n .. [1] A. Langville and C. Meyer,\n \"A survey of eigenvector methods of web information retrieval.\"\n http://citeseer.ist.psu.edu/713792.html\n .. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,\n The PageRank citation ranking: Bringing order to the Web. 1999\n http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf\n ",
"language": "en",
"n_whitespaces": 556,
"n_words": 344,
"vocab_size": 202
} | https://github.com/networkx/networkx.git |
|
1 | decode_predictions | def decode_predictions(preds, top=5):
return imagenet_utils.decode_predictions(preds, top=top)
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
mode="",
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TORCH,
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC,
)
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC =
setattr(DenseNet121, "__doc__", DenseNet121.__doc__ + DOC)
setattr(DenseNet169, "__doc__", DenseNet169.__doc__ + DOC)
setattr(DenseNet201, "__doc__", DenseNet201.__doc__ + DOC)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 8 | densenet.py | 149 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,037 | 0 | 38 | 20 | 25 | 269,365 | 33 | keras | 18 | keras/applications/densenet.py | Python | 2 | {
"docstring": "\n\n Reference:\n - [Densely Connected Convolutional Networks](\n https://arxiv.org/abs/1608.06993) (CVPR 2017)\n\n Optionally loads weights pre-trained on ImageNet.\n Note that the data format convention used by the model is\n the one specified in your Keras config at `~/.keras/keras.json`.\n\n Note: each Keras Application expects a specific kind of input preprocessing.\n For DenseNet, call `tf.keras.applications.densenet.preprocess_input` on your\n inputs before passing them to the model.\n\n Args:\n include_top: whether to include the fully-connected\n layer at the top of the network.\n weights: one of `None` (random initialization),\n 'imagenet' (pre-training on ImageNet),\n or the path to the weights file to be loaded.\n input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)\n to use as image input for the model.\n input_shape: optional shape tuple, only to be specified\n if `include_top` is False (otherwise the input shape\n has to be `(224, 224, 3)` (with `'channels_last'` data format)\n or `(3, 224, 224)` (with `'channels_first'` data format).\n It should have exactly 3 inputs channels,\n and width and height should be no smaller than 32.\n E.g. `(200, 200, 3)` would be one valid value.\n pooling: Optional pooling mode for feature extraction\n when `include_top` is `False`.\n - `None` means that the output of the model will be\n the 4D tensor output of the\n last convolutional block.\n - `avg` means that global average pooling\n will be applied to the output of the\n last convolutional block, and thus\n the output of the model will be a 2D tensor.\n - `max` means that global max pooling will\n be applied.\n classes: optional number of classes to classify images\n into, only to be specified if `include_top` is True, and\n if no `weights` argument is specified.\n classifier_activation: A `str` or callable. The activation function to use\n on the \"top\" layer. Ignored unless `include_top=True`. Set\n `classifier_activation=None` to return the logits of the \"top\" layer.\n When loading pretrained weights, `classifier_activation` can only\n be `None` or `\"softmax\"`.\n\n Returns:\n A Keras model instance.\n",
"language": "en",
"n_whitespaces": 500,
"n_words": 307,
"vocab_size": 181
} | https://github.com/keras-team/keras.git |
|
1 | test_tika_parse_unreachable | def test_tika_parse_unreachable(self):
html = '<html><head><meta http-equiv="content-type" content="text/html; charset=UTF-8"></head><body><p>Some Text</p></body></html>'
# Check if exception is raised when Tika cannot be reached.
self.parser.tika_server = ""
self.assertRaises(ParseError, self.parser.tika_parse, html)
| 4aa318598fd0dc6c5d4e08dd2a13e7bf614511ec | 9 | test_parsers.py | 54 | add test comments | 117,110 | 0 | 61 | 30 | 25 | 320,280 | 26 | paperless-ngx | 8 | src/paperless_mail/tests/test_parsers.py | Python | 4 | {
"docstring": "\n GIVEN:\n - Fresh start\n WHEN:\n - tika parsing is called but tika is not available\n THEN:\n - a ParseError Exception is thrown\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 22,
"vocab_size": 17
} | https://github.com/paperless-ngx/paperless-ngx.git |
|
7 | test_train_model_from_files | def test_train_model_from_files(self):
df = pd.DataFrame({
'x1': [x for x in range(100, 210)] + [x for x in range(100, 210)],
'x2': [x * 2 for x in range(100, 210)] + [x * 3 for x in range(100, 210)],
'y': [x * 3 for x in range(100, 210)] + [x * 2 for x in range(100, 210)]
})
file_predictor_name = "predictor_from_file"
self.upload_ds(df, self.file_datasource_name)
self.verify_file_ds(self.file_datasource_name)
_query = f
self.query(_query)
self.check_predictor_readiness(file_predictor_name)
| 7c02e15aa403a4ca1fa34489dd2df9136d6c961c | 15 | test_mysql_api.py | 228 | Projects structure (#3532)
Projects structure | 25,923 | 0 | 155 | 142 | 29 | 117,210 | 67 | mindsdb | 14 | tests/integration_tests/flows/test_mysql_api.py | Python | 16 | {
"docstring": "\n CREATE MODEL {file_predictor_name}\n from files (select * from {self.file_datasource_name})\n predict y;\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 11,
"vocab_size": 10
} | https://github.com/mindsdb/mindsdb.git |
|
10 | _search_cb | def _search_cb(self, found, *, tab, old_match, options, text, prev):
# :search/:search-next without reverse -> down
# :search/:search-next with reverse -> up
# :search-prev without reverse -> up
# :search-prev with reverse -> down
going_up = options['reverse'] ^ prev
if found:
if not config.val.search.wrap_messages:
return
# Check if the match count change is opposite to the search direction
if old_match.current > 0:
if not going_up:
if old_match.current > tab.search.match.current:
message.info("Search hit BOTTOM, continuing at TOP",
replace="search-hit-msg")
elif old_match.current == tab.search.match.current:
message.info("Search hit BOTTOM", replace="search-hit-msg")
elif going_up:
if old_match.current < tab.search.match.current:
message.info("Search hit TOP, continuing at BOTTOM",
replace="search-hit-msg")
elif old_match.current == tab.search.match.current:
message.info("Search hit TOP", replace="search-hit-msg")
else:
message.warning(f"Text '{text}' not found on page!",
replace='find-in-page')
| 265b018c172f8c1f6d9e7f8850256363f0629f82 | 19 | commands.py | 276 | Add a SearchMatch helper class | 117,399 | 0 | 546 | 161 | 62 | 320,858 | 112 | qutebrowser | 19 | qutebrowser/browser/commands.py | Python | 21 | {
"docstring": "Callback called from search/search_next/search_prev.\n\n Args:\n found: Whether the text was found.\n tab: The AbstractTab in which the search was made.\n old_match: The previously active search match before the search was\n performed.\n options: The options (dict) the search was made with.\n text: The text searched for.\n prev: Whether we're searching backwards (i.e. :search-prev)\n ",
"language": "en",
"n_whitespaces": 154,
"n_words": 52,
"vocab_size": 38
} | https://github.com/qutebrowser/qutebrowser.git |
|
3 | from_decimal | def from_decimal(cls, dec):
from decimal import Decimal
if isinstance(dec, numbers.Integral):
dec = Decimal(int(dec))
elif not isinstance(dec, Decimal):
raise TypeError(
"%s.from_decimal() only takes Decimals, not %r (%s)" %
(cls.__name__, dec, type(dec).__name__))
return cls(*dec.as_integer_ratio())
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 15 | fractions.py | 114 | add python 3.10.4 for windows | 54,739 | 0 | 119 | 70 | 30 | 217,383 | 32 | XX-Net | 13 | python3.10.4/Lib/fractions.py | Python | 9 | {
"docstring": "Converts a finite Decimal instance to a rational number, exactly.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | https://github.com/XX-net/XX-Net.git |
|
2 | forward | def forward(self, feats, img_metas):
y = self.last_feat_conv(feats[-1])
for i in range(self.num_inputs - 2, -1, -1):
x = feats[i]
cur_feat = self.lateral_convs[i](x)
y = cur_feat + \
F.interpolate(y, size=cur_feat.shape[-2:], mode='nearest')
y = self.output_convs[i](y)
mask_feature = self.mask_feature(y)
memory = feats[-1]
return mask_feature, memory
@PLUGIN_LAYERS.register_module() | 0932ab787d58eead15b5f823fbcca5351ceb90f7 | @PLUGIN_LAYERS.register_module() | 15 | pixel_decoder.py | 186 | add msdeformattn pixel decoder (#7466)
fix typo
rm img_metas
rename in pixel_decoder
update comments
rename
fix typo
generae points with MlvlPointGenerator | 70,240 | 1 | 142 | 113 | 32 | 244,103 | 42 | mmdetection | 22 | mmdet/models/plugins/pixel_decoder.py | Python | 11 | {
"docstring": "\n Args:\n feats (list[Tensor]): Feature maps of each level. Each has\n shape of (batch_size, c, h, w).\n img_metas (list[dict]): List of image information. Pass in\n for creating more accurate padding mask. Not used here.\n\n Returns:\n tuple: a tuple containing the following:\n - mask_feature (Tensor): Shape (batch_size, c, h, w).\n - memory (Tensor): Output of last stage of backbone.\\\n Shape (batch_size, c, h, w).\n ",
"language": "en",
"n_whitespaces": 200,
"n_words": 62,
"vocab_size": 47
} | https://github.com/open-mmlab/mmdetection.git |
1 | primary_calendar_error | async def primary_calendar_error() -> ClientError | None:
return None
@pytest.fixture(autouse=True) | 3f8c896cb20526ef59e285b1f0eeb9b4e734efee | @pytest.fixture(autouse=True) | 7 | test_config_flow.py | 37 | Set user friendly name for Google Calendar config entry (#72243)
* Set user friendly name for Google Calendar config entry
* Add a new auth implementation for use during the config flow | 99,984 | 1 | 15 | 11 | 10 | 301,136 | 10 | core | 5 | tests/components/google/test_config_flow.py | Python | 3 | {
"docstring": "Fixture for tests to inject an error during calendar lookup.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/home-assistant/core.git |
6 | test_get_release_wheel_url | def test_get_release_wheel_url():
# This should be a commit for which wheels have already been built for
# all platforms and python versions at
# `s3://ray-wheels/releases/2.2.0/<commit>/`.
test_commits = {"2.2.0": "b6af0887ee5f2e460202133791ad941a41f15beb"}
for sys_platform in ["darwin", "linux", "win32"]:
for py_version in ray_constants.RUNTIME_ENV_CONDA_PY_VERSIONS:
for version, commit in test_commits.items():
if sys_platform == "win32" and py_version == (3, 6):
# Windows wheels are not built for py3.6 anymore
continue
url = get_release_wheel_url(commit, sys_platform, version, py_version)
assert requests.head(url).status_code == 200, url
| 98fef7732852cdb3e9377cd87c1ee1085b894928 | 15 | test_runtime_env.py | 136 | [runtime env] Support python 3.10 for runtime_env conda (#30970)
Signed-off-by: Archit Kulkarni <[email protected]>
conda environments are isolated, so when runtime_env sets up a conda environment it must download the Ray wheel into the conda environment. It must download the wheel that matches the current Python and Ray version running, otherwise there will be incompatibility issues between the workers that use this runtime_env and the other workers and Ray processes.
This PR updates the wheel name format logic to support Python 3.10. | 31,197 | 0 | 193 | 80 | 53 | 137,593 | 74 | ray | 14 | python/ray/tests/test_runtime_env.py | Python | 9 | {
"docstring": "Test the code that generates the filenames of the `release` branch wheels.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 10
} | https://github.com/ray-project/ray.git |
|
4 | _validate_extra | def _validate_extra(extra, conn_id) -> None:
if extra is None:
return None
try:
extra_parsed = json.loads(extra)
if not isinstance(extra_parsed, dict):
warnings.warn(
"Encountered JSON value in `extra` which does not parse as a dictionary in "
f"connection {conn_id!r}. From Airflow 3.0, the `extra` field must contain a JSON "
"representation of a Python dict.",
DeprecationWarning,
stacklevel=3,
)
except json.JSONDecodeError:
warnings.warn(
f"Encountered non-JSON in `extra` field for connection {conn_id!r}. Support for "
"non-JSON `extra` will be removed in Airflow 3.0",
DeprecationWarning,
stacklevel=2,
)
return None
| 3aebb21c523c0eea0d4a1518d502ff95fd98011b | 14 | connection.py | 132 | Deprecate non-JSON conn.extra (#21816)
Connection extra field is generally assumed to be JSON but we don't actually require it. Here we deprecate non-JSON extra so that in 3.0 we can require it. Further, we require that it not just be any json but must also parse as dict, because a string value such as '"hi"' or '[1,2,3]' is json, but a very bad practice. | 8,648 | 0 | 357 | 74 | 59 | 45,563 | 82 | airflow | 13 | airflow/models/connection.py | Python | 25 | {
"docstring": "\n Here we verify that ``extra`` is a JSON-encoded Python dict. From Airflow 3.0, we should no\n longer suppress these errors but raise instead.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 23,
"vocab_size": 22
} | https://github.com/apache/airflow.git |
|
1 | algdiv | def algdiv(a, b):
c0 = 0.833333333333333e-01
c1 = -0.277777777760991e-02
c2 = 0.793650666825390e-03
c3 = -0.595202931351870e-03
c4 = 0.837308034031215e-03
c5 = -0.165322962780713e-02
h = a / b
c = h / (1 + h)
x = h / (1 + h)
d = b + (a - 0.5)
# Set sN = (1 - x**n)/(1 - x)
x2 = x * x
s3 = 1.0 + (x + x2)
s5 = 1.0 + (x + x2 * s3)
s7 = 1.0 + (x + x2 * s5)
s9 = 1.0 + (x + x2 * s7)
s11 = 1.0 + (x + x2 * s9)
# Set w = del(b) - del(a + b)
# where del(x) is defined by ln(gamma(x)) = (x - 0.5)*ln(x) - x + 0.5*ln(2*pi) + del(x)
t = (1.0 / b) ** 2
w = ((((c5 * s11 * t + c4 * s9) * t + c3 * s7) * t + c2 * s5) * t + c1 * s3) * t + c0
w = w * (c / b)
# Combine the results
u = d * lax.log1p(a / b)
v = a * (lax.log(b) - 1.0)
return jnp.where(u <= v, (w - v) - u, (w - u) - v)
| 9f811ba54d16d1acc4c0950dd3608d0b59d1af82 | 21 | betaln.py | 362 | Address drastic slowdown in mypy runtime | 27,264 | 0 | 290 | 269 | 82 | 122,898 | 209 | jax | 28 | jax/_src/third_party/scipy/betaln.py | Python | 23 | {
"docstring": "\n Compute ``log(gamma(a))/log(gamma(a + b))`` when ``b >= 8``.\n\n Derived from scipy's implmentation of `algdiv`_.\n\n This differs from the scipy implementation in that it assumes a <= b\n because recomputing ``a, b = jnp.minimum(a, b), jnp.maximum(a, b)`` might\n be expensive and this is only called by ``betaln``.\n\n .. _algdiv:\n https://github.com/scipy/scipy/blob/c89dfc2b90d993f2a8174e57e0cbc8fbe6f3ee19/scipy/special/cdflib/algdiv.f\n ",
"language": "en",
"n_whitespaces": 78,
"n_words": 49,
"vocab_size": 47
} | https://github.com/google/jax.git |
|
1 | _disabled | def _disabled(self, *args, **kwargs) -> NoReturn:
raise TypeError(f"'{type(self).__name__}' does not support mutable operations.")
| 6ba2a67556526db2e5b0b60a566b5f2039cf4a46 | 12 | frozen.py | 46 | TYP: annotate functions that always error with NoReturn (#48002) | 40,216 | 0 | 27 | 20 | 13 | 168,150 | 13 | pandas | 8 | pandas/core/indexes/frozen.py | Python | 5 | {
"docstring": "\n This method will not function because object is immutable.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | https://github.com/pandas-dev/pandas.git |
|
2 | _set_preview_feed | def _set_preview_feed(self):
retval = {}
for idx, side in enumerate(("a", "b")):
logger.debug("Setting preview feed: (side: '%s')", side)
preview_images = self._config.get("preview_images", 14)
preview_images = min(max(preview_images, 2), 16)
batchsize = min(len(self._images[side]), preview_images)
retval[side] = self._load_generator(idx).minibatch_ab(self._images[side],
batchsize,
side,
do_shuffle=True,
is_preview=True)
logger.debug("Set preview feed. Batchsize: %s", batchsize)
return retval
| c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | 14 | _base.py | 184 | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 19,874 | 0 | 395 | 116 | 38 | 100,389 | 45 | faceswap | 20 | plugins/train/trainer/_base.py | Python | 14 | {
"docstring": " Set the preview feed for this feeder.\n\n Creates a generator from :class:`lib.training_data.TrainingDataGenerator` specifically\n for previews for the feeder.\n\n Returns\n -------\n dict\n The side (\"a\" or \"b\") as key, :class:`~lib.training_data.TrainingDataGenerator` as\n value.\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 31,
"vocab_size": 26
} | https://github.com/deepfakes/faceswap.git |
|
1 | test_multiple_containers | def test_multiple_containers(self):
rq = ForwardMsgQueue()
self.assertTrue(rq.is_empty())
rq.enqueue(NEW_SESSION_MSG)
| 704eab3478cf69847825b23dabf15813a8ac9fa2 | 9 | forward_msg_queue_test.py | 49 | Rename and refactor `Report` machinery (#4141)
This refactor renames (almost) everything related to the outdated "report" concept with more precise concepts that we use throughout our code, primarily "script run", "session", and "app". | 26,316 | 0 | 35 | 114 | 7 | 118,611 | 7 | streamlit | 8 | lib/tests/streamlit/forward_msg_queue_test.py | Python | 13 | {
"docstring": "Deltas should only be coalesced if they're in the same container",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/streamlit/streamlit.git |
|
1 | test_simple_class_node_json_serde | def test_simple_class_node_json_serde(serve_instance):
hello_actor = ClassHello.bind()
original_dag_node = hello_actor.hello.bind()
_test_deployment_json_serde_helper(
original_dag_node,
expected_num_deployments=1,
)
model_actor = Model.bind(1)
original_dag_node = model_actor.forward.bind(1)
_test_deployment_json_serde_helper(
original_dag_node,
expected_num_deployments=1,
)
model_actor = Model.bind(1, ratio=0.5)
original_dag_node = model_actor.forward.bind(1)
_test_deployment_json_serde_helper(
original_dag_node,
expected_num_deployments=1,
)
| 89b0b82c13568254d179e63cb1a43b95fe632bd9 | 9 | test_json_serde.py | 142 | [Deployment Graph] Move `Deployment` creation outside to build function (#26129) | 27,557 | 0 | 114 | 91 | 16 | 124,273 | 33 | ray | 13 | python/ray/serve/tests/test_json_serde.py | Python | 19 | {
"docstring": "\n Test the following behavior\n 1) Ray DAG node can go through full JSON serde cycle\n 2) Ray DAG node and deserialized DAG node produces same actor instances\n with same method call output\n 3) Ray DAG node can go through multiple rounds of JSON serde and still\n provides the same value as if it's only JSON serde once\n Against following test cases\n - Simple class with no args\n - Simple class with only args, all primitive types\n - Simple class with args + kwargs, all primitive types\n - Simple chain of class method calls, all primitive types\n ",
"language": "en",
"n_whitespaces": 177,
"n_words": 96,
"vocab_size": 54
} | https://github.com/ray-project/ray.git |
|
1 | evaluate | def evaluate(self, system_id=1, rouge_args=None):
self.write_config(system_id=system_id)
options = self.__get_options(rouge_args)
command = [self._bin_path] + options
self.log.info("Running ROUGE with command {}".format(" ".join(command)))
rouge_output = check_output(command).decode("UTF-8")
return rouge_output
| 487162262196bead8d9b4c2306f313b8f64edf9b | 12 | bs_pyrouge.py | 119 | Add model Prohetnet (#1698)
* add Prohetnet model
* update prohetnet
* update format
* pre commit
* add prophetnet example
* update tokenizer.py,run_train.sh,train_prophetnet.py
* remove evaluate/gigaword/__init__.py
Co-authored-by: smallv0221 <[email protected]> | 118,144 | 0 | 73 | 70 | 19 | 322,359 | 24 | PaddleNLP | 16 | examples/text_summarization/prophetnet/evaluate/cnndm/bs_pyrouge.py | Python | 7 | {
"docstring": "\n Run ROUGE to evaluate the system summaries in system_dir against\n the model summaries in model_dir. The summaries are assumed to\n be in the one-sentence-per-line HTML format ROUGE understands.\n\n system_id: Optional system ID which will be printed in\n ROUGE's output.\n\n Returns: Rouge output as string.\n\n ",
"language": "en",
"n_whitespaces": 115,
"n_words": 44,
"vocab_size": 33
} | https://github.com/PaddlePaddle/PaddleNLP.git |
|
3 | execute_test_case | def execute_test_case(self, test_case, kill_time=None):
# type: (AutomotiveTestCaseABC, Optional[float]) -> None
test_case.pre_execute(
self.socket, self.target_state, self.configuration)
try:
test_case_kwargs = self.configuration[test_case.__class__.__name__]
except KeyError:
test_case_kwargs = dict()
if kill_time:
max_execution_time = max(int(kill_time - time.time()), 5)
cur_execution_time = test_case_kwargs.get("execution_time", 1200)
test_case_kwargs["execution_time"] = min(max_execution_time,
cur_execution_time)
log_interactive.debug("[i] Execute test_case %s with args %s",
test_case.__class__.__name__, test_case_kwargs)
test_case.execute(self.socket, self.target_state, **test_case_kwargs)
test_case.post_execute(
self.socket, self.target_state, self.configuration)
self.check_new_states(test_case)
self.check_new_testcases(test_case)
| e6eaa484b8fa3d10051e82f5a784fe8dedbd5592 | 15 | executor.py | 234 | Add assert to GMLAN Scanner to enforce fast fail on to many open TestSockets
Fix bugs in TestSocket
Fix bugs in the AutomotiveScanner execution_time handling
Simplify test code for UDS_Scanner and reuse ObjectPipes to avoid mass
creation | 52,688 | 0 | 292 | 148 | 48 | 209,484 | 57 | scapy | 26 | scapy/contrib/automotive/scanner/executor.py | Python | 19 | {
"docstring": "\n This function ensures the correct execution of a testcase, including\n the pre_execute, execute and post_execute.\n Finally the testcase is asked if a new edge or a new testcase was\n generated.\n\n :param test_case: A test case to be executed\n :param kill_time: If set, this defines the maximum execution time for\n the current test_case\n :return: None\n ",
"language": "en",
"n_whitespaces": 136,
"n_words": 54,
"vocab_size": 44
} | https://github.com/secdev/scapy.git |
|
7 | update | def update(self):
if not self.ax.get_visible() or self.ax.figure._cachedRenderer is None:
return False
if self.useblit:
if self.background is not None:
self.canvas.restore_region(self.background)
else:
self.update_background(None)
for artist in self.artists + self._get_animated_artists():
if artist.stale:
self.ax.draw_artist(artist)
self.canvas.blit(self.ax.bbox)
else:
self.canvas.draw_idle()
return False
| da31ed386482845629a8505f81810ddb341514fb | 14 | widgets.py | 177 | Fix drawing animated artists changed in selector callback | 22,575 | 0 | 200 | 108 | 26 | 107,061 | 35 | matplotlib | 19 | lib/matplotlib/widgets.py | Python | 15 | {
"docstring": "Draw using blit() or draw_idle(), depending on ``self.useblit``.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/matplotlib/matplotlib.git |
|
3 | synchronize_labels | def synchronize_labels(self, axis=None):
if axis is None:
self._deferred_index = True
self._deferred_column = True
elif axis == 0:
self._deferred_index = True
else:
self._deferred_column = True
| 3c740dbfcdd69ddc3ab45a42be996e5c61104342 | 10 | dataframe.py | 70 | FEAT-#3111: Ensure relabeling Modin Frame does not lose partition shape (#3662)
Co-authored-by: Devin Petersohn <[email protected]>
Signed-off-by: Naren Krishna <[email protected]> | 35,205 | 0 | 96 | 42 | 15 | 152,959 | 24 | modin | 5 | modin/core/dataframe/pandas/dataframe/dataframe.py | Python | 8 | {
"docstring": "\n Set the deferred axes variables for the ``PandasDataframe``.\n\n Parameters\n ----------\n axis : int, default: None\n The deferred axis.\n 0 for the index, 1 for the columns.\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 26,
"vocab_size": 20
} | https://github.com/modin-project/modin.git |
|
3 | _impute_values | def _impute_values(self, features):
if self.verbosity > 1:
print("Imputing missing values in feature set")
if self._fitted_imputer is None:
self._fitted_imputer = SimpleImputer(strategy="median")
self._fitted_imputer.fit(features)
return self._fitted_imputer.transform(features)
| 388616b6247ca4ea8de4e2f340d6206aee523541 | 12 | base.py | 91 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 43,601 | 0 | 84 | 53 | 21 | 181,817 | 23 | tpot | 10 | tpot/base.py | Python | 7 | {
"docstring": "Impute missing values in a feature set.\n\n Parameters\n ----------\n features: array-like {n_samples, n_features}\n A feature matrix\n\n Returns\n -------\n array-like {n_samples, n_features}\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 21,
"vocab_size": 17
} | https://github.com/EpistasisLab/tpot.git |
|
2 | _multi_dot_three | def _multi_dot_three(A, B, C, precision):
a0, a1b0 = A.shape
b1c0, c1 = C.shape
# cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
cost1 = a0 * b1c0 * (a1b0 + c1)
# cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
cost2 = a1b0 * c1 * (a0 + b1c0)
if cost1 < cost2:
return jnp.dot(jnp.dot(A, B, precision=precision), C, precision=precision)
else:
return jnp.dot(A, jnp.dot(B, C, precision=precision), precision=precision)
| 2416d154355f19e77b5c1ddf1de1f8552e4a98ad | 13 | linalg.py | 155 | Call _check_arraylike for jnp.linalg & jnp.fft functions | 27,182 | 0 | 79 | 103 | 39 | 122,415 | 64 | jax | 14 | jax/_src/third_party/numpy/linalg.py | Python | 9 | {
"docstring": "\n Find the best order for three arrays and do the multiplication.\n For three arguments `_multi_dot_three` is approximately 15 times faster\n than `_multi_dot_matrix_chain_order`\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 22,
"vocab_size": 20
} | https://github.com/google/jax.git |
|
1 | test_dqn | def test_dqn(self):
config = dqn.DQNConfig()
# Soft-Q for DQN.
config.exploration(exploration_config={"type": "SoftQ", "temperature": 0.5})
config.debugging(seed=42)
do_test_log_likelihood(dqn.DQN, config)
| 2ed09c54459cc3f74e2dab13406018698559856c | 11 | test_compute_log_likelihoods.py | 81 | [RLlib] Move all config validation logic into AlgorithmConfig classes. (#29854) | 30,746 | 0 | 58 | 47 | 16 | 135,845 | 16 | ray | 11 | rllib/policy/tests/test_compute_log_likelihoods.py | Python | 5 | {
"docstring": "Tests, whether DQN correctly computes logp in soft-q mode.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/ray-project/ray.git |
|
3 | _extract_future_flags | def _extract_future_flags(globs):
flags = 0
for fname in __future__.all_feature_names:
feature = globs.get(fname, None)
if feature is getattr(__future__, fname):
flags |= feature.compiler_flag
return flags
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 11 | doctest.py | 69 | add python 3.10.4 for windows | 56,906 | 0 | 60 | 43 | 19 | 223,448 | 23 | XX-Net | 10 | python3.10.4/Lib/doctest.py | Python | 7 | {
"docstring": "\n Return the compiler-flags associated with the future features that\n have been imported into the given namespace (globs).\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 17,
"vocab_size": 15
} | https://github.com/XX-net/XX-Net.git |
|
1 | test_send_html_email | def test_send_html_email(self):
send_mail(
"Test HTML subject",
"TEXT content",
["[email protected]"],
html_message="<h2>Test HTML content</h2>",
)
send_mail("Test TEXT subject", "TEXT content", ["[email protected]"])
# Check that the emails were sent
self.assertEqual(len(mail.outbox), 2)
# check that the first email is the HTML email
email_message = mail.outbox[0]
self.assertEqual(email_message.subject, "Test HTML subject")
self.assertEqual(
email_message.alternatives, [("<h2>Test HTML content</h2>", "text/html")]
)
self.assertEqual(
email_message.body, "TEXT content"
) # note: plain text will always be added to body, even with alternatives
self.assertEqual(email_message.to, ["[email protected]"])
# confirm that without html_message kwarg we do not get 'alternatives'
email_message = mail.outbox[1]
self.assertEqual(email_message.subject, "Test TEXT subject")
self.assertEqual(email_message.alternatives, [])
self.assertEqual(email_message.body, "TEXT content")
self.assertEqual(email_message.to, ["[email protected]"])
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 10 | tests.py | 261 | Reformat with black | 15,875 | 0 | 304 | 151 | 67 | 72,341 | 97 | wagtail | 13 | wagtail/admin/tests/tests.py | Python | 23 | {
"docstring": "Test that the kwarg 'html_message' works as expected on send_mail by creating 'alternatives' on the EmailMessage object",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 15
} | https://github.com/wagtail/wagtail.git |
|
1 | set_expired_status | def set_expired_status():
# filter out submitted non expired quotations whose validity has been ended
cond = "`tabQuotation`.docstatus = 1 and `tabQuotation`.status != 'Expired' and `tabQuotation`.valid_till < %s"
# check if those QUO have SO against it
so_against_quo =
# if not exists any SO, set status as Expired
frappe.db.multisql(
{
"mariadb": .format(
cond=cond, so_against_quo=so_against_quo
),
"postgres": .format(
cond=cond, so_against_quo=so_against_quo
),
},
(nowdate()),
)
@frappe.whitelist() | 74a782d81d8f8c4a4d9214a9c06377e5e6e464dd | @frappe.whitelist() | 12 | quotation.py | 111 | refactor: DB independent quoting and truthy/falsy values (#31358)
* refactor: DB independent quoting and truthy/falsy values
* style: reformat to black spec
* fix: ifnull -> coalesce
* fix: coalesce -> Coalesce
* fix: revert pypika comparison
* refactor: convert queries to QB
* fix: incorrect value types for query
`=` query makes no sense with list of values
* fix: remove warehouse docstatus condition
* fix: keep using base rate as rate
Co-authored-by: Ankush Menat <[email protected]> | 14,922 | 1 | 47 | 56 | 54 | 68,856 | 64 | erpnext | 9 | erpnext/selling/doctype/quotation/quotation.py | Python | 20 | {
"docstring": "\n\t\tSELECT\n\t\t\tso.name FROM `tabSales Order` so, `tabSales Order Item` so_item\n\t\tWHERE\n\t\t\tso_item.docstatus = 1 and so.docstatus = 1\n\t\t\tand so_item.parent = so.name\n\t\t\tand so_item.prevdoc_docname = `tabQuotation`.nameUPDATE `tabQuotation` SET `tabQuotation`.status = 'Expired' WHERE {cond} and not exists({so_against_quo})UPDATE `tabQuotation` SET status = 'Expired' FROM `tabSales Order`, `tabSales Order Item` WHERE {cond} and not exists({so_against_quo})",
"language": "en",
"n_whitespaces": 47,
"n_words": 52,
"vocab_size": 28
} | https://github.com/frappe/erpnext.git |
6 | check_freezing_date | def check_freezing_date(posting_date, adv_adj=False):
if not adv_adj:
acc_frozen_upto = frappe.db.get_value("Accounts Settings", None, "acc_frozen_upto")
if acc_frozen_upto:
frozen_accounts_modifier = frappe.db.get_value(
"Accounts Settings", None, "frozen_accounts_modifier"
)
if getdate(posting_date) <= getdate(acc_frozen_upto) and (
frozen_accounts_modifier not in frappe.get_roles() or frappe.session.user == "Administrator"
):
frappe.throw(
_("You are not authorized to add or update entries before {0}").format(
formatdate(acc_frozen_upto)
)
)
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 18 | general_ledger.py | 157 | style: format code with black | 13,794 | 0 | 37 | 92 | 41 | 65,117 | 52 | erpnext | 16 | erpnext/accounts/general_ledger.py | Python | 15 | {
"docstring": "\n\tNobody can do GL Entries where posting date is before freezing date\n\texcept authorized person\n\n\tAdministrator has all the roles so this check will be bypassed if any role is allowed to post\n\tHence stop admin to bypass if accounts are freezed\n\t",
"language": "en",
"n_whitespaces": 38,
"n_words": 42,
"vocab_size": 38
} | https://github.com/frappe/erpnext.git |
|
1 | test_run_binary | def test_run_binary(self, df, flex, comparison_op):
arith = comparison_op.__name__
with option_context("compute.use_numexpr", False):
other = df.copy() + 1
expr._MIN_ELEMENTS = 0
expr.set_test_mode(True)
result, expected = self.call_op(df, other, flex, arith)
used_numexpr = expr.get_test_result()
assert used_numexpr, "Did not use numexpr as expected."
tm.assert_equal(expected, result)
# FIXME: dont leave commented-out
# series doesn't uses vec_compare instead of numexpr...
# for i in range(len(df.columns)):
# binary_comp = other.iloc[:, i] + 1
# self.run_binary(df.iloc[:, i], binary_comp, flex)
| 2e5b05e5773f02b653d66373787b493bc3cf3abc | 11 | test_expressions.py | 134 | STYLE: use option_context almost always (#45407) | 39,456 | 0 | 187 | 80 | 58 | 163,539 | 70 | pandas | 20 | pandas/tests/test_expressions.py | Python | 10 | {
"docstring": "\n tests solely that the result is the same whether or not numexpr is\n enabled. Need to test whether the function does the correct thing\n elsewhere.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 25,
"vocab_size": 20
} | https://github.com/pandas-dev/pandas.git |
|
2 | wagtail_site | def wagtail_site(context):
try:
request = context["request"]
except KeyError:
return None
return Site.find_for_request(request=request)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 10 | wagtailcore_tags.py | 50 | Reformat with black | 16,194 | 0 | 38 | 28 | 11 | 73,961 | 12 | wagtail | 6 | wagtail/core/templatetags/wagtailcore_tags.py | Python | 6 | {
"docstring": "\n Returns the Site object for the given request\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 8,
"vocab_size": 7
} | https://github.com/wagtail/wagtail.git |
|
3 | get_user_configured_option_names | def get_user_configured_option_names(self) -> Set[str]:
return {
field for field, value in self.dict().items() if value is not DEFAULT.VALUE
}
@PublicAPI(stability="beta") | 18b38c5e23fc54bf0baf7e7dbfcb07640e81f5ef | @PublicAPI(stability="beta") | 11 | schema.py | 72 | [Serve] Track user-configured options in Serve deployments (#28313) | 28,630 | 1 | 50 | 36 | 18 | 128,216 | 19 | ray | 12 | python/ray/serve/schema.py | Python | 8 | {
"docstring": "Get set of names for all user-configured options.\n\n Any field not set to DEFAULT.VALUE is considered a user-configured option.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 19,
"vocab_size": 17
} | https://github.com/ray-project/ray.git |
2 | setmodulation | def setmodulation(self, modu):
# type: (int) -> bool
# According to https://nmap.org/npcap/guide/npcap-devguide.html#npcap-feature-dot11 # noqa: E501
self._check_npcap_requirement()
_modus = {
0: "dsss",
1: "fhss",
2: "irbaseband",
3: "ofdm",
4: "hrdss",
5: "erp",
6: "ht",
7: "vht",
8: "ihv",
9: "mimo-ofdm",
10: "mimo-ofdm",
}
m = _modus.get(modu, "unknown") if isinstance(modu, int) else modu
return self._npcap_set("modu", str(m))
| a2b7a28faff1db058dd22ce097a268e0ad5d1d33 | 10 | __init__.py | 159 | [Hinty] Core typing: windows (#3684)
* Core typing: windows
Co-authored-by: Pierre <[email protected]> | 52,781 | 0 | 232 | 92 | 50 | 209,791 | 54 | scapy | 11 | scapy/arch/windows/__init__.py | Python | 17 | {
"docstring": "Set the interface modulation. It can be:\n - 0: dsss\n - 1: fhss\n - 2: irbaseband\n - 3: ofdm\n - 4: hrdss\n - 5: erp\n - 6: ht\n - 7: vht\n - 8: ihv\n - 9: mimo-ofdm\n - 10: mimo-ofdm\n - the value directly\n Only available with Npcap.",
"language": "en",
"n_whitespaces": 174,
"n_words": 48,
"vocab_size": 35
} | https://github.com/secdev/scapy.git |
|
3 | make_distribution_for_install_requirement | def make_distribution_for_install_requirement(install_req):
# type: (InstallRequirement) -> AbstractDistribution
# Editable requirements will always be source distributions. They use the
# legacy logic until we create a modern standard for them.
if install_req.editable:
return SourceDistribution(install_req)
# If it's a wheel, it's a WheelDistribution
if install_req.is_wheel:
return WheelDistribution(install_req)
# Otherwise, a SourceDistribution
return SourceDistribution(install_req)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 9 | __init__.py | 58 | upd; format | 12,243 | 0 | 92 | 31 | 39 | 60,680 | 51 | transferlearning | 6 | .venv/lib/python3.8/site-packages/pip/_internal/distributions/__init__.py | Python | 6 | {
"docstring": "Returns a Distribution for the given InstallRequirement",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/jindongwang/transferlearning.git |
|
5 | _discover_all_providers_from_packages | def _discover_all_providers_from_packages(self) -> None:
for entry_point, dist in entry_points_with_dist('apache_airflow_provider'):
package_name = dist.metadata['name']
if self._provider_dict.get(package_name) is not None:
continue
log.debug("Loading %s from package %s", entry_point, package_name)
version = dist.version
provider_info = entry_point.load()()
self._provider_schema_validator.validate(provider_info)
provider_info_package_name = provider_info['package-name']
if package_name != provider_info_package_name:
raise Exception(
f"The package '{package_name}' from setuptools and "
f"{provider_info_package_name} do not match. Please make sure they are aligned"
)
if package_name not in self._provider_dict:
self._provider_dict[package_name] = ProviderInfo(version, provider_info, 'package')
else:
log.warning(
"The provider for package '%s' could not be registered from because providers for that "
"package name have already been registered",
package_name,
)
| b5a786b38148295c492da8ab731d5e2f6f86ccf7 | 14 | providers_manager.py | 221 | Suppress import errors for providers from sources (#22579)
When we are running airflow locally with providers installed from sources, often many providers will be discovered which we haven't installed the deps for. This generally results in a very large amount of traceback logging, which has a very negative effect on usefulness of terminal output. Here we suppress this error logging for providers that are installed from sources. | 8,934 | 0 | 403 | 126 | 72 | 46,606 | 94 | airflow | 20 | airflow/providers_manager.py | Python | 31 | {
"docstring": "\n Discovers all providers by scanning packages installed. The list of providers should be returned\n via the 'apache_airflow_provider' entrypoint as a dictionary conforming to the\n 'airflow/provider_info.schema.json' schema. Note that the schema is different at runtime\n than provider.yaml.schema.json. The development version of provider schema is more strict and changes\n together with the code. The runtime version is more relaxed (allows for additional properties)\n and verifies only the subset of fields that are needed at runtime.\n ",
"language": "en",
"n_whitespaces": 123,
"n_words": 73,
"vocab_size": 55
} | https://github.com/apache/airflow.git |
|
1 | load | def load(self, loader):
loader.add_option(
"modify_body", Sequence[str], [],
)
| fdde9ba3b3caaa2654048cec0af07bfcc3a6a3f8 | 8 | modifybody.py | 37 | use Python 3.9+ typing | 73,629 | 0 | 44 | 23 | 8 | 251,191 | 8 | mitmproxy | 6 | mitmproxy/addons/modifybody.py | Python | 9 | {
"docstring": "\n Replacement pattern of the form \"[/flow-filter]/regex/[@]replacement\", where\n the separator can be any character. The @ allows to provide a file path that\n is used to read the replacement string.\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 29,
"vocab_size": 26
} | https://github.com/mitmproxy/mitmproxy.git |
|
3 | get_ready | def get_ready(self) -> Dict[ActorHandle, List[Any]]:
ready_requests_dict = defaultdict(list)
ready_requests, self._pending_remotes = ray.wait(
self._pending_remotes,
timeout=self._ray_wait_timeout_s,
num_returns=len(self._pending_remotes),
)
if not self._return_object_refs:
objs = ray.get(ready_requests)
else:
objs = ready_requests
for req, obj in zip(ready_requests, objs):
actor = self._pending_to_actor[req]
self._remote_requests_in_flight[actor].remove(req)
ready_requests_dict[actor].append(obj)
del self._pending_to_actor[req]
del ready_requests
return dict(ready_requests_dict)
| eaed256d6863c529b8ada42514f7fba12d146f22 | 12 | parallel_requests.py | 193 | [RLlib] Async parallel execution manager. (#24423) | 31,919 | 0 | 205 | 125 | 35 | 140,298 | 43 | ray | 29 | rllib/execution/parallel_requests.py | Python | 26 | {
"docstring": "Get results that are ready to be returned\n\n Returns:\n A dictionary of actor handles to lists of returns from tasks that were\n previously submitted to this actor pool that are now ready to be returned.\n If return_object_refs\n\n ",
"language": "en",
"n_whitespaces": 86,
"n_words": 37,
"vocab_size": 27
} | https://github.com/ray-project/ray.git |
|
1 | set_link_objects | def set_link_objects(self, objects):
self.objects = objects[:]
# -- Private utility methods --------------------------------------
# (here for the convenience of subclasses)
# Helper method to prep compiler in subclass compile() methods
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 8 | ccompiler.py | 31 | add python 3.10.4 for windows | 56,651 | 0 | 52 | 16 | 26 | 222,578 | 29 | XX-Net | 3 | python3.10.4/Lib/distutils/ccompiler.py | Python | 2 | {
"docstring": "Set the list of object files (or analogues) to be included in\n every link to 'objects'. This does not affect any standard object\n files that the linker may include by default (such as system\n libraries).\n ",
"language": "en",
"n_whitespaces": 64,
"n_words": 35,
"vocab_size": 31
} | https://github.com/XX-net/XX-Net.git |
|
2 | get_serve_client | def get_serve_client(self):
from ray.serve.context import get_global_client
from ray.serve.exceptions import RayServeException
try:
return get_global_client(_health_check_controller=True)
except RayServeException:
logger.debug("There's no Serve app running on this Ray cluster.")
return None
| 4ab97399cda80be1e146946c43d6fb2926248b28 | 11 | serve_agent.py | 70 | [Serve] Only start Serve in the CLI through the `serve deploy` command (#27063)
These Serve CLI commands start Serve if it's not already running:
* `serve deploy`
* `serve config`
* `serve status`
* `serve shutdown`
#27026 introduces the ability to specify a `host` and `port` in the Serve config file. However, once Serve starts running, changing these options requires tearing down the entire Serve application and relaunching it. This limitation is an issue because users can inadvertently start Serve by running one of the `GET`-based CLI commands (i.e. `serve config` or `serve status`) before running `serve deploy`.
This change makes `serve deploy` the only CLI command that can start a Serve application on a Ray cluster. The other commands have updated behavior when Serve is not yet running on the cluster.
* `serve config`: prints an empty config body.
```yaml
import_path: ''
runtime_env: {}
deployments: []
```
* `serve status`: prints an empty status body, with a new `app_status` `status` value: `NOT_STARTED`.
```yaml
app_status:
status: NOT_STARTED
message: ''
deployment_timestamp: 0
deployment_statuses: []
```
* `serve shutdown`: performs a no-op. | 28,078 | 0 | 94 | 42 | 23 | 126,155 | 26 | ray | 11 | dashboard/modules/serve/serve_agent.py | Python | 8 | {
"docstring": "Gets the ServeControllerClient to the this cluster's Serve app.\n\n return: If Serve is running on this Ray cluster, returns a client to\n the Serve controller. If Serve is not running, returns None.\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 32,
"vocab_size": 22
} | https://github.com/ray-project/ray.git |
|
6 | resize_image_type0 | def resize_image_type0(self, img):
limit_side_len = self.max_side_len
h, w, _ = img.shape
# limit the max side
if max(h, w) > limit_side_len:
if h > w:
ratio = float(limit_side_len) / h
else:
ratio = float(limit_side_len) / w
else:
ratio = 1.
resize_h = int(h * ratio)
resize_w = int(w * ratio)
resize_h = int(round(resize_h / 32) * 32)
resize_w = int(round(resize_w / 32) * 32)
try:
if int(resize_w) <= 0 or int(resize_h) <= 0:
return None, (None, None)
img = cv2.resize(img, (int(resize_w), int(resize_h)))
except:
print(img.shape, resize_w, resize_h)
sys.exit(0)
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
# return img, np.array([h, w])
return img, [ratio_h, ratio_w]
| 9b3119dfb63c4cbb7acfb9f1f1c09ac24e6d68d2 | 14 | processor.py | 302 | add module | 9,744 | 0 | 340 | 190 | 66 | 49,439 | 106 | PaddleHub | 23 | modules/image/text_recognition/ppocrv3_det_ch/processor.py | Python | 24 | {
"docstring": "\n resize image to a size multiple of 32 which is required by the network\n args:\n img(array): array with shape [h, w, c]\n return(tuple):\n img, (ratio_h, ratio_w)\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 26,
"vocab_size": 26
} | https://github.com/PaddlePaddle/PaddleHub.git |
|
1 | test_finds_message | def test_finds_message(self) -> None:
# The other user sends some messages
self.helper.send(self.room, body="Hi!", tok=self.other_access_token)
self.helper.send(self.room, body="There!", tok=self.other_access_token)
channel = self.make_request(
"POST",
"/search?access_token=%s" % (self.access_token,),
{
"search_categories": {
"room_events": {"keys": ["content.body"], "search_term": "Hi"}
}
},
)
# Check we get the results we expect -- one search result, of the sent
# messages
self.assertEqual(channel.code, 200)
results = channel.json_body["search_categories"]["room_events"]
self.assertEqual(results["count"], 1)
self.assertEqual(results["results"][0]["result"]["content"]["body"], "Hi!")
# No context was requested, so we should get none.
self.assertEqual(results["results"][0]["context"], {})
| 2ffaf30803f93273a4d8a65c9e6c3110c8433488 | 16 | test_rooms.py | 277 | Add type hints to `tests/rest/client` (#12108)
* Add type hints to `tests/rest/client`
* newsfile
* fix imports
* add `test_account.py`
* Remove one type hint in `test_report_event.py`
* change `on_create_room` to `async`
* update new functions in `test_third_party_rules.py`
* Add `test_filter.py`
* add `test_rooms.py`
* change to `assertEquals` to `assertEqual`
* lint | 71,583 | 0 | 264 | 159 | 60 | 247,312 | 73 | synapse | 15 | tests/rest/client/test_rooms.py | Python | 21 | {
"docstring": "\n The search functionality will search for content in messages if asked to\n do so.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | https://github.com/matrix-org/synapse.git |
|
2 | conv_block | def conv_block(cls, inputs, filters, idx, recursions):
name = f"conv{idx}"
var_x = inputs
for i in range(1, recursions + 1):
rec_name = f"{name}_{i}"
var_x = ZeroPadding2D(1, name=f"{rec_name}.zeropad")(var_x)
var_x = Conv2D(filters,
kernel_size=3,
strides=1,
activation="relu",
name=rec_name)(var_x)
return var_x
| aa39234538a8f83e6aa2b60b8275a570e8876ac2 | 14 | s3fd.py | 135 | Update all Keras Imports to be conditional (#1214)
* Remove custom keras importer
* first round keras imports fix
* launcher.py: Remove KerasFinder references
* 2nd round keras imports update (lib and extract)
* 3rd round keras imports update (train)
* remove KerasFinder from tests
* 4th round keras imports update (tests) | 19,921 | 0 | 207 | 78 | 28 | 100,443 | 35 | faceswap | 16 | plugins/extract/detect/s3fd.py | Python | 12 | {
"docstring": " First round convolutions with zero padding added.\n\n Parameters\n ----------\n inputs: tensor\n The input tensor to the convolution block\n filters: int\n The number of filters\n idx: int\n The layer index for naming\n recursions: int\n The number of recursions of the block to perform\n\n Returns\n -------\n tensor\n The output tensor from the convolution block\n ",
"language": "en",
"n_whitespaces": 178,
"n_words": 52,
"vocab_size": 34
} | https://github.com/deepfakes/faceswap.git |
|
4 | get_bazel_path | def get_bazel_path(bazel_path_flag):
for path in filter(None, get_bazel_paths(bazel_path_flag)):
version = get_bazel_version(path)
if version is not None and version >= (5, 0, 0):
return path, ".".join(map(str, version))
print("Cannot find or download a suitable version of bazel."
"Please install bazel >= 5.0.0.")
sys.exit(-1)
| 2388e353da9768a5e714a83b360bac1e920ff7ae | 14 | build.py | 112 | Increase bazel version to 5.0.0 to match TensorFlow
(https://github.com/tensorflow/tensorflow/commit/8871926b0aa9d5b0e819d12f6945bce752fde610). | 26,549 | 0 | 62 | 67 | 36 | 119,172 | 40 | jax | 13 | build/build.py | Python | 8 | {
"docstring": "Returns the path to a Bazel binary, downloading Bazel if not found. Also,\n checks Bazel's version is at least newer than 5.0.0\n\n A manual version check is needed only for really old bazel versions.\n Newer bazel releases perform their own version check against .bazelversion\n (see for details\n https://blog.bazel.build/2019/12/19/bazel-2.0.html#other-important-changes).\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 48,
"vocab_size": 41
} | https://github.com/google/jax.git |
|
3 | build_ddp | def build_ddp(model, device='cuda', *args, **kwargs):
assert device in ['cuda', 'mlu'], 'Only available for cuda or mlu devices.'
if device == 'cuda':
model = model.cuda()
elif device == 'mlu':
from mmcv.device.mlu import MLUDistributedDataParallel
ddp_factory['mlu'] = MLUDistributedDataParallel
model = model.mlu()
return ddp_factory[device](model, *args, **kwargs)
| 24f2fdb38481e6c013a588660c044e410148ce1e | 11 | util_distribution.py | 133 | fix lint (#7793) | 70,288 | 0 | 85 | 78 | 34 | 244,223 | 42 | mmdetection | 10 | mmdet/utils/util_distribution.py | Python | 9 | {
"docstring": "Build DistributedDataParallel module by device type.\n\n If device is cuda, return a MMDistributedDataParallel model;\n if device is mlu, return a MLUDistributedDataParallel model.\n\n Args:\n model (:class:`nn.Module`): module to be parallelized.\n device (str): device type, mlu or cuda.\n\n Returns:\n :class:`nn.Module`: the module to be parallelized\n\n References:\n .. [1] https://pytorch.org/docs/stable/generated/torch.nn.parallel.\n DistributedDataParallel.html\n ",
"language": "en",
"n_whitespaces": 114,
"n_words": 48,
"vocab_size": 37
} | https://github.com/open-mmlab/mmdetection.git |
|
4 | detect_current_mode | def detect_current_mode(cls) -> _FaultTolerantMode:
env_value = os.getenv("PL_FAULT_TOLERANT_TRAINING", "0").lower()
# the int values are kept for backwards compatibility, but long-term we want to keep only the strings
if env_value in ("0", "disabled"):
return _FaultTolerantMode.DISABLED
elif env_value in ("1", "automatic"):
return _FaultTolerantMode.AUTOMATIC
elif env_value in ("2", "manual"):
return _FaultTolerantMode.MANUAL
raise MisconfigurationException(
"The environment flag `PL_FAULT_TOLERANT_TRAINING` should be either 'disabled', 'automatic', or 'manual'."
)
| a610e043d797ca0bae1ce186829fece79077407a | 11 | enums.py | 122 | Add typing for utilities/enums.py (#11298) | 69,581 | 0 | 161 | 66 | 52 | 241,553 | 61 | lightning | 11 | pytorch_lightning/utilities/enums.py | Python | 12 | {
"docstring": "This classmethod detects if `Fault Tolerant` is activated and maps its value to `_FaultTolerantMode`.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | https://github.com/Lightning-AI/lightning.git |
|
5 | _path_from_module | def _path_from_module(self, module):
# See #21874 for extended discussion of the behavior of this method in
# various cases.
# Convert to list because __path__ may not support indexing.
paths = list(getattr(module, "__path__", []))
if len(paths) != 1:
filename = getattr(module, "__file__", None)
if filename is not None:
paths = [os.path.dirname(filename)]
else:
# For unknown reasons, sometimes the list returned by __path__
# contains duplicates that must be removed (#25246).
paths = list(set(paths))
if len(paths) > 1:
raise ImproperlyConfigured(
"The app module %r has multiple filesystem locations (%r); "
"you must configure this app with an AppConfig subclass "
"with a 'path' class attribute." % (module, paths)
)
elif not paths:
raise ImproperlyConfigured(
"The app module %r has no filesystem location, "
"you must configure this app with an AppConfig subclass "
"with a 'path' class attribute." % module
)
return paths[0]
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 15 | config.py | 191 | Refs #33476 -- Reformatted code with Black. | 50,287 | 0 | 432 | 108 | 91 | 203,297 | 142 | django | 13 | django/apps/config.py | Python | 21 | {
"docstring": "Attempt to determine app's filesystem path from its module.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/django/django.git |
|
4 | value_as_datetime | def value_as_datetime(self) -> tp.Tuple[datetime, datetime] | None:
if self.value is None:
return None
v1, v2 = self.value
if isinstance(v1, numbers.Number):
d1 = datetime.utcfromtimestamp(v1 / 1000)
else:
d1 = v1
if isinstance(v2, numbers.Number):
d2 = datetime.utcfromtimestamp(v2 / 1000)
else:
d2 = v2
return d1, d2
value = NonNullable(Tuple(Datetime, Datetime), help=)
value_throttled = Readonly(NonNullable(Tuple(Datetime, Datetime)), help=)
start = NonNullable(Datetime, help=)
end = NonNullable(Datetime, help=)
step = Int(default=3_600_000, help=)
format = Override(default="%d %b %Y %H:%M:%S")
#-----------------------------------------------------------------------------
# Private API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Code
#-----------------------------------------------------------------------------
| c9751009161f092b2e403d8cccccf5252c0dce1a | 11 | sliders.py | 267 | Add DatetimeRangeSlider (#12034)
* Add DatetimeRangeSlider
* Add tests
* Add docs | 53,206 | 0 | 204 | 87 | 49 | 212,222 | 81 | bokeh | 26 | bokeh/models/widgets/sliders.py | Python | 16 | {
"docstring": " Convenience property to retrieve the value tuple as a tuple of\n datetime objects.\n \n Initial or selected range.\n \n Initial or selected value, throttled to report only on mouseup.\n \n The minimum allowable value.\n \n The maximum allowable value.\n \n The step between consecutive values, in units of milliseconds.\n Default is one hour.\n ",
"language": "en",
"n_whitespaces": 101,
"n_words": 48,
"vocab_size": 38
} | https://github.com/bokeh/bokeh.git |
|
5 | spectral_graph_forge | def spectral_graph_forge(G, alpha, transformation="identity", seed=None):
import numpy as np
import scipy as sp
import scipy.stats # call as sp.stats
available_transformations = ["identity", "modularity"]
alpha = np.clip(alpha, 0, 1)
A = nx.to_numpy_array(G)
n = A.shape[1]
level = int(round(n * alpha))
if transformation not in available_transformations:
msg = f"{transformation!r} is not a valid transformation. "
msg += f"Transformations: {available_transformations}"
raise nx.NetworkXError(msg)
K = np.ones((1, n)) @ A
B = A
if transformation == "modularity":
B -= K.T @ K / K.sum()
# Compute low-rank approximation of B
evals, evecs = np.linalg.eigh(B)
k = np.argsort(np.abs(evals))[::-1] # indices of evals in descending order
evecs[:, k[np.arange(level, n)]] = 0 # set smallest eigenvectors to 0
B = evecs @ np.diag(evals) @ evecs.T
if transformation == "modularity":
B += K.T @ K / K.sum()
B = np.clip(B, 0, 1)
np.fill_diagonal(B, 0)
for i in range(n - 1):
B[i, i + 1 :] = sp.stats.bernoulli.rvs(B[i, i + 1 :], random_state=seed)
B[i + 1 :, i] = np.transpose(B[i, i + 1 :])
H = nx.from_numpy_array(B)
return H
| 8bea55e3071ed71eab4fb6650a45f0cdf5c911d4 | 13 | spectral_graph_forge.py | 494 | Remove `_mat_spect_approx` in favor of simpler procedure (#5624)
* Replace _mat_spect_approx func internal usage.
* Rm _mat_spect_approx helper function. | 41,994 | 0 | 293 | 306 | 105 | 176,595 | 169 | networkx | 45 | networkx/generators/spectral_graph_forge.py | Python | 30 | {
"docstring": "Returns a random simple graph with spectrum resembling that of `G`\n\n This algorithm, called Spectral Graph Forge (SGF), computes the\n eigenvectors of a given graph adjacency matrix, filters them and\n builds a random graph with a similar eigenstructure.\n SGF has been proved to be particularly useful for synthesizing\n realistic social networks and it can also be used to anonymize\n graph sensitive data.\n\n Parameters\n ----------\n G : Graph\n alpha : float\n Ratio representing the percentage of eigenvectors of G to consider,\n values in [0,1].\n transformation : string, optional\n Represents the intended matrix linear transformation, possible values\n are 'identity' and 'modularity'\n seed : integer, random_state, or None (default)\n Indicator of numpy random number generation state.\n See :ref:`Randomness<randomness>`.\n\n Returns\n -------\n H : Graph\n A graph with a similar eigenvector structure of the input one.\n\n Raises\n ------\n NetworkXError\n If transformation has a value different from 'identity' or 'modularity'\n\n Notes\n -----\n Spectral Graph Forge (SGF) generates a random simple graph resembling the\n global properties of the given one.\n It leverages the low-rank approximation of the associated adjacency matrix\n driven by the *alpha* precision parameter.\n SGF preserves the number of nodes of the input graph and their ordering.\n This way, nodes of output graphs resemble the properties of the input one\n and attributes can be directly mapped.\n\n It considers the graph adjacency matrices which can optionally be\n transformed to other symmetric real matrices (currently transformation\n options include *identity* and *modularity*).\n The *modularity* transformation, in the sense of Newman's modularity matrix\n allows the focusing on community structure related properties of the graph.\n\n SGF applies a low-rank approximation whose fixed rank is computed from the\n ratio *alpha* of the input graph adjacency matrix dimension.\n This step performs a filtering on the input eigenvectors similar to the low\n pass filtering common in telecommunications.\n\n The filtered values (after truncation) are used as input to a Bernoulli\n sampling for constructing a random adjacency matrix.\n\n References\n ----------\n .. [1] L. Baldesi, C. T. Butts, A. Markopoulou, \"Spectral Graph Forge:\n Graph Generation Targeting Modularity\", IEEE Infocom, '18.\n https://arxiv.org/abs/1801.01715\n .. [2] M. Newman, \"Networks: an introduction\", Oxford university press,\n 2010\n\n Examples\n --------\n >>> G = nx.karate_club_graph()\n >>> H = nx.spectral_graph_forge(G, 0.3)\n >>>\n ",
"language": "en",
"n_whitespaces": 582,
"n_words": 358,
"vocab_size": 213
} | https://github.com/networkx/networkx.git |
|
3 | find_loader | def find_loader(self, fullname):
_warnings.warn("FileFinder.find_loader() is deprecated and "
"slated for removal in Python 3.12; use find_spec() instead",
DeprecationWarning)
spec = self.find_spec(fullname)
if spec is None:
return None, []
return spec.loader, spec.submodule_search_locations or []
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 9 | _bootstrap_external.py | 79 | add python 3.10.4 for windows | 55,131 | 0 | 123 | 46 | 29 | 218,101 | 33 | XX-Net | 10 | python3.10.4/Lib/importlib/_bootstrap_external.py | Python | 8 | {
"docstring": "Try to find a loader for the specified module, or the namespace\n package portions. Returns (loader, list-of-portions).\n\n This method is deprecated. Use find_spec() instead.\n\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 24,
"vocab_size": 23
} | https://github.com/XX-net/XX-Net.git |
|
5 | sys_path | def sys_path(self):
# type: () -> List[str]
from .vendor.vistir.compat import JSONDecodeError
current_executable = Path(sys.executable).as_posix()
if not self.python or self.python == current_executable:
return sys.path
elif any([sys.prefix == self.prefix, not self.is_venv]):
return sys.path
cmd_args = [self.python, "-c", "import json, sys; print(json.dumps(sys.path))"]
path, _ = vistir.misc.run(
cmd_args,
return_object=False,
nospin=True,
block=True,
combine_stderr=False,
write_to_stdout=False,
)
try:
path = json.loads(path.strip())
except JSONDecodeError:
path = sys.path
return path
| 9a3b3ce70621af6f9adaa9eeac9cf83fa149319c | 12 | environment.py | 212 | Issue 4993 Add standard pre commit hooks and apply linting. (#4994)
* Add .pre-commit-config.yaml to the project and exclude tests (for now). This does not include the MyPy linting that pip does but does include everything else. | 3,055 | 0 | 255 | 134 | 48 | 19,671 | 61 | pipenv | 28 | pipenv/environment.py | Python | 21 | {
"docstring": "\n The system path inside the environment\n\n :return: The :data:`sys.path` from the environment\n :rtype: list\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 14,
"vocab_size": 11
} | https://github.com/pypa/pipenv.git |
|
5 | parquet_to_arrow | def parquet_to_arrow(sources, destination):
stream = None if isinstance(destination, str) else destination
disable = not utils.is_progress_bar_enabled()
with ArrowWriter(path=destination, stream=stream) as writer:
for source in utils.tqdm(sources, unit="sources", disable=disable):
pf = pa.parquet.ParquetFile(source)
for i in utils.tqdm(range(pf.num_row_groups), unit="row_groups", leave=False, disable=disable):
df = pf.read_row_group(i).to_pandas()
for col in df.columns:
df[col] = df[col].apply(json.loads)
reconstructed_table = pa.Table.from_pandas(df)
writer.write_table(reconstructed_table)
return destination
| 6ed6ac9448311930557810383d2cfd4fe6aae269 | 17 | arrow_writer.py | 236 | Better TQDM output (#3654)
* Show progress bar when generating examples
* Consistent utils.is_progress_bar_enabled calls
* Fix tqdm in notebook
* Add missing params to DatasetDict.map
* Specify total in tqdm progress bar in map
* Fix total computation
* Small fix
* Add desc to map_nested
* Add more precise descriptions to download
* Address comments
* Fix docstring
* Final changes
* Minor change | 21,787 | 0 | 175 | 150 | 41 | 104,228 | 52 | datasets | 35 | src/datasets/arrow_writer.py | Python | 13 | {
"docstring": "Convert parquet files to arrow file. Inputs can be str paths or file-like objects",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | https://github.com/huggingface/datasets.git |
|
3 | cursor_width | def cursor_width(self) -> int:
if self.placeholder and not self.value:
return cell_len(self.placeholder)
return self._position_to_cell(len(self.value)) + 1
| e61eaf7597a1050e80e7ce029737b5544743a2f5 | 11 | _input.py | 65 | replace TextInput with Input | 44,947 | 0 | 47 | 39 | 14 | 185,240 | 15 | textual | 8 | src/textual/widgets/_input.py | Python | 5 | {
"docstring": "Get the width of the input (with extra space for cursor at the end).",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 12
} | https://github.com/Textualize/textual.git |
|
1 | test_bundled_aggregations_with_filter | def test_bundled_aggregations_with_filter(self) -> None:
self._send_relation(RelationTypes.ANNOTATION, "m.reaction", "a")
# Note that the sync filter does not include "unsigned" as a field.
filter = urllib.parse.quote_plus(
b'{"event_fields": ["content", "event_id"], "room": {"timeline": {"limit": 3}}}'
)
channel = self.make_request(
"GET", f"/sync?filter={filter}", access_token=self.user_token
)
self.assertEqual(200, channel.code, channel.json_body)
# Ensure the timeline is limited, find the parent event.
room_timeline = channel.json_body["rooms"]["join"][self.room]["timeline"]
self.assertTrue(room_timeline["limited"])
parent_event = self._find_event_in_chunk(room_timeline["events"])
# Ensure there's bundled aggregations on it.
self.assertIn("unsigned", parent_event)
self.assertIn("m.relations", parent_event["unsigned"])
| 96274565ff0dbb7d21b02b04fcef115330426707 | 11 | test_relations.py | 211 | Fix bundling aggregations if unsigned is not a returned event field. (#12234)
An error occured if a filter was supplied with `event_fields` which did not include
`unsigned`.
In that case, bundled aggregations are still added as the spec states it is allowed
for servers to add additional fields. | 71,871 | 0 | 196 | 120 | 59 | 247,719 | 69 | synapse | 22 | tests/rest/client/test_relations.py | Python | 21 | {
"docstring": "\n If \"unsigned\" is an omitted field (due to filtering), adding the bundled\n aggregations should not break.\n\n Note that the spec allows for a server to return additional fields beyond\n what is specified.\n ",
"language": "en",
"n_whitespaces": 68,
"n_words": 32,
"vocab_size": 29
} | https://github.com/matrix-org/synapse.git |
|
2 | sample_crop_box | def sample_crop_box(self, img_size, results):
assert isinstance(img_size, tuple)
h, w = img_size[:2]
key_masks = results['polys']
x_valid_array = np.ones(w, dtype=np.int32)
y_valid_array = np.ones(h, dtype=np.int32)
selected_mask = key_masks[np.random.randint(0, len(key_masks))]
selected_mask = selected_mask.reshape((-1, 2)).astype(np.int32)
max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0)
min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1)
max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0)
min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1)
# for key in results.get('mask_fields', []):
# if len(results[key].masks) == 0:
# continue
# masks = results[key].masks
for mask in key_masks:
# assert len(mask) == 1
mask = mask.reshape((-1, 2)).astype(np.int32)
clip_x = np.clip(mask[:, 0], 0, w - 1)
clip_y = np.clip(mask[:, 1], 0, h - 1)
min_x, max_x = np.min(clip_x), np.max(clip_x)
min_y, max_y = np.min(clip_y), np.max(clip_y)
x_valid_array[min_x - 2:max_x + 3] = 0
y_valid_array[min_y - 2:max_y + 3] = 0
min_w = int(w * self.min_side_ratio)
min_h = int(h * self.min_side_ratio)
x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start,
min_x_end)
y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start,
min_y_end)
return np.array([x1, y1, x2, y2])
| 9f62b610dea6161627200ed85d92e19b1923279a | 14 | fce_aug.py | 561 | add fcenet | 4,526 | 0 | 507 | 370 | 98 | 23,176 | 161 | PaddleOCR | 45 | ppocr/data/imaug/fce_aug.py | Python | 27 | {
"docstring": "Generate crop box and make sure not to crop the polygon instances.\n\n Args:\n img_size (tuple(int)): The image size (h, w).\n results (dict): The results dict.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 25,
"vocab_size": 22
} | https://github.com/PaddlePaddle/PaddleOCR.git |
|
7 | dt64arr_to_periodarr | def dt64arr_to_periodarr(data, freq, tz=None):
if not isinstance(data.dtype, np.dtype) or data.dtype.kind != "M":
raise ValueError(f"Wrong dtype: {data.dtype}")
if freq is None:
if isinstance(data, ABCIndex):
data, freq = data._values, data.freq
elif isinstance(data, ABCSeries):
data, freq = data._values, data.dt.freq
elif isinstance(data, (ABCIndex, ABCSeries)):
data = data._values
reso = get_unit_from_dtype(data.dtype)
freq = Period._maybe_convert_freq(freq)
base = freq._period_dtype_code
return c_dt64arr_to_periodarr(data.view("i8"), base, tz, reso=reso), freq
| 25749d29dbbb8c6ae7a05f4661948d03c17b20ae | 14 | period.py | 229 | ENH: DTA.to_period support non-nano (#47324)
* ENH: DTA.to_period support non-nano
* update test | 39,943 | 0 | 132 | 142 | 42 | 167,144 | 58 | pandas | 21 | pandas/core/arrays/period.py | Python | 14 | {
"docstring": "\n Convert an datetime-like array to values Period ordinals.\n\n Parameters\n ----------\n data : Union[Series[datetime64[ns]], DatetimeIndex, ndarray[datetime64ns]]\n freq : Optional[Union[str, Tick]]\n Must match the `freq` on the `data` if `data` is a DatetimeIndex\n or Series.\n tz : Optional[tzinfo]\n\n Returns\n -------\n ordinals : ndarray[int64]\n freq : Tick\n The frequency extracted from the Series or DatetimeIndex if that's\n used.\n\n ",
"language": "en",
"n_whitespaces": 117,
"n_words": 55,
"vocab_size": 44
} | https://github.com/pandas-dev/pandas.git |
|
2 | get_2d_sincos_pos_embed | def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
grid_h = tf.range(grid_size, dtype=tf.float32)
grid_w = tf.range(grid_size, dtype=tf.float32)
grid = tf.meshgrid(grid_w, grid_h) # here w goes first
grid = tf.stack(grid, axis=0)
grid = tf.reshape(grid, [2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if add_cls_token:
pos_embed = tf.concat([tf.zeros((1, embed_dim)), pos_embed], axis=0)
return pos_embed
| 5b40a37bc4da9dc6cd33876ce9bb3f7f48450a03 | 14 | modeling_tf_vit_mae.py | 176 | Add TF ViT MAE (#16255)
* ported TFViTMAEIntermediate and TFViTMAEOutput.
* added TFViTMAEModel and TFViTMAEDecoder.
* feat: added a noise argument in the implementation for reproducibility.
* feat: vit mae models with an additional noise argument for reproducibility.
Co-authored-by: ariG23498 <[email protected]>
Co-authored-by: ydshieh <[email protected]> | 6,659 | 0 | 81 | 118 | 32 | 36,650 | 46 | transformers | 19 | src/transformers/models/vit_mae/modeling_tf_vit_mae.py | Python | 10 | {
"docstring": "\n Create 2D sin/cos positional embeddings.\n\n Args:\n embed_dim (`int`):\n Embedding dimension.\n grid_size (`int`):\n The grid height and width.\n add_cls_token (`bool`, *optional*, defaults to `False`):\n Whether or not to add a classification (CLS) token.\n\n Returns:\n (`tf.Tensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the position\n embeddings (with or without classification token)\n ",
"language": "en",
"n_whitespaces": 130,
"n_words": 49,
"vocab_size": 44
} | https://github.com/huggingface/transformers.git |
|
1 | df_update | def df_update(self, other, **kwargs): # noqa: PR02
return BinaryDefault.register(pandas.DataFrame.update, inplace=True)(
self, other=other, **kwargs
)
| 57e29bc5d82348006c5170ef9ac0a9eedcd9acf9 | 10 | query_compiler.py | 56 | REFACTOR-#4513: Fix spelling mistakes in docs and docstrings (#4514)
Co-authored-by: Rehan Sohail Durrani <[email protected]>
Signed-off-by: jeffreykennethli <[email protected]> | 35,634 | 0 | 47 | 36 | 14 | 153,819 | 14 | modin | 10 | modin/core/storage_formats/base/query_compiler.py | Python | 4 | {
"docstring": "\n Update values of `self` using non-NA values of `other` at the corresponding positions.\n\n If axes are not equal, perform frames alignment first.\n\n Parameters\n ----------\n other : BaseQueryCompiler\n Frame to grab replacement values from.\n join : {\"left\"}\n Specify type of join to align frames if axes are not equal\n (note: currently only one type of join is implemented).\n overwrite : bool\n Whether to overwrite every corresponding value of self, or only if it's NAN.\n filter_func : callable(pandas.Series, pandas.Series) -> numpy.ndarray<bool>\n Function that takes column of the self and return bool mask for values, that\n should be overwritten in the self frame.\n errors : {\"raise\", \"ignore\"}\n If \"raise\", will raise a ``ValueError`` if `self` and `other` both contain\n non-NA data in the same place.\n **kwargs : dict\n Serves the compatibility purpose. Does not affect the result.\n\n Returns\n -------\n BaseQueryCompiler\n New QueryCompiler with updated values.\n ",
"language": "en",
"n_whitespaces": 351,
"n_words": 142,
"vocab_size": 100
} | https://github.com/modin-project/modin.git |
|
1 | total_seconds | def total_seconds(self) -> npt.NDArray[np.float64]:
return self._maybe_mask_results(1e-9 * self.asi8, fill_value=None)
| 3350f95c017a68644e8577651af743413532356f | 9 | timedeltas.py | 48 | REF: share DTA/TDA/PA arithmetic methods (#47205)
* REF: share DTA/TDA/PA arithmetic methods
* troubleshoot npdev build | 39,917 | 0 | 23 | 32 | 9 | 167,007 | 9 | pandas | 9 | pandas/core/arrays/timedeltas.py | Python | 56 | {
"docstring": "\n Return total duration of each element expressed in seconds.\n\n This method is available directly on TimedeltaArray, TimedeltaIndex\n and on Series containing timedelta values under the ``.dt`` namespace.\n\n Returns\n -------\n seconds : [ndarray, Float64Index, Series]\n When the calling object is a TimedeltaArray, the return type\n is ndarray. When the calling object is a TimedeltaIndex,\n the return type is a Float64Index. When the calling object\n is a Series, the return type is Series of type `float64` whose\n index is the same as the original.\n\n See Also\n --------\n datetime.timedelta.total_seconds : Standard library version\n of this method.\n TimedeltaIndex.components : Return a DataFrame with components of\n each Timedelta.\n\n Examples\n --------\n **Series**\n\n >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='d'))\n >>> s\n 0 0 days\n 1 1 days\n 2 2 days\n 3 3 days\n 4 4 days\n dtype: timedelta64[ns]\n\n >>> s.dt.total_seconds()\n 0 0.0\n 1 86400.0\n 2 172800.0\n 3 259200.0\n 4 345600.0\n dtype: float64\n\n **TimedeltaIndex**\n\n >>> idx = pd.to_timedelta(np.arange(5), unit='d')\n >>> idx\n TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],\n dtype='timedelta64[ns]', freq=None)\n\n >>> idx.total_seconds()\n Float64Index([0.0, 86400.0, 172800.0, 259200.00000000003, 345600.0],\n dtype='float64')\n ",
"language": "en",
"n_whitespaces": 569,
"n_words": 172,
"vocab_size": 105
} | https://github.com/pandas-dev/pandas.git |
|
1 | batch_shuffle | def batch_shuffle(index_array, batch_size):
batch_count = int(len(index_array) / batch_size)
# to reshape we need to be cleanly divisible by batch size
# we stash extra items and reappend them after shuffling
last_batch = index_array[batch_count * batch_size :]
index_array = index_array[: batch_count * batch_size]
index_array = index_array.reshape((batch_count, batch_size))
np.random.shuffle(index_array)
index_array = index_array.flatten()
return np.append(index_array, last_batch)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 11 | training_utils_v1.py | 119 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,870 | 0 | 83 | 73 | 42 | 271,853 | 53 | keras | 13 | keras/engine/training_utils_v1.py | Python | 8 | {
"docstring": "Shuffles an array in a batch-wise fashion.\n\n Useful for shuffling HDF5 arrays\n (where one cannot access arbitrary indices).\n\n Args:\n index_array: array of indices to be shuffled.\n batch_size: integer.\n\n Returns:\n The `index_array` array, shuffled in a batch-wise fashion.\n ",
"language": "en",
"n_whitespaces": 73,
"n_words": 37,
"vocab_size": 32
} | https://github.com/keras-team/keras.git |
|
31 | _intervals | def _intervals(self, sym):
from sympy.solvers.inequalities import _solve_inequality
assert isinstance(self, Piecewise)
| 498015021131af4dbb07eb110e5badaba8250c7b | 7 | piecewise.py | 36 | Updated import locations | 47,746 | 0 | 31 | 577 | 10 | 196,246 | 10 | sympy | 9 | sympy/functions/elementary/piecewise.py | Python | 82 | {
"docstring": "Return a list of unique tuples, (a, b, e, i), where a and b\n are the lower and upper bounds in which the expression e of\n argument i in self is defined and $a < b$ (when involving\n numbers) or $a \\le b$ when involving symbols.\n\n If there are any relationals not involving sym, or any\n relational cannot be solved for sym, NotImplementedError is\n raised. The calling routine should have removed such\n relationals before calling this routine.\n\n The evaluated conditions will be returned as ranges.\n Discontinuous ranges will be returned separately with\n identical expressions. The first condition that evaluates to\n True will be returned as the last tuple with a, b = -oo, oo.\n ",
"language": "en",
"n_whitespaces": 198,
"n_words": 114,
"vocab_size": 84
} | https://github.com/sympy/sympy.git |
|
4 | get | def get(identifier):
if isinstance(identifier, dict):
return deserialize(identifier)
elif isinstance(identifier, str):
return deserialize(str(identifier))
elif callable(identifier):
return identifier
else:
raise ValueError(
f'Could not interpret metric identifier: {identifier}')
| b4dca51d0558e788f62a96d1009a07f773a202f4 | 12 | __init__.py | 89 | Refactor disparate metrics-related files into a single metrics folder.
Further work may be needed to split up the long file with individual metric definitions. However having a single file per metric may be too granular. TBD.
PiperOrigin-RevId: 425248502 | 79,746 | 0 | 49 | 51 | 21 | 268,879 | 25 | keras | 8 | keras/metrics/__init__.py | Python | 10 | {
"docstring": "Retrieves a Keras metric as a `function`/`Metric` class instance.\n\n The `identifier` may be the string name of a metric function or class.\n\n >>> metric = tf.keras.metrics.get(\"categorical_crossentropy\")\n >>> type(metric)\n <class 'function'>\n >>> metric = tf.keras.metrics.get(\"CategoricalCrossentropy\")\n >>> type(metric)\n <class '...metrics.CategoricalCrossentropy'>\n\n You can also specify `config` of the metric to this function by passing dict\n containing `class_name` and `config` as an identifier. Also note that the\n `class_name` must map to a `Metric` class\n\n >>> identifier = {\"class_name\": \"CategoricalCrossentropy\",\n ... \"config\": {\"from_logits\": True}}\n >>> metric = tf.keras.metrics.get(identifier)\n >>> type(metric)\n <class '...metrics.CategoricalCrossentropy'>\n\n Args:\n identifier: A metric identifier. One of None or string name of a metric\n function/class or metric configuration dictionary or a metric function or\n a metric class instance\n\n Returns:\n A Keras metric as a `function`/ `Metric` class instance.\n\n Raises:\n ValueError: If `identifier` cannot be interpreted.\n ",
"language": "en",
"n_whitespaces": 184,
"n_words": 132,
"vocab_size": 72
} | https://github.com/keras-team/keras.git |
|
2 | get_attrtext | def get_attrtext(value):
m = _non_attribute_end_matcher(value)
if not m:
raise errors.HeaderParseError(
"expected attrtext but found {!r}".format(value))
attrtext = m.group()
value = value[len(attrtext):]
attrtext = ValueTerminal(attrtext, 'attrtext')
_validate_xtext(attrtext)
return attrtext, value
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 12 | _header_value_parser.py | 106 | add python 3.10.4 for windows | 56,942 | 0 | 71 | 61 | 23 | 223,513 | 29 | XX-Net | 12 | python3.10.4/Lib/email/_header_value_parser.py | Python | 10 | {
"docstring": "attrtext = 1*(any non-ATTRIBUTE_ENDS character)\n\n We allow any non-ATTRIBUTE_ENDS in attrtext, but add defects to the\n token's defects list if we find non-attrtext characters. We also register\n defects for *any* non-printables even though the RFC doesn't exclude all of\n them, because we follow the spirit of RFC 5322.\n\n ",
"language": "en",
"n_whitespaces": 64,
"n_words": 48,
"vocab_size": 39
} | https://github.com/XX-net/XX-Net.git |
|
4 | from_dict | def from_dict(data, npartitions, orient="columns", dtype=None, columns=None):
collection_types = {type(v) for v in data.values() if is_dask_collection(v)}
if collection_types:
raise NotImplementedError(
"from_dict doesn't currently support Dask collections as inputs. "
f"Objects of type {collection_types} were given in the input dict."
)
return from_pandas(
pd.DataFrame.from_dict(data, orient, dtype, columns),
npartitions,
)
| c4d35f5515191409913827fd4faa3b69a3d7399a | 12 | io.py | 116 | Backend library dispatching for IO in Dask-Array and Dask-DataFrame (#9475) | 36,860 | 0 | 112 | 72 | 43 | 157,120 | 47 | dask | 15 | dask/dataframe/io/io.py | Python | 11 | {
"docstring": "\n Construct a Dask DataFrame from a Python Dictionary\n\n Parameters\n ----------\n data : dict\n Of the form {field : array-like} or {field : dict}.\n npartitions : int\n The number of partitions of the index to create. Note that depending on\n the size and index of the dataframe, the output may have fewer\n partitions than requested.\n orient : {'columns', 'index', 'tight'}, default 'columns'\n The \"orientation\" of the data. If the keys of the passed dict\n should be the columns of the resulting DataFrame, pass 'columns'\n (default). Otherwise if the keys should be rows, pass 'index'.\n If 'tight', assume a dict with keys\n ['index', 'columns', 'data', 'index_names', 'column_names'].\n dtype: bool\n Data type to force, otherwise infer.\n columns: string, optional\n Column labels to use when ``orient='index'``. Raises a ValueError\n if used with ``orient='columns'`` or ``orient='tight'``.\n\n Examples\n --------\n >>> import dask.dataframe as dd\n >>> ddf = dd.from_dict({\"num1\": [1, 2, 3, 4], \"num2\": [7, 8, 9, 10]}, npartitions=2)\n ",
"language": "en",
"n_whitespaces": 276,
"n_words": 152,
"vocab_size": 111
} | https://github.com/dask/dask.git |
|
2 | _is_unpacked_egg | def _is_unpacked_egg(path):
return (
_is_egg_path(path) and
os.path.isfile(os.path.join(path, 'EGG-INFO', 'PKG-INFO'))
)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 12 | __init__.py | 57 | upd; format | 13,197 | 0 | 33 | 33 | 10 | 63,195 | 10 | transferlearning | 6 | .venv/lib/python3.8/site-packages/pip/_vendor/pkg_resources/__init__.py | Python | 5 | {
"docstring": "\n Determine if given path appears to be an unpacked egg.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | https://github.com/jindongwang/transferlearning.git |
|
4 | shuffle | def shuffle(self, items, key):
hashes = {}
for item in items:
hashed = self._hash_item(item, key)
if hashed in hashes:
msg = "item {!r} has same hash {!r} as item {!r}".format(
item,
hashed,
hashes[hashed],
)
raise RuntimeError(msg)
hashes[hashed] = item
return [hashes[hashed] for hashed in sorted(hashes)]
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 13 | runner.py | 115 | Refs #33476 -- Reformatted code with Black. | 51,514 | 0 | 208 | 75 | 34 | 206,404 | 45 | django | 12 | django/test/runner.py | Python | 13 | {
"docstring": "\n Return a new list of the items in a shuffled order.\n\n The `key` is a function that accepts an item in `items` and returns\n a string unique for that item that can be viewed as a string id. The\n order of the return value is deterministic. It depends on the seed\n and key function but not on the original order.\n ",
"language": "en",
"n_whitespaces": 103,
"n_words": 60,
"vocab_size": 41
} | https://github.com/django/django.git |
|
1 | test_transform_inverse_transform_round_trip | def test_transform_inverse_transform_round_trip(SPCA):
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = rng.randn(n_samples, n_features)
n_components = n_features
spca = SPCA(
n_components=n_components, alpha=1e-12, ridge_alpha=1e-12, random_state=0
)
X_trans_spca = spca.fit_transform(X)
assert_allclose(spca.inverse_transform(X_trans_spca), X)
| 01fcf8a0acc7e6517faa4fc6887eb45f5d2ea77b | 9 | test_sparse_pca.py | 118 | ENH add inverse_transform in *SparsePCA (#23905) | 76,298 | 0 | 64 | 79 | 24 | 260,503 | 30 | scikit-learn | 19 | sklearn/decomposition/tests/test_sparse_pca.py | Python | 10 | {
"docstring": "Check the `transform` and `inverse_transform` round trip with no loss of\n information.\n ",
"language": "en",
"n_whitespaces": 18,
"n_words": 12,
"vocab_size": 12
} | https://github.com/scikit-learn/scikit-learn.git |
|
3 | extract_operations | def extract_operations(self) -> List[str]:
if not self.step:
return []
try:
operations = re.findall(r'[-+*^/]', self.step)
except TypeError as e:
print(f"TYPE: {type(self.step)}")
print(f"STEP: {self.step}")
raise e
return operations
| 0f129e9c38b6b10d80982ecc412785db62842938 | 15 | step_by_step.py | 111 | ROSCOE suite of metrics (#4839)
* ROSCOE suite of metrics
* updating tests
* lint
* fixing protobuf version to stop cleaninstall failures
* updating requirements
* convert to absolute path
* moving tests because of the dependency issues
* adding new dependencies in tests
* add test dependencies
* fixing deps
* updating task list
* checklist deps can't be installed on circleci
* actually fix protobuf version
* protobuf range
* protobuf conflict with google-api-core
* return tests
* convert imports to absolute path
* trying checklist again
* trying to avoid checklist failures
* checklist to teacher tests
* add user option to avoid installation failure
* jupiter as well
* typo
* moving into virtual env setup
* user param not allowed in virtual env
* move spacy to circleCI because it's big
* replace local model with HF
* fixes based on comments
* remove unused nli scores, fix tests
* Added path to BART model
Co-authored-by: Spencer Poff <[email protected]> | 47,260 | 0 | 116 | 54 | 24 | 195,437 | 26 | ParlAI | 12 | parlai/tasks/reasoning/reason_types/step_by_step.py | Python | 13 | {
"docstring": "\n Finds all instances of the math operations: -, +, *, ^, / in the step.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 15,
"vocab_size": 14
} | https://github.com/facebookresearch/ParlAI.git |
|
1 | less_equal | def less_equal(x, y):
return tf.less_equal(x, y)
@keras_export("keras.backend.maximum")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | @keras_export("keras.backend.maximum")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | 7 | backend.py | 57 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,224 | 1 | 12 | 17 | 9 | 269,604 | 9 | keras | 10 | keras/backend.py | Python | 2 | {
"docstring": "Element-wise truth value of (x <= y).\n\n Args:\n x: Tensor or variable.\n y: Tensor or variable.\n\n Returns:\n A bool tensor.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 20,
"vocab_size": 17
} | https://github.com/keras-team/keras.git |
7 | update_reference_in_journal_entry | def update_reference_in_journal_entry(d, journal_entry, do_not_save=False):
jv_detail = journal_entry.get("accounts", {"name": d["voucher_detail_no"]})[0]
if flt(d["unadjusted_amount"]) - flt(d["allocated_amount"]) != 0:
# adjust the unreconciled balance
amount_in_account_currency = flt(d["unadjusted_amount"]) - flt(d["allocated_amount"])
amount_in_company_currency = amount_in_account_currency * flt(jv_detail.exchange_rate)
jv_detail.set(d["dr_or_cr"], amount_in_account_currency)
jv_detail.set(
"debit" if d["dr_or_cr"] == "debit_in_account_currency" else "credit",
amount_in_company_currency,
)
else:
journal_entry.remove(jv_detail)
# new row with references
new_row = journal_entry.append("accounts")
new_row.update((frappe.copy_doc(jv_detail)).as_dict())
new_row.set(d["dr_or_cr"], d["allocated_amount"])
new_row.set(
"debit" if d["dr_or_cr"] == "debit_in_account_currency" else "credit",
d["allocated_amount"] * flt(jv_detail.exchange_rate),
)
new_row.set(
"credit_in_account_currency"
if d["dr_or_cr"] == "debit_in_account_currency"
else "debit_in_account_currency",
0,
)
new_row.set("credit" if d["dr_or_cr"] == "debit_in_account_currency" else "debit", 0)
new_row.set("reference_type", d["against_voucher_type"])
new_row.set("reference_name", d["against_voucher"])
new_row.against_account = cstr(jv_detail.against_account)
new_row.is_advance = cstr(jv_detail.is_advance)
new_row.docstatus = 1
# will work as update after submit
journal_entry.flags.ignore_validate_update_after_submit = True
if not do_not_save:
journal_entry.save(ignore_permissions=True)
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 13 | utils.py | 495 | style: format code with black | 13,890 | 0 | 75 | 283 | 76 | 65,410 | 112 | erpnext | 26 | erpnext/accounts/utils.py | Python | 34 | {
"docstring": "\n\tUpdates against document, if partial amount splits into rows\n\t",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/frappe/erpnext.git |
|
3 | test_sync_call_healthy_only | def test_sync_call_healthy_only(self):
actors = [Actor.remote(i) for i in range(4)]
manager = FaultTolerantActorManager(actors=actors)
results = []
for _ in range(10):
results.extend(
manager.foreach_actor(
lambda w: w.call(), healthy_only=True
).ignore_errors()
)
# Wait for actors to recover.
wait_for_restore()
# Notice that since we only fire calls against healthy actors,
# we wouldn't be aware that the actors have been recovered.
# So once an actor is taken out of the lineup (10% chance),
# it will not go back in, and we should have few results here.
# Basically takes us 10 calls to kill all the actors.
# Note that we can hardcode 10 here because we are using deterministic
# sequences of random numbers.
self.assertEqual(len(results), 10)
| d329147ae28c57b290f6b932f9f3044523f67c4e | 16 | test_actor_manager.py | 144 | [RLlib] Introduce FaultTolerantActorManager (#29703)
Signed-off-by: Jun Gong <[email protected]> | 30,658 | 0 | 298 | 83 | 86 | 135,567 | 114 | ray | 20 | rllib/utils/tests/test_actor_manager.py | Python | 12 | {
"docstring": "Test synchronous remote calls to only healthy actors.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/ray-project/ray.git |
|
1 | test_base_form_class_used | def test_base_form_class_used(self):
edit_url = reverse(
"wagtailadmin_pages:add",
args=("tests", "formclassadditionalfieldpage", self.test_page.id),
)
response = self.client.get(edit_url)
self.assertContains(
response,
'<input type="text" name="code" required id="id_code" maxlength="5" />',
html=True,
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 12 | test_revisions.py | 84 | Reformat with black | 15,715 | 0 | 121 | 50 | 22 | 71,720 | 24 | wagtail | 12 | wagtail/admin/tests/pages/test_revisions.py | Python | 11 | {
"docstring": "First ensure that the non-model field is appearing in edit.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/wagtail/wagtail.git |
|
3 | components | def components(self) -> Dict[str, BaseComponent]:
all_components = self._find_all_components()
return {component.name: component for component in all_components if component.name is not None}
| f6e3a639063887f9f5b27f574a04c7fe602b3185 | 9 | base.py | 61 | Prevent losing names of utilized components when loaded from config (#2525)
* Prevent losing names of utilized components when loaded from config
* Update Documentation & Code Style
* update test
* fix failing tests
* Update Documentation & Code Style
* fix even more tests
* Update Documentation & Code Style
* incorporate review feedback
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | 75,070 | 0 | 41 | 39 | 18 | 257,346 | 20 | haystack | 9 | haystack/pipelines/base.py | Python | 7 | {
"docstring": "\n Returns all components used by this pipeline.\n Note that this also includes such components that are being utilized by other components only and are not being used as a pipeline node directly.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 32,
"vocab_size": 24
} | https://github.com/deepset-ai/haystack.git |
|
5 | _ensure_iterable_column_indexer | def _ensure_iterable_column_indexer(self, column_indexer):
ilocs: Sequence[int]
if is_integer(column_indexer):
ilocs = [column_indexer]
elif isinstance(column_indexer, slice):
ilocs = np.arange(len(self.obj.columns))[column_indexer]
elif isinstance(column_indexer, np.ndarray) and is_bool_dtype(
column_indexer.dtype
):
ilocs = np.arange(len(column_indexer))[column_indexer]
else:
ilocs = column_indexer
return ilocs
| b5c6e4713ae4397cd047cb41f11aca4d27fb6096 | 16 | indexing.py | 143 | CLN: suppress warnings (#45212) | 39,403 | 0 | 143 | 89 | 23 | 163,213 | 32 | pandas | 17 | pandas/core/indexing.py | Python | 13 | {
"docstring": "\n Ensure that our column indexer is something that can be iterated over.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 11
} | https://github.com/pandas-dev/pandas.git |
|
1 | _start | def _start(self) -> int:
warnings.warn(
self._deprecation_message.format("_start", "start"),
FutureWarning,
stacklevel=find_stack_level(inspect.currentframe()),
)
return self.start
| 2f8d0a36703e81e4dca52ca9fe4f58c910c1b304 | 12 | range.py | 69 | PERF cache find_stack_level (#48023)
cache stacklevel | 40,259 | 0 | 73 | 41 | 12 | 168,252 | 12 | pandas | 13 | pandas/core/indexes/range.py | Python | 13 | {
"docstring": "\n The value of the `start` parameter (``0`` if this was not supplied).\n\n .. deprecated:: 0.25.0\n Use ``start`` instead.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 18,
"vocab_size": 18
} | https://github.com/pandas-dev/pandas.git |
|
1 | test_update_notice_user_name_when_changed | def test_update_notice_user_name_when_changed(self) -> None:
server_notice_request_content = {
"user_id": self.other_user,
"content": {"msgtype": "m.text", "body": "test msg one"},
}
self.make_request(
"POST",
self.url,
access_token=self.admin_user_tok,
content=server_notice_request_content,
)
# simulate a change in server config after a server restart.
new_display_name = "new display name"
self.server_notices_manager._config.servernotices.server_notices_mxid_display_name = (
new_display_name
)
self.server_notices_manager.get_or_create_notice_room_for_user.cache.invalidate_all()
self.make_request(
"POST",
self.url,
access_token=self.admin_user_tok,
content=server_notice_request_content,
)
invited_rooms = self._check_invite_and_join_status(self.other_user, 1, 0)
notice_room_id = invited_rooms[0].room_id
self.helper.join(
room=notice_room_id, user=self.other_user, tok=self.other_user_token
)
notice_user_state_in_room = self.helper.get_state(
notice_room_id,
"m.room.member",
self.other_user_token,
state_key="@notices:test",
)
self.assertEqual(notice_user_state_in_room["displayname"], new_display_name)
| 2e2d8cc2f9b9af5f8b48d75e22c474e08feca236 | 11 | test_server_notice.py | 282 | Update the server notices user profile in room if changed. (#12115) | 72,024 | 0 | 383 | 175 | 57 | 247,957 | 74 | synapse | 31 | tests/rest/admin/test_server_notice.py | Python | 38 | {
"docstring": "\n Tests that existing server notices user name in room is updated after\n server notice config changes.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 15
} | https://github.com/matrix-org/synapse.git |
|
1 | _create_basic_room | def _create_basic_room(self) -> Tuple[int, object]:
channel = self.make_request(
"POST",
"/createRoom",
{},
)
return channel.code, channel.json_body
| 6a6e1e8c0711939338f25d8d41d1e4d33d984949 | 9 | test_rooms.py | 58 | Fix room creation being rate limited too aggressively since Synapse v1.69.0. (#14314)
* Introduce a test for the old behaviour which we want to restore
* Reintroduce the old behaviour in a simpler way
* Newsfile
Signed-off-by: Olivier Wilkinson (reivilibre) <[email protected]>
* Use 1 credit instead of 2 for creating a room: be more lenient than before
Notably, the UI in Element Web was still broken after restoring to prior behaviour.
After discussion, we agreed that it would be sensible to increase the limit.
Signed-off-by: Olivier Wilkinson (reivilibre) <[email protected]> | 73,110 | 0 | 76 | 35 | 15 | 249,764 | 15 | synapse | 9 | tests/rest/client/test_rooms.py | Python | 10 | {
"docstring": "\n Tries to create a basic room and returns the response code.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | https://github.com/matrix-org/synapse.git |
|
15 | boundary_slice | def boundary_slice(df, start, stop, right_boundary=True, left_boundary=True, kind=None):
if len(df.index) == 0:
return df
if PANDAS_GT_131:
if kind is not None:
warnings.warn(
"The `kind` argument is no longer used/supported. "
"It will be dropped in a future release.",
category=FutureWarning,
)
kind_opts = {}
kind = "loc"
else:
kind = kind or "loc"
kind_opts = {"kind": kind}
if kind == "loc" and not df.index.is_monotonic_increasing:
# Pandas treats missing keys differently for label-slicing
# on monotonic vs. non-monotonic indexes
# If the index is monotonic, `df.loc[start:stop]` is fine.
# If it's not, `df.loc[start:stop]` raises when `start` is missing
if start is not None:
if left_boundary:
df = df[df.index >= start]
else:
df = df[df.index > start]
if stop is not None:
if right_boundary:
df = df[df.index <= stop]
else:
df = df[df.index < stop]
return df
result = getattr(df, kind)[start:stop]
if not right_boundary and stop is not None:
right_index = result.index.get_slice_bound(stop, "left", **kind_opts)
result = result.iloc[:right_index]
if not left_boundary and start is not None:
left_index = result.index.get_slice_bound(start, "right", **kind_opts)
result = result.iloc[left_index:]
return result
| 5e8a4813cf948250608b16747773a7dc52088eb6 | 16 | methods.py | 378 | Deprecate `is_monotonic` (#8653)
This PR deprecates `is_monotonic` to follow what `pandas` is doing upstream. This also resolves some test failures in our `upstream` build | 36,453 | 0 | 488 | 233 | 95 | 155,711 | 171 | dask | 22 | dask/dataframe/methods.py | Python | 35 | {
"docstring": "Index slice start/stop. Can switch include/exclude boundaries.\n\n Examples\n --------\n >>> df = pd.DataFrame({'x': [10, 20, 30, 40, 50]}, index=[1, 2, 2, 3, 4])\n >>> boundary_slice(df, 2, None)\n x\n 2 20\n 2 30\n 3 40\n 4 50\n >>> boundary_slice(df, 1, 3)\n x\n 1 10\n 2 20\n 2 30\n 3 40\n >>> boundary_slice(df, 1, 3, right_boundary=False)\n x\n 1 10\n 2 20\n 2 30\n\n Empty input DataFrames are returned\n\n >>> df_empty = pd.DataFrame()\n >>> boundary_slice(df_empty, 1, 3)\n Empty DataFrame\n Columns: []\n Index: []\n ",
"language": "en",
"n_whitespaces": 184,
"n_words": 80,
"vocab_size": 49
} | https://github.com/dask/dask.git |
|
3 | _ray | def _ray(self) -> "ray":
global ray
if ray is None:
try:
import ray
except ImportError as exc:
raise RuntimeError(
"Using the `RayTaskRunner` requires `ray` to be installed."
) from exc
return ray
| f97603bba836c215e153d7d3d5b3b9de4d0ae822 | 13 | task_runners.py | 61 | First draft `RayTaskRunner` implementation | 10,926 | 0 | 146 | 33 | 29 | 53,859 | 32 | prefect | 6 | src/prefect/task_runners.py | Python | 14 | {
"docstring": "\n Delayed import of `ray` allowing configuration of the task runner\n without the extra installed and improves `prefect` import times.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 16
} | https://github.com/PrefectHQ/prefect.git |
|
1 | preprocess_WEBP | def preprocess_WEBP(self, image):
save_kwargs = {
"quality": self.WEBP_QUAL,
"lossless": self.LOSSLESS_WEBP,
"icc_profile": image.info.get("icc_profile", ""),
}
return (image, save_kwargs)
| 5d1a36b9aaf408016957db04f86397b2e53c2500 | 11 | utils.py | 74 | Better media thumbnails including WebP support (#9988)
* Add thumbnail app
* Update get_thumbnail_size method and add tests
* Add logic for creating thumbnails
* Update logic for getting thumbnail
* Allow defining format for tumbnail generation
* Clear handle_thumbnail views
* Add prepare_image_proxy_url method
* Use ImageField for user avatar
* Allow defining thumbnail format when querying user avatar
* Use ImageField for category backgound_image
* Use ImageField for Collection backgound_image
* Use ImageField for ProductMedia image
* Ensure that thumbnails are deleted when category background_image is changed or deleted
* Ensure that thumbnails are deleted when collection background_image is changed or deleted
* Update product media deleteion task and failing tests
* Delete thumbnail from storage when thumbnail objects is deleted
* Fix import in product test_bulk_delete
* Drop create_thumbnails command
* Update Product.thumbnail resolver
* Update OrderLine thumbnail resolver
* Add missing ADDED_IN_35 and PREVIEW_FEATURE labels
* Update account and product signals - ensure the image is deleted from storage
* Refactor product_images methods
* Add signal for product media image delete
* Drop create_thumbnails method and not longer valid settings fields
* Clean the ProcessedImage class
* Drop versatileimagefield from INSTALLED_APPS
* Update changelog
* Drop comments from ThumbnailFormat
* Add get_image_or_proxy_url method
* Apply reiew suggestions - add ThumbnailField and use get_image_or_proxy_ur when it's possible
* Update changelog
* Replace ADDED_IN_35 with ADDED_IN_36 label
* Update changelog
Co-authored-by: Marcin Gębala <[email protected]> | 5,150 | 0 | 78 | 43 | 17 | 27,993 | 17 | saleor | 8 | saleor/thumbnail/utils.py | Python | 7 | {
"docstring": "Receive a PIL Image instance of a WEBP and return 2-tuple.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | https://github.com/saleor/saleor.git |
|
3 | spherical_bessel_fn | def spherical_bessel_fn(n, x=None, polys=False):
if x is None:
x = Dummy("x")
f = dup_spherical_bessel_fn_minus if n < 0 else dup_spherical_bessel_fn
return named_poly(abs(n), f, ZZ, "", (QQ(1)/x,), polys)
| d1d46df73ebaad94089847558d00a8b7269f554d | 11 | orthopolys.py | 93 | Run orthopolys and appellseqs through a common interface
Including unifying the two Chebyshev generators into one function.
There are also two kinds of Hermite polynomials, and they too share the
same recurrence, but the second type He_n(x) (aka the probabilist,
reduced or small polynomials) will not be added here. | 49,353 | 0 | 46 | 60 | 24 | 199,697 | 27 | sympy | 12 | sympy/polys/orthopolys.py | Python | 5 | {
"docstring": "\n Coefficients for the spherical Bessel functions.\n\n These are only needed in the jn() function.\n\n The coefficients are calculated from:\n\n fn(0, z) = 1/z\n fn(1, z) = 1/z**2\n fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)\n\n Parameters\n ==========\n\n n : int\n Degree of the polynomial.\n x : optional\n polys : bool, optional\n If True, return a Poly, otherwise (default) return an expression.\n\n Examples\n ========\n\n >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn\n >>> from sympy import Symbol\n >>> z = Symbol(\"z\")\n >>> fn(1, z)\n z**(-2)\n >>> fn(2, z)\n -1/z + 3/z**3\n >>> fn(3, z)\n -6/z**2 + 15/z**4\n >>> fn(4, z)\n 1/z - 45/z**3 + 105/z**5\n\n ",
"language": "en",
"n_whitespaces": 195,
"n_words": 105,
"vocab_size": 75
} | https://github.com/sympy/sympy.git |
|
4 | _try_import_backends | def _try_import_backends(self) -> _BackendImports:
# pylint: disable=unused-import
results = _BackendImports()
try:
from qutebrowser.qt import webkit as QtWebKit
from qutebrowser.qt.webkit import qWebKitVersion
from qutebrowser.qt import webkit as QtWebKitWidgets
except (ImportError, ValueError) as e:
results.webkit_error = str(e)
else:
if not qtutils.is_new_qtwebkit():
results.webkit_error = "Unsupported legacy QtWebKit found"
try:
from qutebrowser.qt import webengine as QtWebEngineWidgets
except (ImportError, ValueError) as e:
results.webengine_error = str(e)
return results
| d47cfd99d7374a41b4c228c21221c7850e65d0b1 | 12 | backendproblem.py | 166 | Run scripts/dev/rewrite_qt_imports.sh | 117,494 | 0 | 217 | 100 | 37 | 321,054 | 62 | qutebrowser | 20 | qutebrowser/misc/backendproblem.py | Python | 17 | {
"docstring": "Check whether backends can be imported and return BackendImports.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/qutebrowser/qutebrowser.git |
|
3 | test_sync_in_area | async def test_sync_in_area(area_on_device, hass, registries):
area = registries.area.async_create("Living Room")
device = registries.device.async_get_or_create(
config_entry_id="1234",
manufacturer="Someone",
model="Some model",
sw_version="Some Version",
connections={(device_registry.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")},
)
registries.device.async_update_device(
device.id, area_id=area.id if area_on_device else None
)
entity = registries.entity.async_get_or_create(
"light",
"test",
"1235",
suggested_object_id="demo_light",
device_id=device.id,
)
entity = registries.entity.async_update_entity(
entity.entity_id, area_id=area.id if not area_on_device else None
)
light = DemoLight(
None,
"Demo Light",
state=False,
hs_color=(180, 75),
effect_list=LIGHT_EFFECT_LIST,
effect=LIGHT_EFFECT_LIST[0],
)
light.hass = hass
light.entity_id = entity.entity_id
await light.async_update_ha_state()
config = MockConfig(should_expose=lambda _: True, entity_config={})
events = async_capture_events(hass, EVENT_SYNC_RECEIVED)
result = await sh.async_handle_message(
hass,
config,
"test-agent",
{"requestId": REQ_ID, "inputs": [{"intent": "action.devices.SYNC"}]},
const.SOURCE_CLOUD,
)
assert result == {
"requestId": REQ_ID,
"payload": {
"agentUserId": "test-agent",
"devices": [
{
"id": "light.demo_light",
"name": {"name": "Demo Light"},
"traits": [
trait.TRAIT_BRIGHTNESS,
trait.TRAIT_ONOFF,
trait.TRAIT_COLOR_SETTING,
trait.TRAIT_MODES,
],
"type": const.TYPE_LIGHT,
"willReportState": False,
"attributes": {
"availableModes": [
{
"name": "effect",
"name_values": [
{"lang": "en", "name_synonym": ["effect"]}
],
"ordered": False,
"settings": [
{
"setting_name": "rainbow",
"setting_values": [
{
"lang": "en",
"setting_synonym": ["rainbow"],
}
],
},
{
"setting_name": "none",
"setting_values": [
{"lang": "en", "setting_synonym": ["none"]}
],
},
],
}
],
"colorModel": "hsv",
"colorTemperatureRange": {
"temperatureMinK": 2000,
"temperatureMaxK": 6535,
},
},
"deviceInfo": {
"manufacturer": "Someone",
"model": "Some model",
"swVersion": "Some Version",
},
"roomHint": "Living Room",
}
],
},
}
await hass.async_block_till_done()
assert len(events) == 1
assert events[0].event_type == EVENT_SYNC_RECEIVED
assert events[0].data == {"request_id": REQ_ID, "source": "cloud"}
| 1bc8770b51658f0dc1bd076b392d70be5a7433bc | 26 | test_smart_home.py | 798 | Remove area_id from entity_registry.async_get_or_create (#77700)
* Remove area_id from entity_registry.async_get_or_create
* Adjust tests
* Fix lying comment in test | 104,292 | 0 | 1,944 | 466 | 139 | 305,503 | 213 | core | 55 | tests/components/google_assistant/test_smart_home.py | Python | 105 | {
"docstring": "Test a sync message where room hint comes from area.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/home-assistant/core.git |
|
1 | get_document_chosen_response | def get_document_chosen_response(request, document):
return render_modal_workflow(
request,
None,
None,
None,
json_data={
"step": "document_chosen",
"result": {
"id": document.id,
"title": document.title,
"url": document.url,
"filename": document.filename,
"edit_link": reverse("wagtaildocs:edit", args=(document.id,)),
},
},
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 17 | chooser.py | 121 | Reformat with black | 16,329 | 0 | 187 | 74 | 25 | 74,901 | 28 | wagtail | 11 | wagtail/documents/views/chooser.py | Python | 17 | {
"docstring": "\n helper function: given a document, return the modal workflow response that returns that\n document back to the calling page\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 19,
"vocab_size": 17
} | https://github.com/wagtail/wagtail.git |
|
1 | call | def call(self, *args, **kwargs):
warnings.warn(
"'call()' method is deprecated. " + "Use '__call__()' instead",
DeprecationWarning,
)
return self.__call__(*args, **kwargs)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 9 | __init__.py | 58 | upd; format | 13,507 | 0 | 69 | 34 | 19 | 63,798 | 19 | transferlearning | 8 | .venv/lib/python3.8/site-packages/pip/_vendor/tenacity/__init__.py | Python | 6 | {
"docstring": "Use ``__call__`` instead because this method is deprecated.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/jindongwang/transferlearning.git |
|
5 | execute | def execute(filters=None):
filters = filters if isinstance(filters, frappe._dict) else frappe._dict(filters)
if not filters:
filters.setdefault('fiscal_year', get_fiscal_year(nowdate())[0])
filters.setdefault('company', frappe.db.get_default("company"))
region = frappe.db.get_value("Company",
filters={"name": filters.company},
fieldname=["country"])
if region != 'United States':
return [], []
columns = get_columns()
conditions = ""
if filters.supplier_group:
conditions += "AND s.supplier_group = %s" %frappe.db.escape(filters.get("supplier_group"))
data = frappe.db.sql(.format(conditions=conditions), {
"fiscal_year": filters.fiscal_year,
"company": filters.company
}, as_dict=True)
return columns, data
| fe4b6771b5fd935ed278cf553c864a18e3356a33 | 14 | irs_1099.py | 283 | refactor: Remove dead code (#30140) | 13,666 | 0 | 40 | 171 | 46 | 64,559 | 59 | erpnext | 25 | erpnext/regional/report/irs_1099/irs_1099.py | Python | 41 | {
"docstring": "\n\t\tSELECT\n\t\t\ts.supplier_group as \"supplier_group\",\n\t\t\tgl.party AS \"supplier\",\n\t\t\ts.tax_id as \"tax_id\",\n\t\t\tSUM(gl.debit_in_account_currency) AS \"payments\"\n\t\tFROM\n\t\t\t`tabGL Entry` gl\n\t\t\t\tINNER JOIN `tabSupplier` s\n\t\tWHERE\n\t\t\ts.name = gl.party\n\t\t\t\tAND s.irs_1099 = 1\n\t\t\t\tAND gl.fiscal_year = %(fiscal_year)s\n\t\t\t\tAND gl.party_type = \"Supplier\"\n\t\t\t\tAND gl.company = %(company)s\n\t\t\t\t{conditions}\n\n\t\tGROUP BY\n\t\t\tgl.party\n\n\t\tORDER BY\n\t\t\tgl.party DESC",
"language": "en",
"n_whitespaces": 30,
"n_words": 49,
"vocab_size": 36
} | https://github.com/frappe/erpnext.git |
|
1 | get_student_group_strength | def get_student_group_strength(student_group):
student_group_strength = frappe.db.sql(
,
student_group,
)[0][0]
return student_group_strength
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 11 | student_batch_wise_attendance.py | 41 | style: format code with black | 14,064 | 0 | 4 | 26 | 9 | 65,944 | 10 | erpnext | 6 | erpnext/education/report/student_batch_wise_attendance/student_batch_wise_attendance.py | Python | 7 | {
"docstring": "select count(*) from `tabStudent Group Student`\n\t\twhere parent = %s and active=1",
"language": "en",
"n_whitespaces": 10,
"n_words": 12,
"vocab_size": 12
} | https://github.com/frappe/erpnext.git |
|
1 | source | def source(self) -> "np.ndarray":
assert self._source is not None
return self._source
| 7da2cc3dd266aabebf41a31384cc2e0e7e5af6e5 | 7 | preview_tk.py | 34 | Training - Use custom preview pop-out | 20,979 | 0 | 32 | 19 | 10 | 101,569 | 11 | faceswap | 3 | lib/training/preview_tk.py | Python | 4 | {
"docstring": " :class:`PIL.Image.Image`: The current source preview image ",
"language": "en",
"n_whitespaces": 7,
"n_words": 6,
"vocab_size": 6
} | https://github.com/deepfakes/faceswap.git |
|
1 | summer | def summer():
set_cmap('summer')
# Autogenerated by boilerplate.py. Do not edit as changes will be lost. | 032316bc6c7798fca6c82de24167c975f237687f | 8 | pyplot.py | 22 | Cleanup documentation generation for pyplot
- remove the awkward `pyplot.plotting()` function, which only served
as a namespace to take up the docs for pyplot and output them via
`.. autofunction`
- Instead generate the same information using `.. autosummary::`. We
have to list the desired methods here explicitly. I've added a test
that these are the same as previously auto-generated in the
`plotting()` docstring. If we change anything in pyplot, we'll be
notified through the test failure that we have to adapt the
autosummary list.
- Removed the docstring generation logic
`_setup_pyplot_info_docstrings()`. Apart from generating the
`plotting()` docstring, this added docstrings to the pyplot colormap
setters. Instead, we now add these docstrings directly via
boilerplate.py
Co-authored-by: Elliott Sales de Andrade <[email protected]> | 23,227 | 0 | 21 | 9 | 15 | 108,516 | 15 | matplotlib | 2 | lib/matplotlib/pyplot.py | Python | 2 | {
"docstring": "\n Set the colormap to 'summer'.\n\n This changes the default colormap as well as the colormap of the current\n image if there is one. See ``help(colormaps)`` for more information.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 28,
"vocab_size": 22
} | https://github.com/matplotlib/matplotlib.git |
|
1 | test_all_users | def test_all_users(self) -> None:
self._create_users(2)
channel = self.make_request(
"GET",
self.url + "?deactivated=true",
{},
access_token=self.admin_user_tok,
)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
self.assertEqual(3, len(channel.json_body["users"]))
self.assertEqual(3, channel.json_body["total"])
# Check that all fields are available
self._check_fields(channel.json_body["users"])
| 901b264c0c88f39cbfb8b2229e0dc57968882658 | 11 | test_user.py | 157 | Add type hints to `tests/rest/admin` (#11851) | 71,062 | 0 | 137 | 96 | 29 | 246,168 | 30 | synapse | 16 | tests/rest/admin/test_user.py | Python | 15 | {
"docstring": "\n List all users, including deactivated users.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 6,
"vocab_size": 6
} | https://github.com/matrix-org/synapse.git |
|
2 | test_ssh_sync | def test_ssh_sync():
experiment_name = "cloud_ssh_sync"
indicator_file = f"/tmp/{experiment_name}_indicator"
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 8 | run_cloud_test.py | 30 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 30,062 | 0 | 17 | 70 | 7 | 133,619 | 8 | ray | 3 | release/tune_tests/cloud_tests/workloads/run_cloud_test.py | Python | 16 | {
"docstring": "\n SSH syncing, so:\n\n syncer=\"auto\"\n upload_dir=None\n\n Expected results after first checkpoint:\n\n - 4 trials are running\n - At least one trial ran on the head node\n - At least one trial ran remotely\n - Driver has trial checkpoints from head node trial\n - Driver has trial checkpoints from remote node trials\n - Remote trial dirs only have data for one trial\n - Remote trial dirs have checkpoints for node-local trials\n\n Then, remote checkpoint directories are cleaned up.\n\n Expected results after second checkpoint:\n\n - 4 trials are running\n - All trials progressed with training\n\n ",
"language": "en",
"n_whitespaces": 185,
"n_words": 92,
"vocab_size": 47
} | https://github.com/ray-project/ray.git |
|
3 | parse_time_mapped_ti_count | def parse_time_mapped_ti_count(self) -> Optional[int]:
total = 0
for value in self._get_expansion_kwargs().values():
if not isinstance(value, MAPPABLE_LITERAL_TYPES):
# None literal type encountered, so give up
return None
total += len(value)
return total
| 91832a42d8124b040073481fd93c54e9e64c2609 | 10 | mappedoperator.py | 77 | Expand mapped tasks at DagRun.Veriy_integrity (#22679)
Create the necessary task instances for a mapped task at dagrun.verify_integrity
Co-authored-by: Ash Berlin-Taylor <[email protected]> | 9,032 | 0 | 110 | 46 | 26 | 46,884 | 30 | airflow | 11 | airflow/models/mappedoperator.py | Python | 13 | {
"docstring": "\n Number of mapped TaskInstances that can be created at DagRun create time.\n\n :return: None if non-literal mapped arg encountered, or else total number of mapped TIs this task\n should have\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 30,
"vocab_size": 27
} | https://github.com/apache/airflow.git |
|
7 | convert_path | def convert_path(pathname):
if os.sep == '/':
return pathname
if not pathname:
return pathname
if pathname[0] == '/':
raise ValueError("path '%s' cannot be absolute" % pathname)
if pathname[-1] == '/':
raise ValueError("path '%s' cannot end with '/'" % pathname)
paths = pathname.split('/')
while os.curdir in paths:
paths.remove(os.curdir)
if not paths:
return os.curdir
return os.path.join(*paths)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 11 | util.py | 163 | upd; format | 12,879 | 0 | 122 | 93 | 32 | 62,143 | 53 | transferlearning | 11 | .venv/lib/python3.8/site-packages/pip/_vendor/distlib/util.py | Python | 15 | {
"docstring": "Return 'pathname' as a name that will work on the native filesystem.\n\n The path is split on '/' and put back together again using the current\n directory separator. Needed because filenames in the setup script are\n always supplied in Unix style, and have to be converted to the local\n convention before we can actually use them in the filesystem. Raises\n ValueError on non-Unix-ish systems if 'pathname' either starts or\n ends with a slash.\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 73,
"vocab_size": 60
} | https://github.com/jindongwang/transferlearning.git |
|
5 | _async_update_data | async def _async_update_data(self) -> _DataT:
interval = self.update_interval
if (
interval is not None
and self.last_update_success
and self.data
and self.push_coordinator.active(interval)
):
data = self.data
else:
data = await super()._async_update_data()
return data
| 653805584bac4907ba6da527071bceb9d7313019 | 14 | coordinator.py | 96 | Improve `lookin` generic typing (#84636) | 97,031 | 0 | 139 | 57 | 23 | 298,084 | 31 | core | 10 | homeassistant/components/lookin/coordinator.py | Python | 13 | {
"docstring": "Fetch data only if we have not received a push inside the interval.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | https://github.com/home-assistant/core.git |
|
3 | gs_distill | def gs_distill(tmpfile, eps=False, ptype='letter', bbox=None, rotated=False):
if eps:
paper_option = "-dEPSCrop"
else:
paper_option = "-sPAPERSIZE=%s" % ptype
psfile = tmpfile + '.ps'
dpi = mpl.rcParams['ps.distiller.res']
cbook._check_and_log_subprocess(
[mpl._get_executable_info("gs").executable,
"-dBATCH", "-dNOPAUSE", "-r%d" % dpi, "-sDEVICE=ps2write",
paper_option, "-sOutputFile=%s" % psfile, tmpfile],
_log)
os.remove(tmpfile)
shutil.move(psfile, tmpfile)
# While it is best if above steps preserve the original bounding
# box, there seem to be cases when it is not. For those cases,
# the original bbox can be restored during the pstoeps step.
if eps:
# For some versions of gs, above steps result in a ps file where the
# original bbox is no more correct. Do not adjust bbox for now.
pstoeps(tmpfile, bbox, rotated=rotated)
| 383de519505964ed879c40b23ef36e90c17ebe0d | 12 | backend_ps.py | 189 | [Doc] fix more spelling and grammar | 24,070 | 0 | 213 | 110 | 85 | 110,331 | 112 | matplotlib | 21 | lib/matplotlib/backends/backend_ps.py | Python | 16 | {
"docstring": "\n Use ghostscript's pswrite or epswrite device to distill a file.\n This yields smaller files without illegal encapsulated postscript\n operators. The output is low-level, converting text to outlines.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 27,
"vocab_size": 26
} | https://github.com/matplotlib/matplotlib.git |
|
2 | _get_const_info | def _get_const_info(const_index, const_list):
argval = const_index
if const_list is not None:
argval = const_list[const_index]
return argval, repr(argval)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 9 | dis.py | 49 | add python 3.10.4 for windows | 56,617 | 0 | 36 | 30 | 15 | 222,526 | 17 | XX-Net | 5 | python3.10.4/Lib/dis.py | Python | 5 | {
"docstring": "Helper to get optional details about const references\n\n Returns the dereferenced constant and its repr if the constant\n list is defined.\n Otherwise returns the constant index and its repr().\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 29,
"vocab_size": 23
} | https://github.com/XX-net/XX-Net.git |
|
4 | draw | def draw(self, subs_dict=None):
if not numpy:
raise ImportError("To use this function numpy module is required")
x = Symbol('x')
markers = []
annotations = []
rectangles = []
node_markers = self._draw_nodes(subs_dict)
markers += node_markers
member_rectangles = self._draw_members()
rectangles += member_rectangles
support_markers = self._draw_supports()
markers += support_markers
load_annotations = self._draw_loads()
annotations += load_annotations
xmax = -INF
xmin = INF
ymax = -INF
ymin = INF
for node in list(self._node_coordinates):
xmax = max(xmax, self._node_coordinates[node][0])
xmin = min(xmin, self._node_coordinates[node][0])
ymax = max(ymax, self._node_coordinates[node][1])
ymin = min(ymin, self._node_coordinates[node][1])
lim = max(xmax*1.1-xmin*0.8+1, ymax*1.1-ymin*0.8+1)
if lim==xmax*1.1-xmin*0.8+1:
sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(xmin-0.05*lim, xmax*1.1), ylim=(xmin-0.05*lim, xmax*1.1), axis=False, rectangles=rectangles)
else:
sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(ymin-0.05*lim, ymax*1.1), ylim=(ymin-0.05*lim, ymax*1.1), axis=False, rectangles=rectangles)
return sing_plot
| 2ddc46704dffa81a5a2a8df4348bf98dff07ebd5 | 15 | truss.py | 495 | subs_dict added to the draw method | 49,498 | 0 | 360 | 359 | 69 | 200,032 | 122 | sympy | 35 | sympy/physics/continuum_mechanics/truss.py | Python | 30 | {
"docstring": "\n Returns a plot object of the Truss with all its nodes, members,\n supports and loads.\n\n .. note::\n The user must be careful while entering load values in their\n directions. The draw function assumes a sign convention that\n is used for plotting loads.\n\n Given a right-handed coordinate system with XYZ coordinates,\n the supports are assumed to be such that the reaction forces of a\n pinned support is in the +X and +Y direction while those of a\n roller support is in the +Y direction. For the load, the range\n of angles, one can input goes all the way to 360 degrees which, in the\n the plot is the angle that the load vector makes with the positive x-axis in the anticlockwise direction.\n\n For example, for a 90-degree angle, the load will be a vertically\n directed along +Y while a 270-degree angle denotes a vertical\n load as well but along -Y.\n\n Examples\n ========\n\n .. plot::\n :context: close-figs\n :format: doctest\n :include-source: True\n\n >>> from sympy.physics.continuum_mechanics.truss import Truss\n >>> import math\n >>> t = Truss()\n >>> t.add_node(\"A\", -4, 0)\n >>> t.add_node(\"B\", 0, 0)\n >>> t.add_node(\"C\", 4, 0)\n >>> t.add_node(\"D\", 8, 0)\n >>> t.add_node(\"E\", 6, 2/math.sqrt(3))\n >>> t.add_node(\"F\", 2, 2*math.sqrt(3))\n >>> t.add_node(\"G\", -2, 2/math.sqrt(3))\n >>> t.add_member(\"AB\",\"A\",\"B\")\n >>> t.add_member(\"BC\",\"B\",\"C\")\n >>> t.add_member(\"CD\",\"C\",\"D\")\n >>> t.add_member(\"AG\",\"A\",\"G\")\n >>> t.add_member(\"GB\",\"G\",\"B\")\n >>> t.add_member(\"GF\",\"G\",\"F\")\n >>> t.add_member(\"BF\",\"B\",\"F\")\n >>> t.add_member(\"FC\",\"F\",\"C\")\n >>> t.add_member(\"CE\",\"C\",\"E\")\n >>> t.add_member(\"FE\",\"F\",\"E\")\n >>> t.add_member(\"DE\",\"D\",\"E\")\n >>> t.apply_support(\"A\",\"pinned\")\n >>> t.apply_support(\"D\",\"roller\")\n >>> t.apply_load(\"G\", 3, 90)\n >>> t.apply_load(\"E\", 3, 90)\n >>> t.apply_load(\"F\", 2, 90)\n >>> p = t.draw()\n >>> p\n Plot object containing:\n [0]: cartesian line: 1 for x over (1.0, 1.0)\n >>> p.show()\n ",
"language": "en",
"n_whitespaces": 813,
"n_words": 257,
"vocab_size": 156
} | https://github.com/sympy/sympy.git |
|
17 | center_crop | def center_crop(self, image, size):
self._ensure_format_supported(image)
if not isinstance(size, tuple):
size = (size, size)
# PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width)
if is_torch_tensor(image) or isinstance(image, np.ndarray):
if image.ndim == 2:
image = self.expand_dims(image)
image_shape = image.shape[1:] if image.shape[0] in [1, 3] else image.shape[:2]
else:
image_shape = (image.size[1], image.size[0])
top = (image_shape[0] - size[0]) // 2
bottom = top + size[0] # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
left = (image_shape[1] - size[1]) // 2
right = left + size[1] # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
# For PIL Images we have a method to crop directly.
if isinstance(image, PIL.Image.Image):
return image.crop((left, top, right, bottom))
# Check if image is in (n_channels, height, width) or (height, width, n_channels) format
channel_first = True if image.shape[0] in [1, 3] else False
# Transpose (height, width, n_channels) format images
if not channel_first:
if isinstance(image, np.ndarray):
image = image.transpose(2, 0, 1)
if is_torch_tensor(image):
image = image.permute(2, 0, 1)
# Check if cropped area is within image boundaries
if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]:
return image[..., top:bottom, left:right]
# Otherwise, we may need to pad if the image is too small. Oh joy...
new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1]))
if isinstance(image, np.ndarray):
new_image = np.zeros_like(image, shape=new_shape)
elif is_torch_tensor(image):
new_image = image.new_zeros(new_shape)
top_pad = (new_shape[-2] - image_shape[0]) // 2
bottom_pad = top_pad + image_shape[0]
left_pad = (new_shape[-1] - image_shape[1]) // 2
right_pad = left_pad + image_shape[1]
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
top += top_pad
bottom += top_pad
left += left_pad
right += left_pad
new_image = new_image[
..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right)
]
return new_image
| 49becbaa5549b477b0d96c55f207614773c0ab42 | 12 | image_utils.py | 714 | Enable crop_center method to handle (W, H, C) images (#17626)
* enable crop_center method to handle (W, H, C) images
* minor style and comment edits | 5,704 | 0 | 707 | 474 | 156 | 31,221 | 301 | transformers | 34 | src/transformers/image_utils.py | Python | 42 | {
"docstring": "\n Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the\n size given, it will be padded (so the returned result has the size asked).\n\n Args:\n image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):\n The image to resize.\n size (`int` or `Tuple[int, int]`):\n The size to which crop the image.\n\n Returns:\n new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,\n height, width).\n ",
"language": "en",
"n_whitespaces": 194,
"n_words": 84,
"vocab_size": 55
} | https://github.com/huggingface/transformers.git |
|
2 | input | def input(self):
if not self._inbound_nodes:
raise AttributeError(
"Layer " + self.name + " is not connected, no input to return."
)
return self._get_node_attribute_at_index(0, "input_tensors", "input")
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 12 | base_layer.py | 63 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,534 | 0 | 83 | 34 | 22 | 270,710 | 25 | keras | 6 | keras/engine/base_layer.py | Python | 6 | {
"docstring": "Retrieves the input tensor(s) of a layer.\n\n Only applicable if the layer has exactly one input,\n i.e. if it is connected to one incoming layer.\n\n Returns:\n Input tensor or list of input tensors.\n\n Raises:\n RuntimeError: If called in Eager mode.\n AttributeError: If no inbound nodes are found.\n ",
"language": "en",
"n_whitespaces": 111,
"n_words": 47,
"vocab_size": 40
} | https://github.com/keras-team/keras.git |
|
4 | decrypt_file | def decrypt_file(self, file, key):
# precondition
assert isinstance(file, str) and isinstance(key, int)
try:
with open(file, "r") as fin:
with open("decrypt.out", "w+") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(line, key))
except:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test enrcypt
# print crypt.encrypt("hallo welt",key)
# # test decrypt
# print crypt.decrypt(crypt.encrypt("hallo welt",key), key)
# # test encrypt_string
# print crypt.encrypt_string("hallo welt",key)
# # test decrypt_string
# print crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)
# if (crypt.encrypt_file("test.txt",key)):
# print "encrypt successful"
# else:
# print "encrypt unsuccessful"
# if (crypt.decrypt_file("encrypt.out",key)):
# print "decrypt successful"
# else:
# print "decrypt unsuccessful"
| f0af0c43340763724f139fa68aa1e5a9ffe458b4 | 17 | XOR_cipher.py | 141 | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 4,357 | 0 | 227 | 70 | 60 | 22,541 | 106 | Python | 13 | XORcipher/XOR_cipher.py | Python | 10 | {
"docstring": "\n input: filename (str) and a key (int)\n output: returns true if decrypt process was\n successful otherwise false\n if key not passed the method uses the key by the constructor.\n otherwise key = 1\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 33,
"vocab_size": 26
} | https://github.com/geekcomputers/Python.git |