Datasets:
annotations_creators:
- shibing624
language_creators:
- shibing624
language:
- zh
license: cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- https://huggingface.co/datasets
task_categories:
- text-classification
task_ids:
- natural-language-inference
- semantic-similarity-scoring
- text-scoring
paperswithcode_id: snli
pretty_name: Stanford Natural Language Inference
Dataset Card for SNLI_zh
Dataset Description
- Repository: Chinese NLI dataset
- Dataset: zh NLI
- Size of downloaded dataset files: 4.7 GB
- Total amount of disk used: 4.7 GB
Dataset Summary
中文自然语言推理(NLI)数据合集(nli-zh-all)
Supported Tasks and Leaderboards
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:
Leaderboard: NLI_zh leaderboard
Languages
数据集均是简体中文文本。
Dataset Structure
Data Instances
An example of 'train' looks as follows.
{"text1":"借款后多长时间给打电话","text2":"借款后多久打电话啊","label":1}
{"text1":"没看到微粒贷","text2":"我借那么久也没有提升啊","label":0}
Data Fields
The data fields are the same among all splits.
text1
: astring
feature.text2
: astring
feature.label
: a classification label, with possible values including entailment(1), contradiction(0)。
Data Splits
after remove None and len(text) < 1 data:
$ wc -l nli-zh-all/*
48818 nli-zh-all/alpaca_gpt4-train.jsonl
5000 nli-zh-all/amazon_reviews-train.jsonl
519255 nli-zh-all/belle-train.jsonl
16000 nli-zh-all/cblue_chip_sts-train.jsonl
549326 nli-zh-all/chatmed_consult-train.jsonl
10142 nli-zh-all/cmrc2018-train.jsonl
395927 nli-zh-all/csl-train.jsonl
50000 nli-zh-all/dureader_robust-train.jsonl
709761 nli-zh-all/firefly-train.jsonl
9568 nli-zh-all/mlqa-train.jsonl
455875 nli-zh-all/nli_zh-train.jsonl
50486 nli-zh-all/ocnli-train.jsonl
2678694 nli-zh-all/simclue-train.jsonl
419402 nli-zh-all/snli_zh-train.jsonl
3024 nli-zh-all/webqa-train.jsonl
1213780 nli-zh-all/wiki_atomic_edits-train.jsonl
93404 nli-zh-all/xlsum-train.jsonl
1006218 nli-zh-all/zhihu_kol-train.jsonl
8234680 total
Data Length
Dataset Creation
Curation Rationale
受m3e-base启发,合并了中文高质量NLI(natural langauge inference)数据集, 这里把这个数据集上传到huggingface的datasets,方便大家使用。
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
- SNLI: @inproceedings{snli:emnlp2015, Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.}, Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, Publisher = {Association for Computational Linguistics}, Title = {A large annotated corpus for learning natural language inference}, Year = {2015} }
Who are the annotators?
原作者。
Social Impact of Dataset
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.
Systems that are successful at such a task may be more successful in modeling semantic representations.
Licensing Information
for reasearch
用于学术研究
Contributions
shibing624 add this dataset.