nli-zh-all / README.md
shibing624's picture
Update README.md
f70f39d
|
raw
history blame
4.1 kB
---
annotations_creators:
- shibing624
language_creators:
- shibing624
language:
- zh
license: cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- https://huggingface.co/datasets
task_categories:
- text-classification
task_ids:
- natural-language-inference
- semantic-similarity-scoring
- text-scoring
paperswithcode_id: snli
pretty_name: Stanford Natural Language Inference
---
# Dataset Card for SNLI_zh
## Dataset Description
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
- **Dataset:** [zh NLI](https://huggingface.co/datasets/shibing624/nli-zh-all)
- **Size of downloaded dataset files:** 4.7 GB
- **Total amount of disk used:** 4.7 GB
### Dataset Summary
中文自然语言推理(NLI)数据合集(nli-zh-all)
### Supported Tasks and Leaderboards
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:
**Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec)
### Languages
数据集均是简体中文文本。
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{"text1":"借款后多长时间给打电话","text2":"借款后多久打电话啊","label":1}
{"text1":"没看到微粒贷","text2":"我借那么久也没有提升啊","label":0}
```
### Data Fields
The data fields are the same among all splits.
- `text1`: a `string` feature.
- `text2`: a `string` feature.
- `label`: a classification label, with possible values including entailment(1), contradiction(0)。
### Data Splits
after remove None and len(text) < 1 data:
```shell
$ wc -l nli-zh-all/*
48818 nli-zh-all/alpaca_gpt4-train.jsonl
5000 nli-zh-all/amazon_reviews-train.jsonl
519255 nli-zh-all/belle-train.jsonl
16000 nli-zh-all/cblue_chip_sts-train.jsonl
549326 nli-zh-all/chatmed_consult-train.jsonl
10142 nli-zh-all/cmrc2018-train.jsonl
395927 nli-zh-all/csl-train.jsonl
50000 nli-zh-all/dureader_robust-train.jsonl
709761 nli-zh-all/firefly-train.jsonl
9568 nli-zh-all/mlqa-train.jsonl
455875 nli-zh-all/nli_zh-train.jsonl
50486 nli-zh-all/ocnli-train.jsonl
2678694 nli-zh-all/simclue-train.jsonl
419402 nli-zh-all/snli_zh-train.jsonl
3024 nli-zh-all/webqa-train.jsonl
1213780 nli-zh-all/wiki_atomic_edits-train.jsonl
93404 nli-zh-all/xlsum-train.jsonl
1006218 nli-zh-all/zhihu_kol-train.jsonl
8234680 total
```
### Data Length
![len](https://huggingface.co/datasets/shibing624/nli-zh-all/resolve/main/nli-zh-all-len.png)
## Dataset Creation
### Curation Rationale
受[m3e-base](https://huggingface.co/moka-ai/m3e-base#M3E%E6%95%B0%E6%8D%AE%E9%9B%86)启发,合并了中文高质量NLI(natural langauge inference)数据集,
这里把这个数据集上传到huggingface的datasets,方便大家使用。
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
- SNLI:
@inproceedings{snli:emnlp2015,
Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
Publisher = {Association for Computational Linguistics},
Title = {A large annotated corpus for learning natural language inference},
Year = {2015}
}
#### Who are the annotators?
原作者。
### Social Impact of Dataset
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.
Systems that are successful at such a task may be more successful in modeling semantic representations.
### Licensing Information
for reasearch
用于学术研究
### Contributions
[shibing624](https://github.com/shibing624) add this dataset.