code
stringlengths
501
4.91M
package
stringlengths
2
88
path
stringlengths
11
291
filename
stringlengths
4
197
parsed_code
stringlengths
0
4.91M
quality_prob
float64
0
0.99
learning_prob
float64
0.02
1
import os import logging from contextlib import contextmanager from tempfile import TemporaryDirectory, mkdtemp from pathlib import Path from six import string_types from sciencebeam_trainer_delft.utils.io import copy_file, path_join LOGGER = logging.getLogger(__name__) def _is_cloud_location(filepath): return isinstance(filepath, string_types) and filepath.startswith('gs://') def _copy_file_to_cloud(source_filepath, target_filepath, overwrite=True): copy_file(source_filepath, target_filepath, overwrite=overwrite) def _copy_directory_to_cloud(source_filepath, target_filepath, overwrite=True): for temp_file_path in Path(source_filepath).glob('**/*'): if not temp_file_path.is_file(): continue relative_filename = temp_file_path.relative_to(source_filepath) cloud_path = path_join(target_filepath, relative_filename) LOGGER.info('copying %s to %s', temp_file_path, cloud_path) _copy_file_to_cloud(temp_file_path, cloud_path, overwrite=overwrite) def _copy_to_cloud(source_filepath, target_filepath, overwrite=True): if Path(source_filepath).is_file(): _copy_file_to_cloud(source_filepath, target_filepath, overwrite=overwrite) return if Path(source_filepath).is_dir(): _copy_directory_to_cloud(source_filepath, target_filepath, overwrite=overwrite) return def _get_temp_path(filepath): return mkdtemp(suffix=os.path.basename(filepath)) @contextmanager def _cloud_location_as_temp_context(filepath): with TemporaryDirectory(suffix=os.path.basename(filepath)) as temp_dir: temp_path = os.path.join(temp_dir, os.path.basename(filepath)) LOGGER.info('temp_path: %s', temp_dir) yield temp_path _copy_to_cloud(temp_path, filepath) @contextmanager def auto_upload_from_local_path(filepath: str): if not filepath or not _is_cloud_location(filepath): os.makedirs(filepath, exist_ok=True) yield filepath else: with _cloud_location_as_temp_context(filepath) as temp_path: yield temp_path @contextmanager def auto_upload_from_local_file(filepath: str): if not filepath or not _is_cloud_location(filepath): yield filepath else: with _cloud_location_as_temp_context(filepath) as local_path: yield local_path def patch_cloud_support(): # deprecated pass
sciencebeam-trainer-delft
/sciencebeam_trainer_delft-0.0.31.tar.gz/sciencebeam_trainer_delft-0.0.31/sciencebeam_trainer_delft/utils/cloud_support.py
cloud_support.py
import os import logging from contextlib import contextmanager from tempfile import TemporaryDirectory, mkdtemp from pathlib import Path from six import string_types from sciencebeam_trainer_delft.utils.io import copy_file, path_join LOGGER = logging.getLogger(__name__) def _is_cloud_location(filepath): return isinstance(filepath, string_types) and filepath.startswith('gs://') def _copy_file_to_cloud(source_filepath, target_filepath, overwrite=True): copy_file(source_filepath, target_filepath, overwrite=overwrite) def _copy_directory_to_cloud(source_filepath, target_filepath, overwrite=True): for temp_file_path in Path(source_filepath).glob('**/*'): if not temp_file_path.is_file(): continue relative_filename = temp_file_path.relative_to(source_filepath) cloud_path = path_join(target_filepath, relative_filename) LOGGER.info('copying %s to %s', temp_file_path, cloud_path) _copy_file_to_cloud(temp_file_path, cloud_path, overwrite=overwrite) def _copy_to_cloud(source_filepath, target_filepath, overwrite=True): if Path(source_filepath).is_file(): _copy_file_to_cloud(source_filepath, target_filepath, overwrite=overwrite) return if Path(source_filepath).is_dir(): _copy_directory_to_cloud(source_filepath, target_filepath, overwrite=overwrite) return def _get_temp_path(filepath): return mkdtemp(suffix=os.path.basename(filepath)) @contextmanager def _cloud_location_as_temp_context(filepath): with TemporaryDirectory(suffix=os.path.basename(filepath)) as temp_dir: temp_path = os.path.join(temp_dir, os.path.basename(filepath)) LOGGER.info('temp_path: %s', temp_dir) yield temp_path _copy_to_cloud(temp_path, filepath) @contextmanager def auto_upload_from_local_path(filepath: str): if not filepath or not _is_cloud_location(filepath): os.makedirs(filepath, exist_ok=True) yield filepath else: with _cloud_location_as_temp_context(filepath) as temp_path: yield temp_path @contextmanager def auto_upload_from_local_file(filepath: str): if not filepath or not _is_cloud_location(filepath): yield filepath else: with _cloud_location_as_temp_context(filepath) as local_path: yield local_path def patch_cloud_support(): # deprecated pass
0.262086
0.087408
import logging import os import tarfile import tempfile import zipfile from abc import ABC, abstractmethod from shutil import copyfileobj from contextlib import contextmanager from gzip import GzipFile from lzma import LZMAFile from urllib.error import HTTPError from urllib.request import urlretrieve from typing import List, IO, Iterator from six import string_types, text_type try: from tensorflow.python.lib.io import file_io as tf_file_io # type: ignore from tensorflow.python.framework.errors_impl import ( # type: ignore NotFoundError as tf_NotFoundError ) except ImportError: tf_file_io = None tf_NotFoundError = None LOGGER = logging.getLogger(__name__) def is_external_location(filepath: str): return isinstance(filepath, string_types) and '://' in filepath def path_join(parent, child): return os.path.join(str(parent), str(child)) def is_gzip_filename(filepath: str): return filepath.endswith('.gz') def is_xz_filename(filepath: str): return filepath.endswith('.xz') def strip_gzip_filename_ext(filepath: str): if not is_gzip_filename(filepath): raise ValueError('not a gzip filename: %s' % filepath) return os.path.splitext(filepath)[0] def strip_xz_filename_ext(filepath: str): if not is_xz_filename(filepath): raise ValueError('not a xz filename: %s' % filepath) return os.path.splitext(filepath)[0] class CompressionWrapper(ABC): @abstractmethod def strip_compression_filename_ext(self, filepath: str): pass @abstractmethod def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): pass @contextmanager def open(self, filename: str, mode: str) -> Iterator[IO]: LOGGER.debug('opening file: %r, mode=%r', filename, mode) with _open_raw(filename, mode=mode) as fp: yield self.wrap_fileobj( filename=filename, fileobj=fp, mode=mode ) class ClosingGzipFile(GzipFile): # GzipFile doesn't close the underlying fileobj, we will do that here def close(self): fileobj = self.fileobj LOGGER.debug('ClosingGzipFile.close, fileobj: %s', fileobj) try: super().close() finally: if fileobj is not None: LOGGER.debug('closing: %s', fileobj) fileobj.close() class GzipCompressionWrapper(CompressionWrapper): def strip_compression_filename_ext(self, filepath: str): return strip_gzip_filename_ext(filepath) def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): return ClosingGzipFile(filename=filename, fileobj=fileobj, mode=mode) @contextmanager def open(self, filename: str, mode: str): if is_external_location(filename): # there seem to be an issue with GzipFile and fileobj with tempfile.TemporaryDirectory(suffix='-gzip') as gzip_dir: local_gzip_file = os.path.join(gzip_dir, os.path.basename(filename)) with ClosingGzipFile(filename=local_gzip_file, mode=mode) as local_fp: yield local_fp tf_file_io.copy(local_gzip_file, filename, overwrite=True) else: with ClosingGzipFile(filename=filename, mode=mode) as local_fp: yield local_fp class XzCompressionWrapper(CompressionWrapper): def strip_compression_filename_ext(self, filepath: str): return strip_xz_filename_ext(filepath) def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): return LZMAFile(filename=fileobj, mode=mode or 'r') class DummyCompressionWrapper(CompressionWrapper): def strip_compression_filename_ext(self, filepath: str): return filepath def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): return fileobj GZIP_COMPRESSION_WRAPPER = GzipCompressionWrapper() XZ_COMPRESSION_WRAPPER = XzCompressionWrapper() DUMMY_COMPRESSION_WRAPPER = DummyCompressionWrapper() def get_compression_wrapper(filepath: str): if is_gzip_filename(filepath): return GZIP_COMPRESSION_WRAPPER if is_xz_filename(filepath): return XZ_COMPRESSION_WRAPPER return DUMMY_COMPRESSION_WRAPPER def strip_compression_filename_ext(filepath: str) -> str: return get_compression_wrapper(filepath).strip_compression_filename_ext(filepath) @contextmanager def _open_raw(filepath: str, mode: str) -> Iterator[IO]: if filepath.startswith('https://'): try: with tempfile.TemporaryDirectory(suffix='download') as temp_dir: temp_file = os.path.join(temp_dir, os.path.basename(filepath)) urlretrieve(filepath, temp_file) with open(temp_file, mode=mode) as fp: yield fp except HTTPError as error: if error.code == 404: raise FileNotFoundError('file not found: %s' % filepath) from error raise else: try: with tf_file_io.FileIO(filepath, mode=mode) as fp: yield fp except tf_NotFoundError as e: raise FileNotFoundError('file not found: %s' % filepath) from e @contextmanager def open_file(filepath: str, mode: str, compression_wrapper: CompressionWrapper = None): if compression_wrapper is None: compression_wrapper = get_compression_wrapper(filepath) LOGGER.debug( 'open_file, filepath=%s, mode=%s, compression_wrapper=%s', filepath, mode, compression_wrapper ) if mode in {'rb', 'r'}: with _open_raw(filepath, mode=mode) as source_fp: yield compression_wrapper.wrap_fileobj( filename=filepath, fileobj=source_fp, mode=mode ) elif mode in {'wb', 'w'}: tf_file_io.recursive_create_dir(os.path.dirname(filepath)) with compression_wrapper.open(filepath, mode=mode) as target_fp: yield target_fp else: raise ValueError('unsupported mode: %s' % mode) def _require_tf_file_io(): if tf_file_io is None: raise ImportError('Cloud storage file transfer requires TensorFlow.') def copy_file(source_filepath: str, target_filepath: str, overwrite: bool = True): _require_tf_file_io() if not overwrite and tf_file_io.file_exists(target_filepath): LOGGER.info('skipping already existing file: %s', target_filepath) return with open_file(text_type(source_filepath), mode='rb') as source_fp: with open_file(text_type(target_filepath), mode='wb') as target_fp: copyfileobj(source_fp, target_fp) def list_files(directory_path: str) -> List[str]: _require_tf_file_io() return tf_file_io.list_directory(directory_path) @contextmanager def auto_uploading_output_file(filepath: str, mode: str = 'w', **kwargs): if not is_external_location(filepath): file_dirname = os.path.dirname(filepath) if file_dirname: os.makedirs(os.path.dirname(filepath), exist_ok=True) with open(filepath, mode=mode, **kwargs) as fp: yield fp return with tempfile.TemporaryDirectory(suffix='-output') as temp_dir: temp_file = os.path.join( temp_dir, get_compression_wrapper(filepath).strip_compression_filename_ext( os.path.basename(filepath) ) ) try: with open(temp_file, mode=mode, **kwargs) as fp: yield fp finally: if os.path.exists(temp_file): copy_file(temp_file, filepath) @contextmanager def auto_download_input_file(filepath: str, auto_decompress: bool = False) -> Iterator[str]: if not is_external_location(filepath): yield filepath return with tempfile.TemporaryDirectory(suffix='-input') as temp_dir: file_basename = os.path.basename(filepath) if auto_decompress: file_basename = get_compression_wrapper(filepath).strip_compression_filename_ext( file_basename ) temp_file = os.path.join(temp_dir, file_basename) copy_file(filepath, temp_file, overwrite=True) yield temp_file def write_text(filepath: str, text: str, **kwargs): with auto_uploading_output_file(filepath, mode='w', **kwargs) as fp: fp.write(text) def read_text(filepath: str, **kwargs) -> str: with open_file(filepath, mode='r', **kwargs) as fp: return fp.read() def read_binary(filepath: str, **kwargs) -> bytes: with open_file(filepath, mode='rb', **kwargs) as fp: return fp.read() class FileRef(ABC): def __init__(self, file_url: str): self.file_url = file_url @property def basename(self): return os.path.basename(self.file_url) def __str__(self): return self.file_url def __repr__(self): return '%s(%r)' % (type(self).__name__, self.file_url) @abstractmethod def copy_to(self, target_url: str): pass class FileContainer(ABC): def __init__(self, directory_url: str): self.directory_url = directory_url @abstractmethod def list_files(self) -> List[FileRef]: pass def __str__(self): return self.directory_url def __repr__(self): return '%s(%r)' % (type(self).__name__, self.directory_url) class FileUrlRef(FileRef): def copy_to(self, target_url: str): copy_file(self.file_url, target_url) class DirectoryFileContainer(FileContainer): def list_files(self) -> List[FileRef]: return [ FileUrlRef(path_join(self.directory_url, file_url)) for file_url in list_files(self.directory_url) ] class TarFileRef(FileRef): def __init__( self, file_url: str, tar_file: tarfile.TarFile, tar_info: tarfile.TarInfo): super().__init__(file_url) self.tar_file = tar_file self.tar_info = tar_info def open_tar_file(self) -> IO: fp = self.tar_file.extractfile(self.tar_info) assert fp return fp def copy_to(self, target_url: str): with self.open_tar_file() as source_fp: with open_file( target_url, mode='wb', compression_wrapper=DUMMY_COMPRESSION_WRAPPER) as target_fp: copyfileobj(source_fp, target_fp) class TarFileContainer(FileContainer): def __init__(self, directory_url, tar_file: tarfile.TarFile): super().__init__(directory_url) self.tar_file = tar_file def list_files(self) -> List[FileRef]: return [ TarFileRef( path_join(self.directory_url, tar_info.name), tar_file=self.tar_file, tar_info=tar_info ) for tar_info in self.tar_file.getmembers() ] class ZipFileRef(FileRef): def __init__( self, file_url: str, zip_file: zipfile.ZipFile, zip_info: zipfile.ZipInfo): super().__init__(file_url) self.zip_file = zip_file self.zip_info = zip_info def copy_to(self, target_url: str): with self.zip_file.open(self.zip_info.filename) as source_fp: with open_file( target_url, mode='wb', compression_wrapper=DUMMY_COMPRESSION_WRAPPER) as target_fp: copyfileobj(source_fp, target_fp) class ZipFileContainer(FileContainer): def __init__(self, directory_url, zip_file: zipfile.ZipFile): super().__init__(directory_url) self.zip_file = zip_file def list_files(self) -> List[FileRef]: return [ ZipFileRef( path_join(self.directory_url, zip_info.filename), zip_file=self.zip_file, zip_info=zip_info ) for zip_info in self.zip_file.infolist() ] @contextmanager def open_file_container(directory_url: str) -> Iterator[FileContainer]: if str(directory_url).endswith('.tar.gz'): with auto_download_input_file(directory_url) as local_tar_file: with tarfile.open(local_tar_file) as tar_file: yield TarFileContainer(directory_url, tar_file=tar_file) return if str(directory_url).endswith('.zip'): with auto_download_input_file(directory_url) as local_zip_file: with zipfile.ZipFile(local_zip_file, mode='r') as zip_file: yield ZipFileContainer(directory_url, zip_file=zip_file) return yield DirectoryFileContainer(directory_url)
sciencebeam-trainer-delft
/sciencebeam_trainer_delft-0.0.31.tar.gz/sciencebeam_trainer_delft-0.0.31/sciencebeam_trainer_delft/utils/io.py
io.py
import logging import os import tarfile import tempfile import zipfile from abc import ABC, abstractmethod from shutil import copyfileobj from contextlib import contextmanager from gzip import GzipFile from lzma import LZMAFile from urllib.error import HTTPError from urllib.request import urlretrieve from typing import List, IO, Iterator from six import string_types, text_type try: from tensorflow.python.lib.io import file_io as tf_file_io # type: ignore from tensorflow.python.framework.errors_impl import ( # type: ignore NotFoundError as tf_NotFoundError ) except ImportError: tf_file_io = None tf_NotFoundError = None LOGGER = logging.getLogger(__name__) def is_external_location(filepath: str): return isinstance(filepath, string_types) and '://' in filepath def path_join(parent, child): return os.path.join(str(parent), str(child)) def is_gzip_filename(filepath: str): return filepath.endswith('.gz') def is_xz_filename(filepath: str): return filepath.endswith('.xz') def strip_gzip_filename_ext(filepath: str): if not is_gzip_filename(filepath): raise ValueError('not a gzip filename: %s' % filepath) return os.path.splitext(filepath)[0] def strip_xz_filename_ext(filepath: str): if not is_xz_filename(filepath): raise ValueError('not a xz filename: %s' % filepath) return os.path.splitext(filepath)[0] class CompressionWrapper(ABC): @abstractmethod def strip_compression_filename_ext(self, filepath: str): pass @abstractmethod def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): pass @contextmanager def open(self, filename: str, mode: str) -> Iterator[IO]: LOGGER.debug('opening file: %r, mode=%r', filename, mode) with _open_raw(filename, mode=mode) as fp: yield self.wrap_fileobj( filename=filename, fileobj=fp, mode=mode ) class ClosingGzipFile(GzipFile): # GzipFile doesn't close the underlying fileobj, we will do that here def close(self): fileobj = self.fileobj LOGGER.debug('ClosingGzipFile.close, fileobj: %s', fileobj) try: super().close() finally: if fileobj is not None: LOGGER.debug('closing: %s', fileobj) fileobj.close() class GzipCompressionWrapper(CompressionWrapper): def strip_compression_filename_ext(self, filepath: str): return strip_gzip_filename_ext(filepath) def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): return ClosingGzipFile(filename=filename, fileobj=fileobj, mode=mode) @contextmanager def open(self, filename: str, mode: str): if is_external_location(filename): # there seem to be an issue with GzipFile and fileobj with tempfile.TemporaryDirectory(suffix='-gzip') as gzip_dir: local_gzip_file = os.path.join(gzip_dir, os.path.basename(filename)) with ClosingGzipFile(filename=local_gzip_file, mode=mode) as local_fp: yield local_fp tf_file_io.copy(local_gzip_file, filename, overwrite=True) else: with ClosingGzipFile(filename=filename, mode=mode) as local_fp: yield local_fp class XzCompressionWrapper(CompressionWrapper): def strip_compression_filename_ext(self, filepath: str): return strip_xz_filename_ext(filepath) def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): return LZMAFile(filename=fileobj, mode=mode or 'r') class DummyCompressionWrapper(CompressionWrapper): def strip_compression_filename_ext(self, filepath: str): return filepath def wrap_fileobj(self, filename: str, fileobj: IO, mode: str = None): return fileobj GZIP_COMPRESSION_WRAPPER = GzipCompressionWrapper() XZ_COMPRESSION_WRAPPER = XzCompressionWrapper() DUMMY_COMPRESSION_WRAPPER = DummyCompressionWrapper() def get_compression_wrapper(filepath: str): if is_gzip_filename(filepath): return GZIP_COMPRESSION_WRAPPER if is_xz_filename(filepath): return XZ_COMPRESSION_WRAPPER return DUMMY_COMPRESSION_WRAPPER def strip_compression_filename_ext(filepath: str) -> str: return get_compression_wrapper(filepath).strip_compression_filename_ext(filepath) @contextmanager def _open_raw(filepath: str, mode: str) -> Iterator[IO]: if filepath.startswith('https://'): try: with tempfile.TemporaryDirectory(suffix='download') as temp_dir: temp_file = os.path.join(temp_dir, os.path.basename(filepath)) urlretrieve(filepath, temp_file) with open(temp_file, mode=mode) as fp: yield fp except HTTPError as error: if error.code == 404: raise FileNotFoundError('file not found: %s' % filepath) from error raise else: try: with tf_file_io.FileIO(filepath, mode=mode) as fp: yield fp except tf_NotFoundError as e: raise FileNotFoundError('file not found: %s' % filepath) from e @contextmanager def open_file(filepath: str, mode: str, compression_wrapper: CompressionWrapper = None): if compression_wrapper is None: compression_wrapper = get_compression_wrapper(filepath) LOGGER.debug( 'open_file, filepath=%s, mode=%s, compression_wrapper=%s', filepath, mode, compression_wrapper ) if mode in {'rb', 'r'}: with _open_raw(filepath, mode=mode) as source_fp: yield compression_wrapper.wrap_fileobj( filename=filepath, fileobj=source_fp, mode=mode ) elif mode in {'wb', 'w'}: tf_file_io.recursive_create_dir(os.path.dirname(filepath)) with compression_wrapper.open(filepath, mode=mode) as target_fp: yield target_fp else: raise ValueError('unsupported mode: %s' % mode) def _require_tf_file_io(): if tf_file_io is None: raise ImportError('Cloud storage file transfer requires TensorFlow.') def copy_file(source_filepath: str, target_filepath: str, overwrite: bool = True): _require_tf_file_io() if not overwrite and tf_file_io.file_exists(target_filepath): LOGGER.info('skipping already existing file: %s', target_filepath) return with open_file(text_type(source_filepath), mode='rb') as source_fp: with open_file(text_type(target_filepath), mode='wb') as target_fp: copyfileobj(source_fp, target_fp) def list_files(directory_path: str) -> List[str]: _require_tf_file_io() return tf_file_io.list_directory(directory_path) @contextmanager def auto_uploading_output_file(filepath: str, mode: str = 'w', **kwargs): if not is_external_location(filepath): file_dirname = os.path.dirname(filepath) if file_dirname: os.makedirs(os.path.dirname(filepath), exist_ok=True) with open(filepath, mode=mode, **kwargs) as fp: yield fp return with tempfile.TemporaryDirectory(suffix='-output') as temp_dir: temp_file = os.path.join( temp_dir, get_compression_wrapper(filepath).strip_compression_filename_ext( os.path.basename(filepath) ) ) try: with open(temp_file, mode=mode, **kwargs) as fp: yield fp finally: if os.path.exists(temp_file): copy_file(temp_file, filepath) @contextmanager def auto_download_input_file(filepath: str, auto_decompress: bool = False) -> Iterator[str]: if not is_external_location(filepath): yield filepath return with tempfile.TemporaryDirectory(suffix='-input') as temp_dir: file_basename = os.path.basename(filepath) if auto_decompress: file_basename = get_compression_wrapper(filepath).strip_compression_filename_ext( file_basename ) temp_file = os.path.join(temp_dir, file_basename) copy_file(filepath, temp_file, overwrite=True) yield temp_file def write_text(filepath: str, text: str, **kwargs): with auto_uploading_output_file(filepath, mode='w', **kwargs) as fp: fp.write(text) def read_text(filepath: str, **kwargs) -> str: with open_file(filepath, mode='r', **kwargs) as fp: return fp.read() def read_binary(filepath: str, **kwargs) -> bytes: with open_file(filepath, mode='rb', **kwargs) as fp: return fp.read() class FileRef(ABC): def __init__(self, file_url: str): self.file_url = file_url @property def basename(self): return os.path.basename(self.file_url) def __str__(self): return self.file_url def __repr__(self): return '%s(%r)' % (type(self).__name__, self.file_url) @abstractmethod def copy_to(self, target_url: str): pass class FileContainer(ABC): def __init__(self, directory_url: str): self.directory_url = directory_url @abstractmethod def list_files(self) -> List[FileRef]: pass def __str__(self): return self.directory_url def __repr__(self): return '%s(%r)' % (type(self).__name__, self.directory_url) class FileUrlRef(FileRef): def copy_to(self, target_url: str): copy_file(self.file_url, target_url) class DirectoryFileContainer(FileContainer): def list_files(self) -> List[FileRef]: return [ FileUrlRef(path_join(self.directory_url, file_url)) for file_url in list_files(self.directory_url) ] class TarFileRef(FileRef): def __init__( self, file_url: str, tar_file: tarfile.TarFile, tar_info: tarfile.TarInfo): super().__init__(file_url) self.tar_file = tar_file self.tar_info = tar_info def open_tar_file(self) -> IO: fp = self.tar_file.extractfile(self.tar_info) assert fp return fp def copy_to(self, target_url: str): with self.open_tar_file() as source_fp: with open_file( target_url, mode='wb', compression_wrapper=DUMMY_COMPRESSION_WRAPPER) as target_fp: copyfileobj(source_fp, target_fp) class TarFileContainer(FileContainer): def __init__(self, directory_url, tar_file: tarfile.TarFile): super().__init__(directory_url) self.tar_file = tar_file def list_files(self) -> List[FileRef]: return [ TarFileRef( path_join(self.directory_url, tar_info.name), tar_file=self.tar_file, tar_info=tar_info ) for tar_info in self.tar_file.getmembers() ] class ZipFileRef(FileRef): def __init__( self, file_url: str, zip_file: zipfile.ZipFile, zip_info: zipfile.ZipInfo): super().__init__(file_url) self.zip_file = zip_file self.zip_info = zip_info def copy_to(self, target_url: str): with self.zip_file.open(self.zip_info.filename) as source_fp: with open_file( target_url, mode='wb', compression_wrapper=DUMMY_COMPRESSION_WRAPPER) as target_fp: copyfileobj(source_fp, target_fp) class ZipFileContainer(FileContainer): def __init__(self, directory_url, zip_file: zipfile.ZipFile): super().__init__(directory_url) self.zip_file = zip_file def list_files(self) -> List[FileRef]: return [ ZipFileRef( path_join(self.directory_url, zip_info.filename), zip_file=self.zip_file, zip_info=zip_info ) for zip_info in self.zip_file.infolist() ] @contextmanager def open_file_container(directory_url: str) -> Iterator[FileContainer]: if str(directory_url).endswith('.tar.gz'): with auto_download_input_file(directory_url) as local_tar_file: with tarfile.open(local_tar_file) as tar_file: yield TarFileContainer(directory_url, tar_file=tar_file) return if str(directory_url).endswith('.zip'): with auto_download_input_file(directory_url) as local_zip_file: with zipfile.ZipFile(local_zip_file, mode='r') as zip_file: yield ZipFileContainer(directory_url, zip_file=zip_file) return yield DirectoryFileContainer(directory_url)
0.501221
0.086555
import argparse import logging import sys from abc import abstractmethod, ABC from typing import List, Callable, Optional, Sequence LOGGER = logging.getLogger(__name__) def add_debug_argument(parser: argparse.ArgumentParser): parser.add_argument("--debug", action="store_true", help="Enable debug logging") def add_default_arguments(parser: argparse.ArgumentParser): add_debug_argument(parser) def get_project_package(): return 'sciencebeam_trainer_delft' def process_debug_argument(args: argparse.Namespace): if args.debug: logging.getLogger('__main__').setLevel('DEBUG') logging.getLogger(get_project_package()).setLevel('DEBUG') def process_default_args(args: argparse.Namespace): process_debug_argument(args) def default_main( parse_args: Callable[[Optional[List[str]]], argparse.Namespace], run: Callable[[argparse.Namespace], None], argv: List[str] = None): LOGGER.debug('argv: %s', argv) args = parse_args(argv) process_default_args(args) run(args) def configure_main_logging(): logging.root.handlers = [] logging.basicConfig(level='INFO') def initialize_and_call_main(main: Callable[[], None]): configure_main_logging() main() class SubCommand(ABC): def __init__(self, name, description): self.name = name self.description = description @abstractmethod def add_arguments(self, parser: argparse.ArgumentParser): pass @abstractmethod def run(self, args: argparse.Namespace): pass class SubCommandProcessor: def __init__( self, sub_commands: Sequence[SubCommand], description: str = None, command_dest: str = 'command'): self.sub_commands = sub_commands self.sub_command_by_name = { sub_command.name: sub_command for sub_command in sub_commands } self.description = description self.command_dest = command_dest def get_parser(self) -> argparse.ArgumentParser: parser = argparse.ArgumentParser( description=self.description, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) self.add_sub_command_parsers(parser) return parser def parse_args(self, argv: List[str] = None) -> argparse.Namespace: return self.get_parser().parse_args(argv) def add_sub_command_parsers( self, parser: argparse.ArgumentParser): kwargs = {} if sys.version_info >= (3, 7): kwargs['required'] = True subparsers = parser.add_subparsers( dest=self.command_dest, **kwargs # type: ignore ) subparsers.required = True self.add_sub_command_parsers_to_subparsers(subparsers) def add_sub_command_parsers_to_subparsers( self, subparsers: argparse._SubParsersAction # pylint: disable=protected-access ): for sub_command in self.sub_commands: sub_parser = subparsers.add_parser( sub_command.name, help=sub_command.description, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) sub_command.add_arguments(sub_parser) add_default_arguments(sub_parser) def run(self, args: argparse.Namespace): sub_command = self.sub_command_by_name[getattr(args, self.command_dest)] sub_command.run(args) def main(self, argv: List[str] = None): args = self.parse_args(argv) process_default_args(args) self.run(args)
sciencebeam-trainer-delft
/sciencebeam_trainer_delft-0.0.31.tar.gz/sciencebeam_trainer_delft-0.0.31/sciencebeam_trainer_delft/utils/cli.py
cli.py
import argparse import logging import sys from abc import abstractmethod, ABC from typing import List, Callable, Optional, Sequence LOGGER = logging.getLogger(__name__) def add_debug_argument(parser: argparse.ArgumentParser): parser.add_argument("--debug", action="store_true", help="Enable debug logging") def add_default_arguments(parser: argparse.ArgumentParser): add_debug_argument(parser) def get_project_package(): return 'sciencebeam_trainer_delft' def process_debug_argument(args: argparse.Namespace): if args.debug: logging.getLogger('__main__').setLevel('DEBUG') logging.getLogger(get_project_package()).setLevel('DEBUG') def process_default_args(args: argparse.Namespace): process_debug_argument(args) def default_main( parse_args: Callable[[Optional[List[str]]], argparse.Namespace], run: Callable[[argparse.Namespace], None], argv: List[str] = None): LOGGER.debug('argv: %s', argv) args = parse_args(argv) process_default_args(args) run(args) def configure_main_logging(): logging.root.handlers = [] logging.basicConfig(level='INFO') def initialize_and_call_main(main: Callable[[], None]): configure_main_logging() main() class SubCommand(ABC): def __init__(self, name, description): self.name = name self.description = description @abstractmethod def add_arguments(self, parser: argparse.ArgumentParser): pass @abstractmethod def run(self, args: argparse.Namespace): pass class SubCommandProcessor: def __init__( self, sub_commands: Sequence[SubCommand], description: str = None, command_dest: str = 'command'): self.sub_commands = sub_commands self.sub_command_by_name = { sub_command.name: sub_command for sub_command in sub_commands } self.description = description self.command_dest = command_dest def get_parser(self) -> argparse.ArgumentParser: parser = argparse.ArgumentParser( description=self.description, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) self.add_sub_command_parsers(parser) return parser def parse_args(self, argv: List[str] = None) -> argparse.Namespace: return self.get_parser().parse_args(argv) def add_sub_command_parsers( self, parser: argparse.ArgumentParser): kwargs = {} if sys.version_info >= (3, 7): kwargs['required'] = True subparsers = parser.add_subparsers( dest=self.command_dest, **kwargs # type: ignore ) subparsers.required = True self.add_sub_command_parsers_to_subparsers(subparsers) def add_sub_command_parsers_to_subparsers( self, subparsers: argparse._SubParsersAction # pylint: disable=protected-access ): for sub_command in self.sub_commands: sub_parser = subparsers.add_parser( sub_command.name, help=sub_command.description, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) sub_command.add_arguments(sub_parser) add_default_arguments(sub_parser) def run(self, args: argparse.Namespace): sub_command = self.sub_command_by_name[getattr(args, self.command_dest)] sub_command.run(args) def main(self, argv: List[str] = None): args = self.parse_args(argv) process_default_args(args) self.run(args)
0.592902
0.093512
from keras import backend as K from keras.engine.topology import Layer from keras import initializers, regularizers, constraints # mostly copied from: # https://github.com/kermitt2/delft/blob/v0.2.3/delft/utilities/Attention.py # - updated to be compatible with newer Keras version class Attention(Layer): def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.step_dim = step_dim self.features_dim = 0 self.W = None self.b = None super().__init__(**kwargs) def build(self, input_shape): assert len(input_shape) == 3 self.W = self.add_weight(shape=(input_shape[-1],), initializer=self.init, name='{}_W'.format(self.name), regularizer=self.W_regularizer, constraint=self.W_constraint) self.features_dim = input_shape[-1] if self.bias: self.b = self.add_weight(shape=(input_shape[1],), initializer='zero', name='{}_b'.format(self.name), regularizer=self.b_regularizer, constraint=self.b_constraint) else: self.b = None self.built = True def compute_mask(self, inputs, mask=None): return None def call(self, inputs, mask=None, **kwargs): # pylint: disable=arguments-differ x = inputs features_dim = self.features_dim step_dim = self.step_dim eij = K.reshape( K.dot( K.reshape(x, (-1, features_dim)), K.reshape(self.W, (features_dim, 1)) ), (-1, step_dim) ) if self.bias: eij += self.b eij = K.tanh(eij) a = K.exp(eij) if mask is not None: a *= K.cast(mask, K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) a = K.expand_dims(a) weighted_input = x * a return K.sum(weighted_input, axis=1) def compute_output_shape(self, input_shape): return input_shape[0], self.features_dim
sciencebeam-trainer-delft
/sciencebeam_trainer_delft-0.0.31.tar.gz/sciencebeam_trainer_delft-0.0.31/sciencebeam_trainer_delft/utils/models/Attention.py
Attention.py
from keras import backend as K from keras.engine.topology import Layer from keras import initializers, regularizers, constraints # mostly copied from: # https://github.com/kermitt2/delft/blob/v0.2.3/delft/utilities/Attention.py # - updated to be compatible with newer Keras version class Attention(Layer): def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.step_dim = step_dim self.features_dim = 0 self.W = None self.b = None super().__init__(**kwargs) def build(self, input_shape): assert len(input_shape) == 3 self.W = self.add_weight(shape=(input_shape[-1],), initializer=self.init, name='{}_W'.format(self.name), regularizer=self.W_regularizer, constraint=self.W_constraint) self.features_dim = input_shape[-1] if self.bias: self.b = self.add_weight(shape=(input_shape[1],), initializer='zero', name='{}_b'.format(self.name), regularizer=self.b_regularizer, constraint=self.b_constraint) else: self.b = None self.built = True def compute_mask(self, inputs, mask=None): return None def call(self, inputs, mask=None, **kwargs): # pylint: disable=arguments-differ x = inputs features_dim = self.features_dim step_dim = self.step_dim eij = K.reshape( K.dot( K.reshape(x, (-1, features_dim)), K.reshape(self.W, (features_dim, 1)) ), (-1, step_dim) ) if self.bias: eij += self.b eij = K.tanh(eij) a = K.exp(eij) if mask is not None: a *= K.cast(mask, K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) a = K.expand_dims(a) weighted_input = x * a return K.sum(weighted_input, axis=1) def compute_output_shape(self, input_shape): return input_shape[0], self.features_dim
0.922023
0.362095
import logging import warnings from typing import Any, Dict, Optional from typing_extensions import Protocol import numpy as np from keras.callbacks import Callback, EarlyStopping LOGGER = logging.getLogger(__name__) class ResumableEarlyStopping(EarlyStopping): class MetaKeys: EARLY_STOPPING = 'early_stopping' WAIT = 'wait' STOPPED_EPOCH = 'stopped_epoch' BEST = 'best' def __init__( self, initial_meta: Optional[dict] = None, **kwargs ): super().__init__(**kwargs) self.best: Optional[float] = None self.initial_wait = 0 self.initial_stopped_epoch = 0 self.initial_best: Optional[float] = None self.restore_state(initial_meta) def restore_state(self, initial_meta: Optional[dict]): if not initial_meta: return early_stopping_meta = initial_meta.get(ResumableEarlyStopping.MetaKeys.EARLY_STOPPING) if not early_stopping_meta: return self.initial_wait = early_stopping_meta.get( ResumableEarlyStopping.MetaKeys.WAIT, 0 ) self.initial_stopped_epoch = early_stopping_meta.get( ResumableEarlyStopping.MetaKeys.STOPPED_EPOCH, 0 ) self.initial_best = early_stopping_meta.get( ResumableEarlyStopping.MetaKeys.BEST, None ) LOGGER.info( ( 'restored early stopping state: initial_wait=%s, initial_stopped_epoch=%s' ', initial_best=%s' ), self.initial_wait, self.initial_stopped_epoch, self.initial_best ) def on_train_begin(self, logs=None): super().on_train_begin(logs=logs) self.wait = self.initial_wait self.stopped_epoch = self.stopped_epoch if self.initial_best is not None: self.best = self.initial_best def _get_early_stopping_meta(self): return { ResumableEarlyStopping.MetaKeys.WAIT: self.wait, ResumableEarlyStopping.MetaKeys.STOPPED_EPOCH: self.stopped_epoch, ResumableEarlyStopping.MetaKeys.BEST: self.best } def _add_early_stopping_meta_to_logs(self, logs: dict): logs[ResumableEarlyStopping.MetaKeys.EARLY_STOPPING] = ( self._get_early_stopping_meta() ) def on_epoch_end(self, epoch, logs=None): super().on_epoch_end(epoch, logs=logs) self._add_early_stopping_meta_to_logs(logs) LOGGER.info('on_epoch_end: logs=%s', logs) class SaveFunctionProtocol(Protocol): def __call__(self, epoch: int, logs: Dict[str, Any], **kwargs): pass class ModelSaverCallback(Callback): """Similar to ModelCheckpoint but leaves the actual saving to the save_fn. """ def __init__( self, save_fn: Optional[SaveFunctionProtocol], monitor: str = 'val_loss', mode: str = 'auto', period: int = 1, save_best_only: bool = False, save_kwargs: dict = None): super().__init__() self.monitor = monitor self.save_fn = save_fn self.period = period self.save_best_only = save_best_only self.save_kwargs = save_kwargs or {} self.epochs_since_last_save = 0 if mode not in ['auto', 'min', 'max']: warnings.warn( 'ModelCheckpoint mode %s is unknown, ' 'fallback to auto mode.' % (mode), RuntimeWarning ) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf def _save(self, epoch, logs=None): self.save_fn(epoch=epoch, logs=logs, **self.save_kwargs) def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 if self.save_best_only: current = logs.get(self.monitor) if current is None: warnings.warn( 'Can save best model only with %s available, ' 'skipping.' % (self.monitor), RuntimeWarning ) else: if self.monitor_op(current, self.best): LOGGER.info( 'Epoch %05d: %s improved from %0.5f to %0.5f', epoch + 1, self.monitor, self.best, current ) self.best = current self._save(epoch=epoch, logs=logs) else: LOGGER.info( 'Epoch %05d: %s did not improve from %0.5f', epoch + 1, self.monitor, self.best ) else: self._save(epoch=epoch, logs=logs)
sciencebeam-trainer-delft
/sciencebeam_trainer_delft-0.0.31.tar.gz/sciencebeam_trainer_delft-0.0.31/sciencebeam_trainer_delft/utils/keras/callbacks.py
callbacks.py
import logging import warnings from typing import Any, Dict, Optional from typing_extensions import Protocol import numpy as np from keras.callbacks import Callback, EarlyStopping LOGGER = logging.getLogger(__name__) class ResumableEarlyStopping(EarlyStopping): class MetaKeys: EARLY_STOPPING = 'early_stopping' WAIT = 'wait' STOPPED_EPOCH = 'stopped_epoch' BEST = 'best' def __init__( self, initial_meta: Optional[dict] = None, **kwargs ): super().__init__(**kwargs) self.best: Optional[float] = None self.initial_wait = 0 self.initial_stopped_epoch = 0 self.initial_best: Optional[float] = None self.restore_state(initial_meta) def restore_state(self, initial_meta: Optional[dict]): if not initial_meta: return early_stopping_meta = initial_meta.get(ResumableEarlyStopping.MetaKeys.EARLY_STOPPING) if not early_stopping_meta: return self.initial_wait = early_stopping_meta.get( ResumableEarlyStopping.MetaKeys.WAIT, 0 ) self.initial_stopped_epoch = early_stopping_meta.get( ResumableEarlyStopping.MetaKeys.STOPPED_EPOCH, 0 ) self.initial_best = early_stopping_meta.get( ResumableEarlyStopping.MetaKeys.BEST, None ) LOGGER.info( ( 'restored early stopping state: initial_wait=%s, initial_stopped_epoch=%s' ', initial_best=%s' ), self.initial_wait, self.initial_stopped_epoch, self.initial_best ) def on_train_begin(self, logs=None): super().on_train_begin(logs=logs) self.wait = self.initial_wait self.stopped_epoch = self.stopped_epoch if self.initial_best is not None: self.best = self.initial_best def _get_early_stopping_meta(self): return { ResumableEarlyStopping.MetaKeys.WAIT: self.wait, ResumableEarlyStopping.MetaKeys.STOPPED_EPOCH: self.stopped_epoch, ResumableEarlyStopping.MetaKeys.BEST: self.best } def _add_early_stopping_meta_to_logs(self, logs: dict): logs[ResumableEarlyStopping.MetaKeys.EARLY_STOPPING] = ( self._get_early_stopping_meta() ) def on_epoch_end(self, epoch, logs=None): super().on_epoch_end(epoch, logs=logs) self._add_early_stopping_meta_to_logs(logs) LOGGER.info('on_epoch_end: logs=%s', logs) class SaveFunctionProtocol(Protocol): def __call__(self, epoch: int, logs: Dict[str, Any], **kwargs): pass class ModelSaverCallback(Callback): """Similar to ModelCheckpoint but leaves the actual saving to the save_fn. """ def __init__( self, save_fn: Optional[SaveFunctionProtocol], monitor: str = 'val_loss', mode: str = 'auto', period: int = 1, save_best_only: bool = False, save_kwargs: dict = None): super().__init__() self.monitor = monitor self.save_fn = save_fn self.period = period self.save_best_only = save_best_only self.save_kwargs = save_kwargs or {} self.epochs_since_last_save = 0 if mode not in ['auto', 'min', 'max']: warnings.warn( 'ModelCheckpoint mode %s is unknown, ' 'fallback to auto mode.' % (mode), RuntimeWarning ) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf def _save(self, epoch, logs=None): self.save_fn(epoch=epoch, logs=logs, **self.save_kwargs) def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 if self.save_best_only: current = logs.get(self.monitor) if current is None: warnings.warn( 'Can save best model only with %s available, ' 'skipping.' % (self.monitor), RuntimeWarning ) else: if self.monitor_op(current, self.best): LOGGER.info( 'Epoch %05d: %s improved from %0.5f to %0.5f', epoch + 1, self.monitor, self.best, current ) self.best = current self._save(epoch=epoch, logs=logs) else: LOGGER.info( 'Epoch %05d: %s did not improve from %0.5f', epoch + 1, self.monitor, self.best ) else: self._save(epoch=epoch, logs=logs)
0.824638
0.113678
import json import logging import os from pathlib import Path from typing import Dict, List, Optional from sciencebeam_trainer_delft.utils.download_manager import DownloadManager from sciencebeam_trainer_delft.embedding.embedding import Embeddings from sciencebeam_trainer_delft.utils.io import ( is_external_location, strip_compression_filename_ext ) LOGGER = logging.getLogger(__name__) DEFAULT_EMBEDDING_REGISTRY = 'embedding-registry.json' DEFAULT_DOWNLOAD_DIR = 'data/download' DEFAULT_EMBEDDING_LMDB_PATH = 'data/db' DEFAULT_MIN_LMDB_CACHE_SIZE = 1024 * 1024 def _find_embedding_index(embedding_list: List[dict], name: str) -> int: matching_indices = [i for i, x in enumerate(embedding_list) if x['name'] == name] if matching_indices: return matching_indices[0] return -1 def _get_embedding_name_for_filename(filename: str) -> str: name = os.path.splitext(os.path.basename(filename))[0] if name.endswith('.mdb'): return os.path.splitext(name)[0] return name def _get_embedding_format_for_filename(filename: str) -> str: if '.bin' in filename: return 'bin' return 'vec' def _get_embedding_type_for_filename(filename: str) -> str: if 'glove' in filename.lower(): return 'glove' return filename def _get_embedding_config_for_filename(filename: str) -> dict: return { 'name': _get_embedding_name_for_filename(filename), 'format': _get_embedding_format_for_filename(filename), 'type': _get_embedding_type_for_filename(filename), 'lang': 'en' } class EmbeddingManager: def __init__( self, path: str = DEFAULT_EMBEDDING_REGISTRY, download_manager: DownloadManager = None, download_dir: str = DEFAULT_DOWNLOAD_DIR, default_embedding_lmdb_path: str = DEFAULT_EMBEDDING_LMDB_PATH, min_lmdb_cache_size: int = DEFAULT_MIN_LMDB_CACHE_SIZE): assert download_manager self.path = path self.download_manager = download_manager self.download_dir = download_dir self.default_embedding_lmdb_path = default_embedding_lmdb_path self.min_lmdb_cache_size = min_lmdb_cache_size def _load(self) -> dict: return json.loads(Path(self.path).read_text()) def _save(self, registry_data: dict): LOGGER.debug('saving registry data: %s', registry_data) return Path(self.path).write_text(json.dumps(registry_data, indent=4)) def _get_registry_data(self) -> dict: try: return self._load() except FileNotFoundError: return {} def get_embedding_lmdb_path(self): registry_data = self._get_registry_data() return registry_data.get('embedding-lmdb-path', self.default_embedding_lmdb_path) def is_embedding_lmdb_cache_enabled(self): return self.get_embedding_lmdb_path() def set_embedding_lmdb_cache_path(self, embedding_lmdb_cache_path: str): registry_data = self._get_registry_data() registry_data['embedding-lmdb-path'] = embedding_lmdb_cache_path self._save(registry_data) def disable_embedding_lmdb_cache(self): self.set_embedding_lmdb_cache_path(None) def add_embedding_config(self, embedding_config: dict): LOGGER.debug('adding config: %s', embedding_config) embedding_name = embedding_config['name'] registry_data = self._get_registry_data() if 'embeddings' not in registry_data: registry_data['embeddings'] = [] embedding_list = registry_data['embeddings'] index = _find_embedding_index(embedding_list, embedding_name) if index < 0: embedding_list.append(embedding_config) else: embedding_list[index] = embedding_config if 'embedding-lmdb-path' not in registry_data: registry_data['embedding-lmdb-path'] = self.default_embedding_lmdb_path self._save(registry_data) def get_embedding_config(self, embedding_name: str) -> Optional[dict]: embedding_list = self._get_registry_data().get('embeddings', []) index = _find_embedding_index(embedding_list, embedding_name) if index < 0: LOGGER.info('embedding not found with name "%s" in %s', embedding_name, embedding_list) return None return embedding_list[index] def set_embedding_aliases(self, embedding_aliases: Dict[str, str]): registry_data = self._get_registry_data() registry_data['embedding-aliases'] = embedding_aliases self._save(registry_data) def get_embedding_aliases(self) -> dict: registry_data = self._get_registry_data() return registry_data.get('embedding-aliases', {}) def resolve_alias(self, embedding_name: str): return self.get_embedding_aliases().get(embedding_name, embedding_name) def is_lmdb_cache_file(self, embedding_url: str) -> bool: return strip_compression_filename_ext( embedding_url ).endswith('.mdb') def download_and_install_source_embedding(self, embedding_url: str) -> str: download_file = self.download_manager.download_if_url(embedding_url) filename = os.path.basename(strip_compression_filename_ext(embedding_url)) embedding_config = _get_embedding_config_for_filename(filename) embedding_name = embedding_config['name'] self.add_embedding_config({ **embedding_config, 'path': str(download_file) }) return embedding_name def _download_lmdb_cache_embedding(self, embedding_name: str, embedding_url: str): self.download_manager.download( embedding_url, local_file=str(self.get_embedding_lmdb_cache_data_path(embedding_name)) ) def download_and_install_lmdb_cache_embedding(self, embedding_url: str) -> str: embedding_config = _get_embedding_config_for_filename(embedding_url) embedding_name = embedding_config['name'] self._download_lmdb_cache_embedding(embedding_name, embedding_url) self.add_embedding_config(embedding_config) return embedding_name def download_and_install_embedding(self, embedding_url: str) -> str: if self.is_lmdb_cache_file(embedding_url): return self.download_and_install_lmdb_cache_embedding(embedding_url) return self.download_and_install_source_embedding(embedding_url) def download_and_install_embedding_if_url(self, embedding_url_or_name: str): if is_external_location(embedding_url_or_name): return self.download_and_install_embedding(embedding_url_or_name) return embedding_url_or_name def get_embedding_lmdb_cache_data_path(self, embedding_name: str): embedding_lmdb_path = self.get_embedding_lmdb_path() if not embedding_lmdb_path: return None embedding_lmdb_dir = Path(embedding_lmdb_path).joinpath(embedding_name) return embedding_lmdb_dir.joinpath('data.mdb') def has_lmdb_cache(self, embedding_name: str): embedding_lmdb_file = self.get_embedding_lmdb_cache_data_path( embedding_name ) if not embedding_lmdb_file: return False exists = embedding_lmdb_file.is_file() size = exists and embedding_lmdb_file.stat().st_size valid = exists and size >= self.min_lmdb_cache_size LOGGER.debug( 'embedding_lmdb_file: %s (exists: %s, valid: %s, size: %s)', embedding_lmdb_file, exists, valid, size ) if valid: LOGGER.info( 'has already lmdb cache: %s (%s bytes)', embedding_lmdb_file, size ) return valid def is_downloaded(self, embedding_name: str): embedding_config = self.get_embedding_config(embedding_name) if not embedding_config: return False embedding_path = embedding_config.get('path') if not embedding_path or not Path(embedding_path).exists(): return False LOGGER.info('already downloaded: %s', embedding_name) return True def is_downloaded_or_has_lmdb_cache(self, embedding_name: str): return self.is_downloaded(embedding_name) or self.has_lmdb_cache(embedding_name) def _ensure_external_url_available(self, embedding_url: str): embedding_name = _get_embedding_name_for_filename(embedding_url) if not self.is_downloaded_or_has_lmdb_cache(embedding_name): return self.download_and_install_embedding(embedding_url) if not self.get_embedding_config(embedding_name): self.add_embedding_config( _get_embedding_config_for_filename(embedding_url) ) return embedding_name def _ensure_registered_embedding_available(self, embedding_name: str): self.validate_embedding(embedding_name) if self.is_downloaded_or_has_lmdb_cache(embedding_name): return embedding_name embedding_config = self.get_embedding_config(embedding_name) assert embedding_config, "embedding_config required for %s" % embedding_name embedding_url = embedding_config.get('url') assert embedding_url, "embedding_url required for %s" % embedding_name if self.is_lmdb_cache_file(embedding_url): self._download_lmdb_cache_embedding(embedding_name, embedding_url) return embedding_name embedding_path = embedding_config.get('path') assert embedding_path, "embedding_path required for %s" % embedding_name self.download_manager.download(embedding_url, local_file=embedding_path) return embedding_name def ensure_lmdb_cache_if_enabled(self, embedding_name: str): if not self.get_embedding_lmdb_path(): return Embeddings(embedding_name, path=self.path) assert self.has_lmdb_cache(embedding_name) def ensure_available(self, embedding_url_or_name: str): if is_external_location(embedding_url_or_name): return self._ensure_external_url_available(embedding_url_or_name) return self._ensure_registered_embedding_available(self.resolve_alias( embedding_url_or_name )) def validate_embedding(self, embedding_name): if not self.get_embedding_config(embedding_name): raise ValueError('invalid embedding name: %s' % embedding_name)
sciencebeam-trainer-delft
/sciencebeam_trainer_delft-0.0.31.tar.gz/sciencebeam_trainer_delft-0.0.31/sciencebeam_trainer_delft/embedding/manager.py
manager.py
import json import logging import os from pathlib import Path from typing import Dict, List, Optional from sciencebeam_trainer_delft.utils.download_manager import DownloadManager from sciencebeam_trainer_delft.embedding.embedding import Embeddings from sciencebeam_trainer_delft.utils.io import ( is_external_location, strip_compression_filename_ext ) LOGGER = logging.getLogger(__name__) DEFAULT_EMBEDDING_REGISTRY = 'embedding-registry.json' DEFAULT_DOWNLOAD_DIR = 'data/download' DEFAULT_EMBEDDING_LMDB_PATH = 'data/db' DEFAULT_MIN_LMDB_CACHE_SIZE = 1024 * 1024 def _find_embedding_index(embedding_list: List[dict], name: str) -> int: matching_indices = [i for i, x in enumerate(embedding_list) if x['name'] == name] if matching_indices: return matching_indices[0] return -1 def _get_embedding_name_for_filename(filename: str) -> str: name = os.path.splitext(os.path.basename(filename))[0] if name.endswith('.mdb'): return os.path.splitext(name)[0] return name def _get_embedding_format_for_filename(filename: str) -> str: if '.bin' in filename: return 'bin' return 'vec' def _get_embedding_type_for_filename(filename: str) -> str: if 'glove' in filename.lower(): return 'glove' return filename def _get_embedding_config_for_filename(filename: str) -> dict: return { 'name': _get_embedding_name_for_filename(filename), 'format': _get_embedding_format_for_filename(filename), 'type': _get_embedding_type_for_filename(filename), 'lang': 'en' } class EmbeddingManager: def __init__( self, path: str = DEFAULT_EMBEDDING_REGISTRY, download_manager: DownloadManager = None, download_dir: str = DEFAULT_DOWNLOAD_DIR, default_embedding_lmdb_path: str = DEFAULT_EMBEDDING_LMDB_PATH, min_lmdb_cache_size: int = DEFAULT_MIN_LMDB_CACHE_SIZE): assert download_manager self.path = path self.download_manager = download_manager self.download_dir = download_dir self.default_embedding_lmdb_path = default_embedding_lmdb_path self.min_lmdb_cache_size = min_lmdb_cache_size def _load(self) -> dict: return json.loads(Path(self.path).read_text()) def _save(self, registry_data: dict): LOGGER.debug('saving registry data: %s', registry_data) return Path(self.path).write_text(json.dumps(registry_data, indent=4)) def _get_registry_data(self) -> dict: try: return self._load() except FileNotFoundError: return {} def get_embedding_lmdb_path(self): registry_data = self._get_registry_data() return registry_data.get('embedding-lmdb-path', self.default_embedding_lmdb_path) def is_embedding_lmdb_cache_enabled(self): return self.get_embedding_lmdb_path() def set_embedding_lmdb_cache_path(self, embedding_lmdb_cache_path: str): registry_data = self._get_registry_data() registry_data['embedding-lmdb-path'] = embedding_lmdb_cache_path self._save(registry_data) def disable_embedding_lmdb_cache(self): self.set_embedding_lmdb_cache_path(None) def add_embedding_config(self, embedding_config: dict): LOGGER.debug('adding config: %s', embedding_config) embedding_name = embedding_config['name'] registry_data = self._get_registry_data() if 'embeddings' not in registry_data: registry_data['embeddings'] = [] embedding_list = registry_data['embeddings'] index = _find_embedding_index(embedding_list, embedding_name) if index < 0: embedding_list.append(embedding_config) else: embedding_list[index] = embedding_config if 'embedding-lmdb-path' not in registry_data: registry_data['embedding-lmdb-path'] = self.default_embedding_lmdb_path self._save(registry_data) def get_embedding_config(self, embedding_name: str) -> Optional[dict]: embedding_list = self._get_registry_data().get('embeddings', []) index = _find_embedding_index(embedding_list, embedding_name) if index < 0: LOGGER.info('embedding not found with name "%s" in %s', embedding_name, embedding_list) return None return embedding_list[index] def set_embedding_aliases(self, embedding_aliases: Dict[str, str]): registry_data = self._get_registry_data() registry_data['embedding-aliases'] = embedding_aliases self._save(registry_data) def get_embedding_aliases(self) -> dict: registry_data = self._get_registry_data() return registry_data.get('embedding-aliases', {}) def resolve_alias(self, embedding_name: str): return self.get_embedding_aliases().get(embedding_name, embedding_name) def is_lmdb_cache_file(self, embedding_url: str) -> bool: return strip_compression_filename_ext( embedding_url ).endswith('.mdb') def download_and_install_source_embedding(self, embedding_url: str) -> str: download_file = self.download_manager.download_if_url(embedding_url) filename = os.path.basename(strip_compression_filename_ext(embedding_url)) embedding_config = _get_embedding_config_for_filename(filename) embedding_name = embedding_config['name'] self.add_embedding_config({ **embedding_config, 'path': str(download_file) }) return embedding_name def _download_lmdb_cache_embedding(self, embedding_name: str, embedding_url: str): self.download_manager.download( embedding_url, local_file=str(self.get_embedding_lmdb_cache_data_path(embedding_name)) ) def download_and_install_lmdb_cache_embedding(self, embedding_url: str) -> str: embedding_config = _get_embedding_config_for_filename(embedding_url) embedding_name = embedding_config['name'] self._download_lmdb_cache_embedding(embedding_name, embedding_url) self.add_embedding_config(embedding_config) return embedding_name def download_and_install_embedding(self, embedding_url: str) -> str: if self.is_lmdb_cache_file(embedding_url): return self.download_and_install_lmdb_cache_embedding(embedding_url) return self.download_and_install_source_embedding(embedding_url) def download_and_install_embedding_if_url(self, embedding_url_or_name: str): if is_external_location(embedding_url_or_name): return self.download_and_install_embedding(embedding_url_or_name) return embedding_url_or_name def get_embedding_lmdb_cache_data_path(self, embedding_name: str): embedding_lmdb_path = self.get_embedding_lmdb_path() if not embedding_lmdb_path: return None embedding_lmdb_dir = Path(embedding_lmdb_path).joinpath(embedding_name) return embedding_lmdb_dir.joinpath('data.mdb') def has_lmdb_cache(self, embedding_name: str): embedding_lmdb_file = self.get_embedding_lmdb_cache_data_path( embedding_name ) if not embedding_lmdb_file: return False exists = embedding_lmdb_file.is_file() size = exists and embedding_lmdb_file.stat().st_size valid = exists and size >= self.min_lmdb_cache_size LOGGER.debug( 'embedding_lmdb_file: %s (exists: %s, valid: %s, size: %s)', embedding_lmdb_file, exists, valid, size ) if valid: LOGGER.info( 'has already lmdb cache: %s (%s bytes)', embedding_lmdb_file, size ) return valid def is_downloaded(self, embedding_name: str): embedding_config = self.get_embedding_config(embedding_name) if not embedding_config: return False embedding_path = embedding_config.get('path') if not embedding_path or not Path(embedding_path).exists(): return False LOGGER.info('already downloaded: %s', embedding_name) return True def is_downloaded_or_has_lmdb_cache(self, embedding_name: str): return self.is_downloaded(embedding_name) or self.has_lmdb_cache(embedding_name) def _ensure_external_url_available(self, embedding_url: str): embedding_name = _get_embedding_name_for_filename(embedding_url) if not self.is_downloaded_or_has_lmdb_cache(embedding_name): return self.download_and_install_embedding(embedding_url) if not self.get_embedding_config(embedding_name): self.add_embedding_config( _get_embedding_config_for_filename(embedding_url) ) return embedding_name def _ensure_registered_embedding_available(self, embedding_name: str): self.validate_embedding(embedding_name) if self.is_downloaded_or_has_lmdb_cache(embedding_name): return embedding_name embedding_config = self.get_embedding_config(embedding_name) assert embedding_config, "embedding_config required for %s" % embedding_name embedding_url = embedding_config.get('url') assert embedding_url, "embedding_url required for %s" % embedding_name if self.is_lmdb_cache_file(embedding_url): self._download_lmdb_cache_embedding(embedding_name, embedding_url) return embedding_name embedding_path = embedding_config.get('path') assert embedding_path, "embedding_path required for %s" % embedding_name self.download_manager.download(embedding_url, local_file=embedding_path) return embedding_name def ensure_lmdb_cache_if_enabled(self, embedding_name: str): if not self.get_embedding_lmdb_path(): return Embeddings(embedding_name, path=self.path) assert self.has_lmdb_cache(embedding_name) def ensure_available(self, embedding_url_or_name: str): if is_external_location(embedding_url_or_name): return self._ensure_external_url_available(embedding_url_or_name) return self._ensure_registered_embedding_available(self.resolve_alias( embedding_url_or_name )) def validate_embedding(self, embedding_name): if not self.get_embedding_config(embedding_name): raise ValueError('invalid embedding name: %s' % embedding_name)
0.750095
0.122104
import argparse import logging from typing import Dict, List from sciencebeam_trainer_delft.utils.misc import parse_dict, merge_dicts from sciencebeam_trainer_delft.utils.cli import ( initialize_and_call_main, SubCommand, SubCommandProcessor ) from sciencebeam_trainer_delft.embedding.manager import ( EmbeddingManager, DownloadManager, DEFAULT_EMBEDDING_REGISTRY ) LOGGER = logging.getLogger(__name__) class Commands: DISABLE_LMDB_CACHE = 'disable-lmdb-cache' SET_LMDB_PATH = 'set-lmdb-path' PRELOAD = 'preload' OVERRIDE_EMBEDDING_URL = 'override-embedding-url' def _add_registry_path_argument(parser: argparse.ArgumentParser): parser.add_argument( "--registry-path", default=DEFAULT_EMBEDDING_REGISTRY, help="Path to the embedding registry" ) def _get_embedding_manager(args: argparse.Namespace) -> EmbeddingManager: return EmbeddingManager( path=args.registry_path, download_manager=DownloadManager() ) class DisableLmdbCacheSubCommand(SubCommand): def __init__(self): super().__init__(Commands.DISABLE_LMDB_CACHE, 'Disable LMDB cache') def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) def run(self, args: argparse.Namespace): embedding_manager = _get_embedding_manager(args) embedding_manager.disable_embedding_lmdb_cache() class SetLmdbPathSubCommand(SubCommand): def __init__(self): super().__init__(Commands.SET_LMDB_PATH, 'Set LMDB cache path') def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) parser.add_argument( "--lmdb-cache-path", required=True, help="Path to the LMDB cache" ) def run(self, args: argparse.Namespace): embedding_manager = _get_embedding_manager(args) embedding_manager.set_embedding_lmdb_cache_path( args.lmdb_cache_path ) class PreloadSubCommand(SubCommand): def __init__(self): super().__init__(Commands.PRELOAD, 'Ensure embedding(s) are ready to use') def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) parser.add_argument( "--embedding", required=True, help="Name of embedding(s) to preload" ) def run(self, args: argparse.Namespace): embedding_manager = _get_embedding_manager(args) embedding_name = embedding_manager.ensure_available(args.embedding) embedding_manager.ensure_lmdb_cache_if_enabled(embedding_name) def parse_embedding_url_override_expr(embedding_url_override_expr: str) -> Dict[str, str]: LOGGER.debug('embedding_url_override_expr: %s', embedding_url_override_expr) return parse_dict(embedding_url_override_expr, delimiter='|') class OverrideEmbeddingUrlSubCommand(SubCommand): def __init__(self): super().__init__( Commands.OVERRIDE_EMBEDDING_URL, 'Override the URL of embeddings so that they can be loaded from another location' ) def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) parser.add_argument( "--override-url", nargs='+', required=True, type=parse_embedding_url_override_expr, help=( "The urls to override, in the form: <embedding name>=<url>" "\n (multiple urls can be specified by using the pipe ('|') separator" " or using the --override-url parameter multiple times" ) ) def run(self, args: argparse.Namespace): url_by_embedding_name = merge_dicts(args.override_url) LOGGER.debug('url_by_embedding_name: %s', url_by_embedding_name) embedding_manager = _get_embedding_manager(args) for embedding_name, embedding_url in url_by_embedding_name.items(): LOGGER.info('setting url of embedding %s to %s', embedding_name, embedding_url) embedding_config = embedding_manager.get_embedding_config(embedding_name) assert embedding_config embedding_manager.add_embedding_config({ **embedding_config, 'url': embedding_url }) SUB_COMMANDS = [ DisableLmdbCacheSubCommand(), SetLmdbPathSubCommand(), PreloadSubCommand(), OverrideEmbeddingUrlSubCommand() ] def main(argv: List[str] = None): processor = SubCommandProcessor( SUB_COMMANDS, description='Manage Embeddings' ) processor.main(argv) if __name__ == "__main__": initialize_and_call_main(main)
sciencebeam-trainer-delft
/sciencebeam_trainer_delft-0.0.31.tar.gz/sciencebeam_trainer_delft-0.0.31/sciencebeam_trainer_delft/embedding/cli.py
cli.py
import argparse import logging from typing import Dict, List from sciencebeam_trainer_delft.utils.misc import parse_dict, merge_dicts from sciencebeam_trainer_delft.utils.cli import ( initialize_and_call_main, SubCommand, SubCommandProcessor ) from sciencebeam_trainer_delft.embedding.manager import ( EmbeddingManager, DownloadManager, DEFAULT_EMBEDDING_REGISTRY ) LOGGER = logging.getLogger(__name__) class Commands: DISABLE_LMDB_CACHE = 'disable-lmdb-cache' SET_LMDB_PATH = 'set-lmdb-path' PRELOAD = 'preload' OVERRIDE_EMBEDDING_URL = 'override-embedding-url' def _add_registry_path_argument(parser: argparse.ArgumentParser): parser.add_argument( "--registry-path", default=DEFAULT_EMBEDDING_REGISTRY, help="Path to the embedding registry" ) def _get_embedding_manager(args: argparse.Namespace) -> EmbeddingManager: return EmbeddingManager( path=args.registry_path, download_manager=DownloadManager() ) class DisableLmdbCacheSubCommand(SubCommand): def __init__(self): super().__init__(Commands.DISABLE_LMDB_CACHE, 'Disable LMDB cache') def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) def run(self, args: argparse.Namespace): embedding_manager = _get_embedding_manager(args) embedding_manager.disable_embedding_lmdb_cache() class SetLmdbPathSubCommand(SubCommand): def __init__(self): super().__init__(Commands.SET_LMDB_PATH, 'Set LMDB cache path') def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) parser.add_argument( "--lmdb-cache-path", required=True, help="Path to the LMDB cache" ) def run(self, args: argparse.Namespace): embedding_manager = _get_embedding_manager(args) embedding_manager.set_embedding_lmdb_cache_path( args.lmdb_cache_path ) class PreloadSubCommand(SubCommand): def __init__(self): super().__init__(Commands.PRELOAD, 'Ensure embedding(s) are ready to use') def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) parser.add_argument( "--embedding", required=True, help="Name of embedding(s) to preload" ) def run(self, args: argparse.Namespace): embedding_manager = _get_embedding_manager(args) embedding_name = embedding_manager.ensure_available(args.embedding) embedding_manager.ensure_lmdb_cache_if_enabled(embedding_name) def parse_embedding_url_override_expr(embedding_url_override_expr: str) -> Dict[str, str]: LOGGER.debug('embedding_url_override_expr: %s', embedding_url_override_expr) return parse_dict(embedding_url_override_expr, delimiter='|') class OverrideEmbeddingUrlSubCommand(SubCommand): def __init__(self): super().__init__( Commands.OVERRIDE_EMBEDDING_URL, 'Override the URL of embeddings so that they can be loaded from another location' ) def add_arguments(self, parser: argparse.ArgumentParser): _add_registry_path_argument(parser) parser.add_argument( "--override-url", nargs='+', required=True, type=parse_embedding_url_override_expr, help=( "The urls to override, in the form: <embedding name>=<url>" "\n (multiple urls can be specified by using the pipe ('|') separator" " or using the --override-url parameter multiple times" ) ) def run(self, args: argparse.Namespace): url_by_embedding_name = merge_dicts(args.override_url) LOGGER.debug('url_by_embedding_name: %s', url_by_embedding_name) embedding_manager = _get_embedding_manager(args) for embedding_name, embedding_url in url_by_embedding_name.items(): LOGGER.info('setting url of embedding %s to %s', embedding_name, embedding_url) embedding_config = embedding_manager.get_embedding_config(embedding_name) assert embedding_config embedding_manager.add_embedding_config({ **embedding_config, 'url': embedding_url }) SUB_COMMANDS = [ DisableLmdbCacheSubCommand(), SetLmdbPathSubCommand(), PreloadSubCommand(), OverrideEmbeddingUrlSubCommand() ] def main(argv: List[str] = None): processor = SubCommandProcessor( SUB_COMMANDS, description='Manage Embeddings' ) processor.main(argv) if __name__ == "__main__": initialize_and_call_main(main)
0.832849
0.121321
# ScienceBeam Utils [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](LICENSE) Provides utility functions related to the [ScienceBeam](https://github.com/elifesciences/sciencebeam) project. Please refer to the [development documentation](https://github.com/elifesciences/sciencebeam-utils/blob/develop/doc/development.md) if you wish to contribute to the project. Most tools are not yet documented. Please feel free to browse the code or tests, or raise an issue. ## Pre-requisites - Python 3 - [Apache Beam](https://beam.apache.org/) [Apache Beam](https://beam.apache.org/) may be used to for preprocessing but also its transparent FileSystems API which makes it easy to access files in the cloud. ## Install ```bash pip install apache_beam[gcp] ``` ```bash pip install sciencebeam-utils ``` ## CLI Tools ### Find File Pairs The preferred input layout is a directory containing a gzipped pdf (`.pdf.gz`) and gzipped xml (`.nxml.gz`), e.g.: - manuscript_1/ - manuscript_1.pdf.gz - manuscript_1.nxml.gz - manuscript_2/ - manuscript_2.pdf.gz - manuscript_2.nxml.gz Using compressed files is optional but recommended to reduce file storage cost. The parent directory per manuscript is optional. If that is not the case then the name before the extension must be identical (which is recommended in general). Run: ```bash python -m sciencebeam_utils.tools.find_file_pairs \ --data-path <source directory> \ --source-pattern *.pdf.gz --xml-pattern *.nxml.gz \ --out <output file list csv/tsv> ``` e.g.: ```bash python -m sciencebeam_utils.tools.find_file_pairs \ --data-path gs://some-bucket/some-dataset \ --source-pattern *.pdf.gz --xml-pattern *.nxml.gz \ --out gs://some-bucket/some-dataset/file-list.tsv ``` That will create the TSV (tab separated) file `file-list.tsv` with the following columns: - _source_url_ - _xml_url_ That file could also be generated using any other preferred method. ### Split File List To separate the file list into a _training_, _validation_ and _test_ dataset, the following script can be used: ```bash python -m sciencebeam_utils.tools.split_csv_dataset \ --input <csv/tsv file list> \ --train 0.5 --validation 0.2 --test 0.3 --random --fill ``` e.g.: ```bash python -m sciencebeam_utils.tools.split_csv_dataset \ --input gs://some-bucket/some-dataset/file-list.tsv \ --train 0.5 --validation 0.2 --test 0.3 --random --fill ``` That will create three separate files in the same directory: - `file-list-train.tsv` - `file-list-validation.tsv` - `file-list-test.tsv` The file pairs will be randomly selected (_--random_) and one group will also include all remaining file pairs that wouldn't get include due to rounding (_--fill_). As with the previous step, you may decide to use your own process instead. Note: those files shouldn't change anymore once you used those files ### Get Output Files Since ScienceBeam is intended to convert files, there will be output files. To make it specific what the filenames are, the output files are also kept in a file list. This tool will generate the file list (it doesn't matter whether the files actually exist for this purpose). e.g. ```bash python -m sciencebeam_utils.tools.get_output_files \ --source-file-list path/to/source/file-list-train.tsv \ --source-file-column=source_url \ --output-file-suffix=.xml \ --output-file-list path/to/results/file-list.lst ``` By adding the `--check` argument, it will check whether the output files exist (see below). ### Check File List After generating an output file list, this tool can be used whether the output files exist or are complete. e.g. ```bash python -m sciencebeam_utils.tools.check_file_list \ --file-list path/to/results/file-list.lst \ --file-column=source_url \ --limit=100 ``` This will check the first 100 output files and report on it. The command will fail if none of the output files exist.
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/README.md
README.md
pip install apache_beam[gcp] pip install sciencebeam-utils python -m sciencebeam_utils.tools.find_file_pairs \ --data-path <source directory> \ --source-pattern *.pdf.gz --xml-pattern *.nxml.gz \ --out <output file list csv/tsv> python -m sciencebeam_utils.tools.find_file_pairs \ --data-path gs://some-bucket/some-dataset \ --source-pattern *.pdf.gz --xml-pattern *.nxml.gz \ --out gs://some-bucket/some-dataset/file-list.tsv python -m sciencebeam_utils.tools.split_csv_dataset \ --input <csv/tsv file list> \ --train 0.5 --validation 0.2 --test 0.3 --random --fill python -m sciencebeam_utils.tools.split_csv_dataset \ --input gs://some-bucket/some-dataset/file-list.tsv \ --train 0.5 --validation 0.2 --test 0.3 --random --fill python -m sciencebeam_utils.tools.get_output_files \ --source-file-list path/to/source/file-list-train.tsv \ --source-file-column=source_url \ --output-file-suffix=.xml \ --output-file-list path/to/results/file-list.lst python -m sciencebeam_utils.tools.check_file_list \ --file-list path/to/results/file-list.lst \ --file-column=source_url \ --limit=100
0.321247
0.929376
from __future__ import absolute_import import logging from io import StringIO from backports import csv # pylint: disable=no-name-in-module from six import text_type import apache_beam as beam from apache_beam.io.textio import WriteToText from apache_beam.io.filesystem import CompressionTypes from apache_beam.io.filebasedsource import FileBasedSource from sciencebeam_utils.beam_utils.utils import ( TransformAndLog ) from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename ) def get_logger(): return logging.getLogger(__name__) def DictToList(fields): def wrapper(x): get_logger().debug('DictToList: %s -> %s', fields, x) return [x.get(field) for field in fields] return wrapper def _to_text(value): try: return text_type(value, encoding='utf-8') except TypeError: return text_type(value) def format_csv_rows(rows, delimiter=','): get_logger().debug('format_csv_rows, rows: %s', rows) out = StringIO() writer = csv.writer(out, delimiter=text_type(delimiter)) writer.writerows([ [_to_text(x) for x in row] for row in rows ]) result = out.getvalue().rstrip('\r\n') get_logger().debug('format_csv_rows, result: %s', result) return result class WriteDictCsv(beam.PTransform): def __init__(self, path, columns, file_name_suffix=None): super(WriteDictCsv, self).__init__() self.path = path self.columns = columns self.file_name_suffix = file_name_suffix self.delimiter = csv_delimiter_by_filename(path + file_name_suffix) def expand(self, input_or_inputs): return ( input_or_inputs | "ToList" >> beam.Map(DictToList(self.columns)) | "Format" >> TransformAndLog( beam.Map(lambda x: format_csv_rows([x], delimiter=self.delimiter)), log_prefix='formatted csv: ', log_level='debug' ) | "Utf8Encode" >> beam.Map(lambda x: x.encode('utf-8')) | "Write" >> WriteToText( self.path, file_name_suffix=self.file_name_suffix, header=format_csv_rows([self.columns], delimiter=self.delimiter).encode('utf-8') ) ) def _strip_quotes(s): return s[1:-1] if len(s) >= 2 and s[0] == '"' and s[-1] == '"' else s # copied and modified from https://github.com/pabloem/beam_utils # (move back if still active) class ReadLineIterator: def __init__(self, obj): self._obj = obj def __iter__(self): return self def next(self): return self.__next__() def __next__(self): line = self._obj.readline().decode('utf-8') if line is None or line == '': raise StopIteration return line class CsvFileSource(FileBasedSource): """ A source for a GCS or local comma-separated-file Parses a text file assuming newline-delimited lines, and comma-delimited fields. Assumes UTF-8 encoding. """ def __init__( # pylint: disable=too-many-arguments self, file_pattern, compression_type=CompressionTypes.AUTO, delimiter=',', header=True, dictionary_output=True, validate=True, limit=None): """ Initialize a CsvFileSource. Args: delimiter: The delimiter character in the CSV file. header: Whether the input file has a header or not. Default: True dictionary_output: The kind of records that the CsvFileSource outputs. If True, then it will output dict()'s, if False it will output list()'s. Default: True Raises: ValueError: If the input arguments are not consistent. """ super(CsvFileSource, self).__init__( file_pattern, compression_type=compression_type, validate=validate, splittable=False # Can't just split anywhere ) self.delimiter = delimiter self.header = header self.dictionary_output = dictionary_output self.limit = limit self._file = None if not self.header and dictionary_output: raise ValueError( 'header is required for the CSV reader to provide dictionary output' ) def read_records(self, file_name, offset_range_tracker): # If a multi-file pattern was specified as a source then make sure the # start/end offsets use the default values for reading the entire file. headers = None self._file = self.open_file(file_name) reader = csv.reader(ReadLineIterator(self._file), delimiter=text_type(self.delimiter)) line_no = 0 for i, row in enumerate(reader): if self.header and i == 0: headers = row continue if self.limit and line_no >= self.limit: break line_no += 1 if self.dictionary_output: yield dict(zip(headers, row)) else: yield row class ReadDictCsv(beam.PTransform): """ Simplified CSV parser, which does not support: * multi-line values * delimiter within value """ def __init__(self, filename, header=True, limit=None): super(ReadDictCsv, self).__init__() if not header: raise RuntimeError('header required') self.filename = filename self.columns = None self.delimiter = csv_delimiter_by_filename(filename) self.limit = limit self.row_num = 0 def expand(self, input_or_inputs): return ( input_or_inputs | beam.io.Read(CsvFileSource( self.filename, delimiter=self.delimiter, limit=self.limit )) )
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/beam_utils/csv.py
csv.py
from __future__ import absolute_import import logging from io import StringIO from backports import csv # pylint: disable=no-name-in-module from six import text_type import apache_beam as beam from apache_beam.io.textio import WriteToText from apache_beam.io.filesystem import CompressionTypes from apache_beam.io.filebasedsource import FileBasedSource from sciencebeam_utils.beam_utils.utils import ( TransformAndLog ) from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename ) def get_logger(): return logging.getLogger(__name__) def DictToList(fields): def wrapper(x): get_logger().debug('DictToList: %s -> %s', fields, x) return [x.get(field) for field in fields] return wrapper def _to_text(value): try: return text_type(value, encoding='utf-8') except TypeError: return text_type(value) def format_csv_rows(rows, delimiter=','): get_logger().debug('format_csv_rows, rows: %s', rows) out = StringIO() writer = csv.writer(out, delimiter=text_type(delimiter)) writer.writerows([ [_to_text(x) for x in row] for row in rows ]) result = out.getvalue().rstrip('\r\n') get_logger().debug('format_csv_rows, result: %s', result) return result class WriteDictCsv(beam.PTransform): def __init__(self, path, columns, file_name_suffix=None): super(WriteDictCsv, self).__init__() self.path = path self.columns = columns self.file_name_suffix = file_name_suffix self.delimiter = csv_delimiter_by_filename(path + file_name_suffix) def expand(self, input_or_inputs): return ( input_or_inputs | "ToList" >> beam.Map(DictToList(self.columns)) | "Format" >> TransformAndLog( beam.Map(lambda x: format_csv_rows([x], delimiter=self.delimiter)), log_prefix='formatted csv: ', log_level='debug' ) | "Utf8Encode" >> beam.Map(lambda x: x.encode('utf-8')) | "Write" >> WriteToText( self.path, file_name_suffix=self.file_name_suffix, header=format_csv_rows([self.columns], delimiter=self.delimiter).encode('utf-8') ) ) def _strip_quotes(s): return s[1:-1] if len(s) >= 2 and s[0] == '"' and s[-1] == '"' else s # copied and modified from https://github.com/pabloem/beam_utils # (move back if still active) class ReadLineIterator: def __init__(self, obj): self._obj = obj def __iter__(self): return self def next(self): return self.__next__() def __next__(self): line = self._obj.readline().decode('utf-8') if line is None or line == '': raise StopIteration return line class CsvFileSource(FileBasedSource): """ A source for a GCS or local comma-separated-file Parses a text file assuming newline-delimited lines, and comma-delimited fields. Assumes UTF-8 encoding. """ def __init__( # pylint: disable=too-many-arguments self, file_pattern, compression_type=CompressionTypes.AUTO, delimiter=',', header=True, dictionary_output=True, validate=True, limit=None): """ Initialize a CsvFileSource. Args: delimiter: The delimiter character in the CSV file. header: Whether the input file has a header or not. Default: True dictionary_output: The kind of records that the CsvFileSource outputs. If True, then it will output dict()'s, if False it will output list()'s. Default: True Raises: ValueError: If the input arguments are not consistent. """ super(CsvFileSource, self).__init__( file_pattern, compression_type=compression_type, validate=validate, splittable=False # Can't just split anywhere ) self.delimiter = delimiter self.header = header self.dictionary_output = dictionary_output self.limit = limit self._file = None if not self.header and dictionary_output: raise ValueError( 'header is required for the CSV reader to provide dictionary output' ) def read_records(self, file_name, offset_range_tracker): # If a multi-file pattern was specified as a source then make sure the # start/end offsets use the default values for reading the entire file. headers = None self._file = self.open_file(file_name) reader = csv.reader(ReadLineIterator(self._file), delimiter=text_type(self.delimiter)) line_no = 0 for i, row in enumerate(reader): if self.header and i == 0: headers = row continue if self.limit and line_no >= self.limit: break line_no += 1 if self.dictionary_output: yield dict(zip(headers, row)) else: yield row class ReadDictCsv(beam.PTransform): """ Simplified CSV parser, which does not support: * multi-line values * delimiter within value """ def __init__(self, filename, header=True, limit=None): super(ReadDictCsv, self).__init__() if not header: raise RuntimeError('header required') self.filename = filename self.columns = None self.delimiter = csv_delimiter_by_filename(filename) self.limit = limit self.row_num = 0 def expand(self, input_or_inputs): return ( input_or_inputs | beam.io.Read(CsvFileSource( self.filename, delimiter=self.delimiter, limit=self.limit )) )
0.630799
0.184217
import errno import logging import os import subprocess from getpass import getuser from time import gmtime, strftime from six import text_type def get_logger(): return logging.getLogger(__name__) def create_fn_api_runner(): # pylint: disable=import-outside-toplevel from apache_beam.runners.portability.fn_api_runner import FnApiRunner return FnApiRunner() def get_cloud_project(): cmd = [ 'gcloud', '-q', 'config', 'list', 'project', '--format=value(core.project)' ] with open(os.devnull, 'w', encoding='utf-8') as dev_null: try: res = subprocess.check_output(cmd, stderr=dev_null).strip() if not res: raise Exception( '--cloud specified but no Google Cloud Platform ' 'project found.\n' 'Please specify your project name with the --project ' 'flag or set a default project: ' 'gcloud config set project YOUR_PROJECT_NAME' ) if not isinstance(res, text_type): res = res.decode('utf-8') return res except OSError as e: if e.errno == errno.ENOENT: raise Exception( 'gcloud is not installed. The Google Cloud SDK is ' 'necessary to communicate with the Cloud ML service. ' 'Please install and set up gcloud.' ) from e raise def get_default_job_name(name, suffix=''): timestamp_str = strftime("%Y%m%d-%H%M%S", gmtime()) return '%s-%s%s-%s' % (name or 'beamapp', getuser(), suffix or '', timestamp_str) def add_cloud_args(parser): parser.add_argument( '--cloud', default=False, action='store_true' ) parser.add_argument( '--runner', required=False, default=None, help='Runner.' ) parser.add_argument( '--project', type=str, help='The cloud project name to be used for running this pipeline' ) parser.add_argument( '--region', default=None, type=str, help='The Google Compute Engine region for creating' ) parser.add_argument( '--num-workers', '--num_workers', default=1, type=int, help='The number of workers.' ) parser.add_argument( '--max-workers', '--max_num_workers', dest='max_num_workers', type=int, help='The number of maximum workers (with auto-scaling).' ) parser.add_argument( '--job-name', '--job_name', type=str, required=False, help='The name of the cloud job' ) parser.add_argument( '--job-name-suffix', type=str, required=False, help='A suffix appended to the job name' ) return parser def process_cloud_args(parsed_args, output_path, name=None): if parsed_args.num_workers: parsed_args.autoscaling_algorithm = 'NONE' parsed_args.max_num_workers = parsed_args.num_workers parsed_args.setup_file = './setup.py' if parsed_args.cloud: # Flags which need to be set for cloud runs. default_values = { 'temp_location': os.path.join(os.path.dirname(output_path), 'temp'), 'runner': 'DataflowRunner', 'save_main_session': True, } if not parsed_args.project: parsed_args.project = get_cloud_project() if not parsed_args.job_name: parsed_args.job_name = get_default_job_name(name, parsed_args.job_name_suffix) else: # Flags which need to be set for local runs. default_values = { 'runner': 'DirectRunner', } get_logger().info('default_values: %s', default_values) for kk, vv in default_values.items(): if kk not in parsed_args or not vars(parsed_args)[kk]: vars(parsed_args)[kk] = vv if parsed_args.runner == 'FnApiRunner': parsed_args.runner = create_fn_api_runner()
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/beam_utils/main.py
main.py
import errno import logging import os import subprocess from getpass import getuser from time import gmtime, strftime from six import text_type def get_logger(): return logging.getLogger(__name__) def create_fn_api_runner(): # pylint: disable=import-outside-toplevel from apache_beam.runners.portability.fn_api_runner import FnApiRunner return FnApiRunner() def get_cloud_project(): cmd = [ 'gcloud', '-q', 'config', 'list', 'project', '--format=value(core.project)' ] with open(os.devnull, 'w', encoding='utf-8') as dev_null: try: res = subprocess.check_output(cmd, stderr=dev_null).strip() if not res: raise Exception( '--cloud specified but no Google Cloud Platform ' 'project found.\n' 'Please specify your project name with the --project ' 'flag or set a default project: ' 'gcloud config set project YOUR_PROJECT_NAME' ) if not isinstance(res, text_type): res = res.decode('utf-8') return res except OSError as e: if e.errno == errno.ENOENT: raise Exception( 'gcloud is not installed. The Google Cloud SDK is ' 'necessary to communicate with the Cloud ML service. ' 'Please install and set up gcloud.' ) from e raise def get_default_job_name(name, suffix=''): timestamp_str = strftime("%Y%m%d-%H%M%S", gmtime()) return '%s-%s%s-%s' % (name or 'beamapp', getuser(), suffix or '', timestamp_str) def add_cloud_args(parser): parser.add_argument( '--cloud', default=False, action='store_true' ) parser.add_argument( '--runner', required=False, default=None, help='Runner.' ) parser.add_argument( '--project', type=str, help='The cloud project name to be used for running this pipeline' ) parser.add_argument( '--region', default=None, type=str, help='The Google Compute Engine region for creating' ) parser.add_argument( '--num-workers', '--num_workers', default=1, type=int, help='The number of workers.' ) parser.add_argument( '--max-workers', '--max_num_workers', dest='max_num_workers', type=int, help='The number of maximum workers (with auto-scaling).' ) parser.add_argument( '--job-name', '--job_name', type=str, required=False, help='The name of the cloud job' ) parser.add_argument( '--job-name-suffix', type=str, required=False, help='A suffix appended to the job name' ) return parser def process_cloud_args(parsed_args, output_path, name=None): if parsed_args.num_workers: parsed_args.autoscaling_algorithm = 'NONE' parsed_args.max_num_workers = parsed_args.num_workers parsed_args.setup_file = './setup.py' if parsed_args.cloud: # Flags which need to be set for cloud runs. default_values = { 'temp_location': os.path.join(os.path.dirname(output_path), 'temp'), 'runner': 'DataflowRunner', 'save_main_session': True, } if not parsed_args.project: parsed_args.project = get_cloud_project() if not parsed_args.job_name: parsed_args.job_name = get_default_job_name(name, parsed_args.job_name_suffix) else: # Flags which need to be set for local runs. default_values = { 'runner': 'DirectRunner', } get_logger().info('default_values: %s', default_values) for kk, vv in default_values.items(): if kk not in parsed_args or not vars(parsed_args)[kk]: vars(parsed_args)[kk] = vv if parsed_args.runner == 'FnApiRunner': parsed_args.runner = create_fn_api_runner()
0.328745
0.063978
import logging from random import getrandbits import apache_beam as beam from apache_beam.metrics.metric import Metrics def get_logger(): return logging.getLogger(__name__) def Spy(f): def spy_wrapper(x): f(x) return x return spy_wrapper def MapSpy(f): return beam.Map(Spy(f)) def _default_exception_log_fn(exception, value): get_logger().warning( 'caught exception (ignoring item): %s, input: %.100s...', exception, value, exc_info=exception ) def MapOrLog(fn, log_fn=None, error_count=None): if log_fn is None: log_fn = _default_exception_log_fn error_counter = ( Metrics.counter('MapOrLog', error_count) if error_count else None ) def wrapper(x): try: yield fn(x) except Exception as e: # pylint: disable=broad-except if error_counter: error_counter.inc() log_fn(e, x) return beam.FlatMap(wrapper) LEVEL_MAP = { 'info': logging.INFO, 'debug': logging.DEBUG } def Count(name, counter_value_fn): counter = Metrics.counter('Count', name) def wrapper(x): counter.inc(counter_value_fn(x) if counter_value_fn else 1) return x return name >> beam.Map(wrapper) class GroupTransforms(beam.PTransform): """ Convenience method to allow a PTransform for grouping purpose to be defined using a lambda function. (Completely unrelated to GroupBy transforms) """ def __init__(self, expand_fn): super(GroupTransforms, self).__init__() self.expand_fn = expand_fn def expand(self, input_or_inputs): return self.expand_fn(input_or_inputs) def TransformAndCount(transform, counter_name, counter_value_fn=None): return GroupTransforms(lambda pcoll: ( pcoll | transform | "Count" >> Count(counter_name, counter_value_fn) )) def _identity(x): return x def _get_default_output_log_fn(log_level, log_prefix, log_value_fn): if log_value_fn is None: log_value_fn = _identity log_level = LEVEL_MAP.get(log_level, log_level) def _log_fn(x): get_logger().log( log_level, '%s%.50s...', log_prefix, log_value_fn(x) ) return _log_fn def TransformAndLog(transform, log_fn=None, log_prefix='', log_value_fn=None, log_level='info'): if log_fn is None: log_fn = _get_default_output_log_fn(log_level, log_prefix, log_value_fn) return GroupTransforms(lambda pcoll: ( pcoll | transform | "Log" >> MapSpy(log_fn) )) def random_key(): return getrandbits(32) def _default_random_key_fn(_): return random_key() def PreventFusion(key_fn=None, name="PreventFusion"): """ Prevents fusion to allow better distribution across workers. See: https://cloud.google.com/dataflow/service/dataflow-service-desc#preventing-fusion TODO Replace by: https://github.com/apache/beam/pull/4040 """ if key_fn is None: key_fn = _default_random_key_fn return name >> GroupTransforms(lambda pcoll: ( pcoll | "AddKey" >> beam.Map(lambda x: (key_fn(x), x)) | "GroupByKey" >> beam.GroupByKey() | "Ungroup" >> beam.FlatMap(lambda element: element[1]) ))
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/beam_utils/utils.py
utils.py
import logging from random import getrandbits import apache_beam as beam from apache_beam.metrics.metric import Metrics def get_logger(): return logging.getLogger(__name__) def Spy(f): def spy_wrapper(x): f(x) return x return spy_wrapper def MapSpy(f): return beam.Map(Spy(f)) def _default_exception_log_fn(exception, value): get_logger().warning( 'caught exception (ignoring item): %s, input: %.100s...', exception, value, exc_info=exception ) def MapOrLog(fn, log_fn=None, error_count=None): if log_fn is None: log_fn = _default_exception_log_fn error_counter = ( Metrics.counter('MapOrLog', error_count) if error_count else None ) def wrapper(x): try: yield fn(x) except Exception as e: # pylint: disable=broad-except if error_counter: error_counter.inc() log_fn(e, x) return beam.FlatMap(wrapper) LEVEL_MAP = { 'info': logging.INFO, 'debug': logging.DEBUG } def Count(name, counter_value_fn): counter = Metrics.counter('Count', name) def wrapper(x): counter.inc(counter_value_fn(x) if counter_value_fn else 1) return x return name >> beam.Map(wrapper) class GroupTransforms(beam.PTransform): """ Convenience method to allow a PTransform for grouping purpose to be defined using a lambda function. (Completely unrelated to GroupBy transforms) """ def __init__(self, expand_fn): super(GroupTransforms, self).__init__() self.expand_fn = expand_fn def expand(self, input_or_inputs): return self.expand_fn(input_or_inputs) def TransformAndCount(transform, counter_name, counter_value_fn=None): return GroupTransforms(lambda pcoll: ( pcoll | transform | "Count" >> Count(counter_name, counter_value_fn) )) def _identity(x): return x def _get_default_output_log_fn(log_level, log_prefix, log_value_fn): if log_value_fn is None: log_value_fn = _identity log_level = LEVEL_MAP.get(log_level, log_level) def _log_fn(x): get_logger().log( log_level, '%s%.50s...', log_prefix, log_value_fn(x) ) return _log_fn def TransformAndLog(transform, log_fn=None, log_prefix='', log_value_fn=None, log_level='info'): if log_fn is None: log_fn = _get_default_output_log_fn(log_level, log_prefix, log_value_fn) return GroupTransforms(lambda pcoll: ( pcoll | transform | "Log" >> MapSpy(log_fn) )) def random_key(): return getrandbits(32) def _default_random_key_fn(_): return random_key() def PreventFusion(key_fn=None, name="PreventFusion"): """ Prevents fusion to allow better distribution across workers. See: https://cloud.google.com/dataflow/service/dataflow-service-desc#preventing-fusion TODO Replace by: https://github.com/apache/beam/pull/4040 """ if key_fn is None: key_fn = _default_random_key_fn return name >> GroupTransforms(lambda pcoll: ( pcoll | "AddKey" >> beam.Map(lambda x: (key_fn(x), x)) | "GroupByKey" >> beam.GroupByKey() | "Ungroup" >> beam.FlatMap(lambda element: element[1]) ))
0.639398
0.198763
from __future__ import absolute_import import os import logging from itertools import islice from backports import csv # pylint: disable=no-name-in-module from six import text_type from apache_beam.io.filesystems import FileSystems from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename ) from sciencebeam_utils.beam_utils.io import open_file from .file_path import ( relative_path, join_if_relative_path ) LOGGER = logging.getLogger(__name__) def is_csv_or_tsv_file_list(file_list_path): return '.csv' in file_list_path or '.tsv' in file_list_path def load_plain_file_list(file_list_path, limit=None): with open_file(file_list_path, 'r') as f: lines = (x.rstrip() for x in f) if limit: lines = islice(lines, 0, limit) return list(lines) def load_csv_or_tsv_file_list(file_list_path, column, header=True, limit=None): delimiter = csv_delimiter_by_filename(file_list_path) with open_file(file_list_path, 'r') as f: reader = csv.reader(f, delimiter=text_type(delimiter)) if not header: assert isinstance(column, int) column_index = column else: header_row = next(reader) if isinstance(column, int): column_index = column else: try: column_index = header_row.index(column) except ValueError as exc: raise ValueError( 'column %s not found, available columns: %s' % (column, header_row) ) from exc lines = (x[column_index] for x in reader) if limit: lines = islice(lines, 0, limit) return list(lines) def to_absolute_file_list(base_path, file_list): return [join_if_relative_path(base_path, s) for s in file_list] def to_relative_file_list(base_path, file_list): return [relative_path(base_path, s) for s in file_list] def load_file_list(file_list_path, column, header=True, limit=None, to_absolute=True): if is_csv_or_tsv_file_list(file_list_path): file_list = load_csv_or_tsv_file_list( file_list_path, column=column, header=header, limit=limit ) else: file_list = load_plain_file_list(file_list_path, limit=limit) if to_absolute: file_list = to_absolute_file_list( os.path.dirname(file_list_path), file_list ) return file_list def save_plain_file_list(file_list_path, file_list): with FileSystems.create(file_list_path) as f: f.write('\n'.join(file_list).encode('utf-8')) def save_csv_or_tsv_file_list(file_list_path, file_list, column, header=True): if header: file_list = [column] + file_list save_plain_file_list(file_list_path, file_list) def save_file_list(file_list_path, file_list, column, header=True): if is_csv_or_tsv_file_list(file_list_path): return save_csv_or_tsv_file_list( file_list_path, file_list, column=column, header=header ) return save_plain_file_list(file_list_path, file_list)
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/utils/file_list.py
file_list.py
from __future__ import absolute_import import os import logging from itertools import islice from backports import csv # pylint: disable=no-name-in-module from six import text_type from apache_beam.io.filesystems import FileSystems from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename ) from sciencebeam_utils.beam_utils.io import open_file from .file_path import ( relative_path, join_if_relative_path ) LOGGER = logging.getLogger(__name__) def is_csv_or_tsv_file_list(file_list_path): return '.csv' in file_list_path or '.tsv' in file_list_path def load_plain_file_list(file_list_path, limit=None): with open_file(file_list_path, 'r') as f: lines = (x.rstrip() for x in f) if limit: lines = islice(lines, 0, limit) return list(lines) def load_csv_or_tsv_file_list(file_list_path, column, header=True, limit=None): delimiter = csv_delimiter_by_filename(file_list_path) with open_file(file_list_path, 'r') as f: reader = csv.reader(f, delimiter=text_type(delimiter)) if not header: assert isinstance(column, int) column_index = column else: header_row = next(reader) if isinstance(column, int): column_index = column else: try: column_index = header_row.index(column) except ValueError as exc: raise ValueError( 'column %s not found, available columns: %s' % (column, header_row) ) from exc lines = (x[column_index] for x in reader) if limit: lines = islice(lines, 0, limit) return list(lines) def to_absolute_file_list(base_path, file_list): return [join_if_relative_path(base_path, s) for s in file_list] def to_relative_file_list(base_path, file_list): return [relative_path(base_path, s) for s in file_list] def load_file_list(file_list_path, column, header=True, limit=None, to_absolute=True): if is_csv_or_tsv_file_list(file_list_path): file_list = load_csv_or_tsv_file_list( file_list_path, column=column, header=header, limit=limit ) else: file_list = load_plain_file_list(file_list_path, limit=limit) if to_absolute: file_list = to_absolute_file_list( os.path.dirname(file_list_path), file_list ) return file_list def save_plain_file_list(file_list_path, file_list): with FileSystems.create(file_list_path) as f: f.write('\n'.join(file_list).encode('utf-8')) def save_csv_or_tsv_file_list(file_list_path, file_list, column, header=True): if header: file_list = [column] + file_list save_plain_file_list(file_list_path, file_list) def save_file_list(file_list_path, file_list, column, header=True): if is_csv_or_tsv_file_list(file_list_path): return save_csv_or_tsv_file_list( file_list_path, file_list, column=column, header=header ) return save_plain_file_list(file_list_path, file_list)
0.322099
0.11808
import logging import os from functools import reduce # pylint: disable=redefined-builtin from typing import Iterable, List, Tuple from apache_beam.io.filesystems import FileSystems from sciencebeam_utils.utils.collection import ( groupby_to_dict, sort_and_groupby_to_dict ) from .file_path import strip_ext LOGGER = logging.getLogger(__name__) def find_matching_filenames(pattern): return (x.path for x in FileSystems.match([pattern])[0].metadata_list) def group_files_by_parent_directory(filenames): return groupby_to_dict(sorted(filenames), os.path.dirname) def group_files_by_name_excl_ext(filenames): return sort_and_groupby_to_dict(filenames, strip_ext) def zip_by_keys(*dict_list): keys = reduce(lambda agg, v: agg | set(v.keys()), dict_list, set()) return ( [d.get(k) for d in dict_list] for k in sorted(keys) ) def group_file_pairs_by_parent_directory_or_name( files_by_type: List[List[str]] ) -> Iterable[Tuple[str, ...]]: grouped_files_by_pattern = [ group_files_by_parent_directory(files) for files in files_by_type ] for files_in_group_by_pattern in zip_by_keys(*grouped_files_by_pattern): if all(len(files or []) == 1 for files in files_in_group_by_pattern): yield tuple([ # pylint: disable=consider-using-generator files[0] for files in files_in_group_by_pattern ]) else: grouped_by_name = [ group_files_by_name_excl_ext(files or []) for files in files_in_group_by_pattern ] for files_by_name in zip_by_keys(*grouped_by_name): if all(len(files or []) == 1 for files in files_by_name): yield tuple([ # pylint: disable=consider-using-generator files[0] for files in files_by_name ]) else: LOGGER.info( 'no exclusively matching files found: %s', list(files_by_name) ) def find_file_pairs_grouped_by_parent_directory_or_name(patterns): matching_files_by_pattern = [ list(find_matching_filenames(pattern)) for pattern in patterns ] LOGGER.info( 'found number of files %s', ', '.join( '%s: %d' % (pattern, len(files)) for pattern, files in zip(patterns, matching_files_by_pattern) ) ) patterns_without_files = [ pattern for pattern, files in zip(patterns, matching_files_by_pattern) if len(files) == 0 ] if patterns_without_files: raise RuntimeError('no files found for: %s' % patterns_without_files) return group_file_pairs_by_parent_directory_or_name( matching_files_by_pattern )
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/utils/file_pairs.py
file_pairs.py
import logging import os from functools import reduce # pylint: disable=redefined-builtin from typing import Iterable, List, Tuple from apache_beam.io.filesystems import FileSystems from sciencebeam_utils.utils.collection import ( groupby_to_dict, sort_and_groupby_to_dict ) from .file_path import strip_ext LOGGER = logging.getLogger(__name__) def find_matching_filenames(pattern): return (x.path for x in FileSystems.match([pattern])[0].metadata_list) def group_files_by_parent_directory(filenames): return groupby_to_dict(sorted(filenames), os.path.dirname) def group_files_by_name_excl_ext(filenames): return sort_and_groupby_to_dict(filenames, strip_ext) def zip_by_keys(*dict_list): keys = reduce(lambda agg, v: agg | set(v.keys()), dict_list, set()) return ( [d.get(k) for d in dict_list] for k in sorted(keys) ) def group_file_pairs_by_parent_directory_or_name( files_by_type: List[List[str]] ) -> Iterable[Tuple[str, ...]]: grouped_files_by_pattern = [ group_files_by_parent_directory(files) for files in files_by_type ] for files_in_group_by_pattern in zip_by_keys(*grouped_files_by_pattern): if all(len(files or []) == 1 for files in files_in_group_by_pattern): yield tuple([ # pylint: disable=consider-using-generator files[0] for files in files_in_group_by_pattern ]) else: grouped_by_name = [ group_files_by_name_excl_ext(files or []) for files in files_in_group_by_pattern ] for files_by_name in zip_by_keys(*grouped_by_name): if all(len(files or []) == 1 for files in files_by_name): yield tuple([ # pylint: disable=consider-using-generator files[0] for files in files_by_name ]) else: LOGGER.info( 'no exclusively matching files found: %s', list(files_by_name) ) def find_file_pairs_grouped_by_parent_directory_or_name(patterns): matching_files_by_pattern = [ list(find_matching_filenames(pattern)) for pattern in patterns ] LOGGER.info( 'found number of files %s', ', '.join( '%s: %d' % (pattern, len(files)) for pattern, files in zip(patterns, matching_files_by_pattern) ) ) patterns_without_files = [ pattern for pattern, files in zip(patterns, matching_files_by_pattern) if len(files) == 0 ] if patterns_without_files: raise RuntimeError('no files found for: %s' % patterns_without_files) return group_file_pairs_by_parent_directory_or_name( matching_files_by_pattern )
0.514888
0.170854
from __future__ import absolute_import import os from apache_beam.io.filesystems import FileSystems def get_ext(filename): name, ext = os.path.splitext(filename) if ext == '.gz': ext = get_ext(name) + ext return ext def strip_ext(filename): # strip of gz, assuming there will be another extension before .gz if filename.endswith('.gz'): filename = filename[:-3] return os.path.splitext(filename)[0] def relative_path(base_path, path): if not base_path: return path if not base_path.endswith('/'): base_path += '/' return path[len(base_path):] if path.startswith(base_path) else path def is_relative_path(path): return not path.startswith('/') and '://' not in path def join_if_relative_path(base_path, path): return ( FileSystems.join(base_path, path) if base_path and is_relative_path(path) else path ) def change_ext(path, old_ext, new_ext): if old_ext is None: old_ext = os.path.splitext(path)[1] if old_ext == '.gz': path = path[:-len(old_ext)] old_ext = os.path.splitext(path)[1] if old_ext and path.endswith(old_ext): return path[:-len(old_ext)] + new_ext return path + new_ext def get_output_file(filename, source_base_path, output_base_path, output_file_suffix): return FileSystems.join( output_base_path, change_ext( relative_path(source_base_path, filename), None, output_file_suffix ) ) def base_path_for_file_list(file_list): common_prefix = os.path.commonprefix(file_list) i = max(common_prefix.rfind('/'), common_prefix.rfind('\\')) if i >= 0: return common_prefix[:i] return '' def get_or_validate_base_path(file_list, base_path): common_path = base_path_for_file_list(file_list) if base_path: if not common_path.startswith(base_path): raise AssertionError( "invalid base path '%s', common path is: '%s'" % (base_path, common_path) ) return base_path return common_path
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/utils/file_path.py
file_path.py
from __future__ import absolute_import import os from apache_beam.io.filesystems import FileSystems def get_ext(filename): name, ext = os.path.splitext(filename) if ext == '.gz': ext = get_ext(name) + ext return ext def strip_ext(filename): # strip of gz, assuming there will be another extension before .gz if filename.endswith('.gz'): filename = filename[:-3] return os.path.splitext(filename)[0] def relative_path(base_path, path): if not base_path: return path if not base_path.endswith('/'): base_path += '/' return path[len(base_path):] if path.startswith(base_path) else path def is_relative_path(path): return not path.startswith('/') and '://' not in path def join_if_relative_path(base_path, path): return ( FileSystems.join(base_path, path) if base_path and is_relative_path(path) else path ) def change_ext(path, old_ext, new_ext): if old_ext is None: old_ext = os.path.splitext(path)[1] if old_ext == '.gz': path = path[:-len(old_ext)] old_ext = os.path.splitext(path)[1] if old_ext and path.endswith(old_ext): return path[:-len(old_ext)] + new_ext return path + new_ext def get_output_file(filename, source_base_path, output_base_path, output_file_suffix): return FileSystems.join( output_base_path, change_ext( relative_path(source_base_path, filename), None, output_file_suffix ) ) def base_path_for_file_list(file_list): common_prefix = os.path.commonprefix(file_list) i = max(common_prefix.rfind('/'), common_prefix.rfind('\\')) if i >= 0: return common_prefix[:i] return '' def get_or_validate_base_path(file_list, base_path): common_path = base_path_for_file_list(file_list) if base_path: if not common_path.startswith(base_path): raise AssertionError( "invalid base path '%s', common path is: '%s'" % (base_path, common_path) ) return base_path return common_path
0.387227
0.047847
import argparse import logging from backports import csv # pylint: disable=no-name-in-module from six import text_type from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename, write_csv_rows ) from sciencebeam_utils.beam_utils.io import ( open_file, dirname, mkdirs_if_not_exists ) from sciencebeam_utils.utils.file_path import ( join_if_relative_path, relative_path ) from sciencebeam_utils.utils.file_pairs import ( find_file_pairs_grouped_by_parent_directory_or_name ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) def parse_args(argv=None): parser = argparse.ArgumentParser() parser.add_argument( '--data-path', type=str, required=True, help='base data path' ) parser.add_argument( '--source-pattern', type=str, required=True, help='source pattern' ) parser.add_argument( '--xml-pattern', type=str, required=True, help='xml pattern' ) parser.add_argument( '--out', type=str, required=True, help='output csv/tsv file' ) parser.add_argument( '--use-relative-paths', action='store_true', help='create a file list with relative paths (relative to the data path)' ) add_default_args(parser) return parser.parse_args(argv) def save_file_pairs_to_csv(output_path, source_xml_pairs): mkdirs_if_not_exists(dirname(output_path)) delimiter = csv_delimiter_by_filename(output_path) mime_type = 'text/tsv' if delimiter == '\t' else 'text/csv' with open_file(output_path, 'w', mime_type=mime_type) as f: writer = csv.writer(f, delimiter=text_type(delimiter)) write_csv_rows(writer, [['source_url', 'xml_url']]) write_csv_rows(writer, source_xml_pairs) LOGGER.info('written results to %s', output_path) def to_relative_file_pairs(base_path, file_pairs): return ( (relative_path(base_path, source_url), relative_path(base_path, xml_url)) for source_url, xml_url in file_pairs ) def run(args): LOGGER.info('finding file pairs') source_xml_pairs = find_file_pairs_grouped_by_parent_directory_or_name([ join_if_relative_path(args.data_path, args.source_pattern), join_if_relative_path(args.data_path, args.xml_pattern) ]) if args.use_relative_paths: source_xml_pairs = to_relative_file_pairs(args.data_path, source_xml_pairs) source_xml_pairs = list(source_xml_pairs) save_file_pairs_to_csv(args.out, source_xml_pairs) def main(argv=None): args = parse_args(argv) process_default_args(args) run(args) if __name__ == '__main__': setup_logging() main()
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/tools/find_file_pairs.py
find_file_pairs.py
import argparse import logging from backports import csv # pylint: disable=no-name-in-module from six import text_type from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename, write_csv_rows ) from sciencebeam_utils.beam_utils.io import ( open_file, dirname, mkdirs_if_not_exists ) from sciencebeam_utils.utils.file_path import ( join_if_relative_path, relative_path ) from sciencebeam_utils.utils.file_pairs import ( find_file_pairs_grouped_by_parent_directory_or_name ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) def parse_args(argv=None): parser = argparse.ArgumentParser() parser.add_argument( '--data-path', type=str, required=True, help='base data path' ) parser.add_argument( '--source-pattern', type=str, required=True, help='source pattern' ) parser.add_argument( '--xml-pattern', type=str, required=True, help='xml pattern' ) parser.add_argument( '--out', type=str, required=True, help='output csv/tsv file' ) parser.add_argument( '--use-relative-paths', action='store_true', help='create a file list with relative paths (relative to the data path)' ) add_default_args(parser) return parser.parse_args(argv) def save_file_pairs_to_csv(output_path, source_xml_pairs): mkdirs_if_not_exists(dirname(output_path)) delimiter = csv_delimiter_by_filename(output_path) mime_type = 'text/tsv' if delimiter == '\t' else 'text/csv' with open_file(output_path, 'w', mime_type=mime_type) as f: writer = csv.writer(f, delimiter=text_type(delimiter)) write_csv_rows(writer, [['source_url', 'xml_url']]) write_csv_rows(writer, source_xml_pairs) LOGGER.info('written results to %s', output_path) def to_relative_file_pairs(base_path, file_pairs): return ( (relative_path(base_path, source_url), relative_path(base_path, xml_url)) for source_url, xml_url in file_pairs ) def run(args): LOGGER.info('finding file pairs') source_xml_pairs = find_file_pairs_grouped_by_parent_directory_or_name([ join_if_relative_path(args.data_path, args.source_pattern), join_if_relative_path(args.data_path, args.xml_pattern) ]) if args.use_relative_paths: source_xml_pairs = to_relative_file_pairs(args.data_path, source_xml_pairs) source_xml_pairs = list(source_xml_pairs) save_file_pairs_to_csv(args.out, source_xml_pairs) def main(argv=None): args = parse_args(argv) process_default_args(args) run(args) if __name__ == '__main__': setup_logging() main()
0.327991
0.076236
import argparse import logging import errno from math import trunc from random import shuffle from datetime import datetime from itertools import chain from typing import List from backports import csv # pylint: disable=no-name-in-module from six import text_type from sciencebeam_utils.beam_utils.io import open_file from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename, write_csv_rows ) from sciencebeam_utils.utils.file_path import ( strip_ext, get_ext ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) Row = List[str] def extract_proportions_from_args(args): digits = 3 proportions = [ (name, round(p, digits)) for name, p in [ ('train', args.train), ('test', args.test), ('validation', args.validation) ] if p and p > 0 ] if sum(p for _, p in proportions) > 1.0: raise ValueError('proportions add up to more than 1.0') if not args.test: proportions.append(('test', 1.0 - sum(p for _, p in proportions))) elif not args.validation: proportions.append(('validation', round(1.0 - sum(p for _, p in proportions), digits))) proportions = [(name, p) for name, p in proportions if p > 0] return proportions def get_chunk_size_list(size, percentages, fill=False): chunk_size_list = [int(trunc(p * size)) for p in percentages] if fill: chunk_size_list[-1] = size - sum(chunk_size_list[:-1]) return chunk_size_list def split_row_chunks(rows, chunk_size_list): chunk_offset_list = [0] for chunk_size in chunk_size_list[0:-1]: chunk_offset_list.append(chunk_offset_list[-1] + chunk_size) LOGGER.debug('chunk_offset_list: %s', chunk_offset_list) LOGGER.debug('chunk_size_list: %s', chunk_size_list) return [ rows[chunk_offset:chunk_offset + chunk_size] for chunk_offset, chunk_size in zip(chunk_offset_list, chunk_size_list) ] def _to_hashable(value): return tuple(value) def _to_row_set(rows): return {_to_hashable(row) for row in rows} def _split_rows_without_existing_split(rows, percentages, fill=False): chunk_size_list = get_chunk_size_list(len(rows), percentages, fill=fill) return split_row_chunks(rows, chunk_size_list) def _substract_list(list1, list2): return [a - b for a, b in zip(list1, list2)] def split_rows( rows: List[Row], percentages: List[float], fill: bool = False, existing_split: List[List[Row]] = None) -> List[List[Row]]: if not existing_split: return _split_rows_without_existing_split(rows, percentages, fill=fill) LOGGER.debug('existing_split: %s', existing_split) all_current_rows = _to_row_set(rows) all_existing_rows = _to_row_set(chain(*existing_split)) not_existing_rows = all_existing_rows - all_current_rows if not_existing_rows: LOGGER.warning( 'some rows (%d of %d) from the existing split do not exist' ' in the source list and will be removed, e.g.: %s', len(not_existing_rows), len(all_existing_rows), list(not_existing_rows)[:3] ) existing_split = [ [row for row in existing_rows if _to_hashable(row) in all_current_rows] for existing_rows in existing_split ] remaining_rows = [row for row in rows if _to_hashable(row) not in all_existing_rows] chunk_size_list = get_chunk_size_list(len(rows), percentages, fill=fill) existing_chunk_size_list = [len(existing_rows) for existing_rows in existing_split] remaining_chunk_size_list = _substract_list(chunk_size_list, existing_chunk_size_list) return [ existing_rows + new_split for existing_rows, new_split in zip( existing_split, split_row_chunks(remaining_rows, remaining_chunk_size_list) ) ] def output_filenames_for_names(names, prefix, ext): return [ prefix + ('' if prefix.endswith('/') else '-') + name + ext for name in names ] def parse_args(argv=None): parser = argparse.ArgumentParser() parser.add_argument( '--input', type=str, required=True, help='input csv/tsv file' ) parser.add_argument( '--train', type=float, required=True, help='Train dataset proportion' ) parser.add_argument( '--test', type=float, required=False, help='Test dataset proportion ' '(if not specified it is assumed to be the remaining percentage)' ) parser.add_argument( '--validation', type=float, required=False, help='Validation dataset proportion (requires test-proportion)' ) parser.add_argument( '--random', action='store_true', default=False, help='randomise samples before doing the split' ) parser.add_argument( '--fill', action='store_true', default=False, help='use up all of the remaining data rows for the last set' ) parser.add_argument( '--no-extend-existing', action='store_true', default=False, help='do not extend and preserve the existing split (new entries will be addedby default)' ) parser.add_argument( '--no-header', action='store_true', default=False, help='input file does not contain a header' ) parser.add_argument( '--out', type=str, required=False, help='output csv/tsv file prefix or directory (if ending with slash)' ' will use input file name by default' ) add_default_args(parser) return parser.parse_args(argv) def process_args(args): if not args.out: args.out = strip_ext(args.input) def read_csv_with_header(input_filename, delimiter, no_header): with open_file(input_filename, 'r') as f: reader = csv.reader(f, delimiter=text_type(delimiter)) header_row = None if no_header else next(reader) data_rows = list(reader) return header_row, data_rows def read_csv_data(input_filename, delimiter, no_header): _, data_rows = read_csv_with_header(input_filename, delimiter, no_header) return data_rows def load_file_sets(filenames, delimiter, no_header): return [ read_csv_data(filename, delimiter, no_header) for filename in filenames ] def load_file_sets_or_none(filenames, delimiter, no_header): try: return load_file_sets(filenames, delimiter, no_header) except IOError as e: if e.errno == errno.ENOENT: return None raise e def save_file_set(output_filename, delimiter, header_row, set_data_rows): mime_type = 'text/tsv' if delimiter == '\t' else 'text/csv' with open_file(output_filename, 'w', mime_type=mime_type) as f: writer = csv.writer(f, delimiter=text_type(delimiter)) if header_row: write_csv_rows(writer, [header_row]) write_csv_rows(writer, set_data_rows) def save_file_sets(output_filenames, delimiter, header_row, data_rows_by_set): for output_filename, set_data_rows in zip(output_filenames, data_rows_by_set): LOGGER.info('set size: %d (%s)', len(set_data_rows), output_filename) save_file_set(output_filename, delimiter, header_row, set_data_rows) def get_backup_file_suffix(): return '.backup-%s' % datetime.utcnow().strftime(r'%Y%m%d-%H%M%S') def run(args): LOGGER.debug('args: %s', args) process_args(args) ext = get_ext(args.input) proportions = extract_proportions_from_args(args) output_filenames = output_filenames_for_names( [name for name, _ in proportions], args.out, ext ) LOGGER.info('proportions: %s', proportions) LOGGER.info('output_filenames: %s', output_filenames) delimiter = csv_delimiter_by_filename(args.input) header_row, data_rows = read_csv_with_header(args.input, delimiter, args.no_header) LOGGER.info('number of rows: %d', len(data_rows)) if args.random: shuffle(data_rows) existing_file_sets = load_file_sets_or_none(output_filenames, delimiter, args.no_header) data_rows_by_set = split_rows( data_rows, [p for _, p in proportions], fill=args.fill, existing_split=existing_file_sets if not args.no_extend_existing else None ) if existing_file_sets: backup_suffix = get_backup_file_suffix() save_file_sets( [s + backup_suffix for s in output_filenames], delimiter, header_row, existing_file_sets ) save_file_sets( output_filenames, delimiter, header_row, data_rows_by_set ) def main(argv=None): args = parse_args(argv) process_default_args(args) run(args) if __name__ == '__main__': setup_logging() main()
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/tools/split_csv_dataset.py
split_csv_dataset.py
import argparse import logging import errno from math import trunc from random import shuffle from datetime import datetime from itertools import chain from typing import List from backports import csv # pylint: disable=no-name-in-module from six import text_type from sciencebeam_utils.beam_utils.io import open_file from sciencebeam_utils.utils.csv import ( csv_delimiter_by_filename, write_csv_rows ) from sciencebeam_utils.utils.file_path import ( strip_ext, get_ext ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) Row = List[str] def extract_proportions_from_args(args): digits = 3 proportions = [ (name, round(p, digits)) for name, p in [ ('train', args.train), ('test', args.test), ('validation', args.validation) ] if p and p > 0 ] if sum(p for _, p in proportions) > 1.0: raise ValueError('proportions add up to more than 1.0') if not args.test: proportions.append(('test', 1.0 - sum(p for _, p in proportions))) elif not args.validation: proportions.append(('validation', round(1.0 - sum(p for _, p in proportions), digits))) proportions = [(name, p) for name, p in proportions if p > 0] return proportions def get_chunk_size_list(size, percentages, fill=False): chunk_size_list = [int(trunc(p * size)) for p in percentages] if fill: chunk_size_list[-1] = size - sum(chunk_size_list[:-1]) return chunk_size_list def split_row_chunks(rows, chunk_size_list): chunk_offset_list = [0] for chunk_size in chunk_size_list[0:-1]: chunk_offset_list.append(chunk_offset_list[-1] + chunk_size) LOGGER.debug('chunk_offset_list: %s', chunk_offset_list) LOGGER.debug('chunk_size_list: %s', chunk_size_list) return [ rows[chunk_offset:chunk_offset + chunk_size] for chunk_offset, chunk_size in zip(chunk_offset_list, chunk_size_list) ] def _to_hashable(value): return tuple(value) def _to_row_set(rows): return {_to_hashable(row) for row in rows} def _split_rows_without_existing_split(rows, percentages, fill=False): chunk_size_list = get_chunk_size_list(len(rows), percentages, fill=fill) return split_row_chunks(rows, chunk_size_list) def _substract_list(list1, list2): return [a - b for a, b in zip(list1, list2)] def split_rows( rows: List[Row], percentages: List[float], fill: bool = False, existing_split: List[List[Row]] = None) -> List[List[Row]]: if not existing_split: return _split_rows_without_existing_split(rows, percentages, fill=fill) LOGGER.debug('existing_split: %s', existing_split) all_current_rows = _to_row_set(rows) all_existing_rows = _to_row_set(chain(*existing_split)) not_existing_rows = all_existing_rows - all_current_rows if not_existing_rows: LOGGER.warning( 'some rows (%d of %d) from the existing split do not exist' ' in the source list and will be removed, e.g.: %s', len(not_existing_rows), len(all_existing_rows), list(not_existing_rows)[:3] ) existing_split = [ [row for row in existing_rows if _to_hashable(row) in all_current_rows] for existing_rows in existing_split ] remaining_rows = [row for row in rows if _to_hashable(row) not in all_existing_rows] chunk_size_list = get_chunk_size_list(len(rows), percentages, fill=fill) existing_chunk_size_list = [len(existing_rows) for existing_rows in existing_split] remaining_chunk_size_list = _substract_list(chunk_size_list, existing_chunk_size_list) return [ existing_rows + new_split for existing_rows, new_split in zip( existing_split, split_row_chunks(remaining_rows, remaining_chunk_size_list) ) ] def output_filenames_for_names(names, prefix, ext): return [ prefix + ('' if prefix.endswith('/') else '-') + name + ext for name in names ] def parse_args(argv=None): parser = argparse.ArgumentParser() parser.add_argument( '--input', type=str, required=True, help='input csv/tsv file' ) parser.add_argument( '--train', type=float, required=True, help='Train dataset proportion' ) parser.add_argument( '--test', type=float, required=False, help='Test dataset proportion ' '(if not specified it is assumed to be the remaining percentage)' ) parser.add_argument( '--validation', type=float, required=False, help='Validation dataset proportion (requires test-proportion)' ) parser.add_argument( '--random', action='store_true', default=False, help='randomise samples before doing the split' ) parser.add_argument( '--fill', action='store_true', default=False, help='use up all of the remaining data rows for the last set' ) parser.add_argument( '--no-extend-existing', action='store_true', default=False, help='do not extend and preserve the existing split (new entries will be addedby default)' ) parser.add_argument( '--no-header', action='store_true', default=False, help='input file does not contain a header' ) parser.add_argument( '--out', type=str, required=False, help='output csv/tsv file prefix or directory (if ending with slash)' ' will use input file name by default' ) add_default_args(parser) return parser.parse_args(argv) def process_args(args): if not args.out: args.out = strip_ext(args.input) def read_csv_with_header(input_filename, delimiter, no_header): with open_file(input_filename, 'r') as f: reader = csv.reader(f, delimiter=text_type(delimiter)) header_row = None if no_header else next(reader) data_rows = list(reader) return header_row, data_rows def read_csv_data(input_filename, delimiter, no_header): _, data_rows = read_csv_with_header(input_filename, delimiter, no_header) return data_rows def load_file_sets(filenames, delimiter, no_header): return [ read_csv_data(filename, delimiter, no_header) for filename in filenames ] def load_file_sets_or_none(filenames, delimiter, no_header): try: return load_file_sets(filenames, delimiter, no_header) except IOError as e: if e.errno == errno.ENOENT: return None raise e def save_file_set(output_filename, delimiter, header_row, set_data_rows): mime_type = 'text/tsv' if delimiter == '\t' else 'text/csv' with open_file(output_filename, 'w', mime_type=mime_type) as f: writer = csv.writer(f, delimiter=text_type(delimiter)) if header_row: write_csv_rows(writer, [header_row]) write_csv_rows(writer, set_data_rows) def save_file_sets(output_filenames, delimiter, header_row, data_rows_by_set): for output_filename, set_data_rows in zip(output_filenames, data_rows_by_set): LOGGER.info('set size: %d (%s)', len(set_data_rows), output_filename) save_file_set(output_filename, delimiter, header_row, set_data_rows) def get_backup_file_suffix(): return '.backup-%s' % datetime.utcnow().strftime(r'%Y%m%d-%H%M%S') def run(args): LOGGER.debug('args: %s', args) process_args(args) ext = get_ext(args.input) proportions = extract_proportions_from_args(args) output_filenames = output_filenames_for_names( [name for name, _ in proportions], args.out, ext ) LOGGER.info('proportions: %s', proportions) LOGGER.info('output_filenames: %s', output_filenames) delimiter = csv_delimiter_by_filename(args.input) header_row, data_rows = read_csv_with_header(args.input, delimiter, args.no_header) LOGGER.info('number of rows: %d', len(data_rows)) if args.random: shuffle(data_rows) existing_file_sets = load_file_sets_or_none(output_filenames, delimiter, args.no_header) data_rows_by_set = split_rows( data_rows, [p for _, p in proportions], fill=args.fill, existing_split=existing_file_sets if not args.no_extend_existing else None ) if existing_file_sets: backup_suffix = get_backup_file_suffix() save_file_sets( [s + backup_suffix for s in output_filenames], delimiter, header_row, existing_file_sets ) save_file_sets( output_filenames, delimiter, header_row, data_rows_by_set ) def main(argv=None): args = parse_args(argv) process_default_args(args) run(args) if __name__ == '__main__': setup_logging() main()
0.499512
0.259914
from __future__ import division import argparse import logging from concurrent.futures import ThreadPoolExecutor from apache_beam.io.filesystems import FileSystems from sciencebeam_utils.utils.file_list import ( load_file_list ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_limit_args, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) DEFAULT_EXAMPLE_COUNT = 3 def parse_args(argv=None): parser = argparse.ArgumentParser( 'Check file list' ) source = parser.add_argument_group('source') source.add_argument( '--file-list', type=str, required=True, help='path to source file list (tsv/csv/lst)' ) source.add_argument( '--file-column', type=str, required=False, default='url', help='csv/tsv column (ignored for plain file list)' ) parser.add_argument( '--example-count', type=int, required=False, default=DEFAULT_EXAMPLE_COUNT, help='number of missing examples to display' ) add_limit_args(parser) add_default_args(parser) return parser.parse_args(argv) def map_file_list_to_file_exists(file_list): with ThreadPoolExecutor(max_workers=50) as executor: return list(executor.map(FileSystems.exists, file_list)) def format_file_list(file_list): return str(file_list) def format_file_exists_results( file_exists, file_list, example_count: int = DEFAULT_EXAMPLE_COUNT ): if not file_exists: return 'empty file list' file_exists_count = sum(file_exists) file_missing_count = len(file_exists) - file_exists_count files_missing = [s for s, exists in zip(file_list, file_exists) if not exists] return ( 'files exist: %d (%.0f%%), files missing: %d (%.0f%%)%s' % ( file_exists_count, 100.0 * file_exists_count / len(file_exists), file_missing_count, 100.0 * file_missing_count / len(file_exists), ( ' (example missing: %s)' % format_file_list(files_missing[:example_count]) if files_missing else '' ) ) ) def check_files_and_report_result( file_list, example_count: int = DEFAULT_EXAMPLE_COUNT ): file_exists = map_file_list_to_file_exists(file_list) LOGGER.info( '%s', format_file_exists_results(file_exists, file_list, example_count=example_count) ) assert sum(file_exists) > 0 def run(opt): file_list = load_file_list( opt.file_list, column=opt.file_column, limit=opt.limit ) check_files_and_report_result(file_list, example_count=opt.example_count) def main(argv=None): args = parse_args(argv) process_default_args(args) run(args) if __name__ == '__main__': setup_logging() main()
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/tools/check_file_list.py
check_file_list.py
from __future__ import division import argparse import logging from concurrent.futures import ThreadPoolExecutor from apache_beam.io.filesystems import FileSystems from sciencebeam_utils.utils.file_list import ( load_file_list ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_limit_args, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) DEFAULT_EXAMPLE_COUNT = 3 def parse_args(argv=None): parser = argparse.ArgumentParser( 'Check file list' ) source = parser.add_argument_group('source') source.add_argument( '--file-list', type=str, required=True, help='path to source file list (tsv/csv/lst)' ) source.add_argument( '--file-column', type=str, required=False, default='url', help='csv/tsv column (ignored for plain file list)' ) parser.add_argument( '--example-count', type=int, required=False, default=DEFAULT_EXAMPLE_COUNT, help='number of missing examples to display' ) add_limit_args(parser) add_default_args(parser) return parser.parse_args(argv) def map_file_list_to_file_exists(file_list): with ThreadPoolExecutor(max_workers=50) as executor: return list(executor.map(FileSystems.exists, file_list)) def format_file_list(file_list): return str(file_list) def format_file_exists_results( file_exists, file_list, example_count: int = DEFAULT_EXAMPLE_COUNT ): if not file_exists: return 'empty file list' file_exists_count = sum(file_exists) file_missing_count = len(file_exists) - file_exists_count files_missing = [s for s, exists in zip(file_list, file_exists) if not exists] return ( 'files exist: %d (%.0f%%), files missing: %d (%.0f%%)%s' % ( file_exists_count, 100.0 * file_exists_count / len(file_exists), file_missing_count, 100.0 * file_missing_count / len(file_exists), ( ' (example missing: %s)' % format_file_list(files_missing[:example_count]) if files_missing else '' ) ) ) def check_files_and_report_result( file_list, example_count: int = DEFAULT_EXAMPLE_COUNT ): file_exists = map_file_list_to_file_exists(file_list) LOGGER.info( '%s', format_file_exists_results(file_exists, file_list, example_count=example_count) ) assert sum(file_exists) > 0 def run(opt): file_list = load_file_list( opt.file_list, column=opt.file_column, limit=opt.limit ) check_files_and_report_result(file_list, example_count=opt.example_count) def main(argv=None): args = parse_args(argv) process_default_args(args) run(args) if __name__ == '__main__': setup_logging() main()
0.446495
0.108898
import argparse import logging from sciencebeam_utils.utils.file_list import ( load_file_list, save_file_list, to_relative_file_list ) from sciencebeam_utils.utils.file_path import ( join_if_relative_path, get_or_validate_base_path, get_output_file ) from sciencebeam_utils.tools.check_file_list import ( DEFAULT_EXAMPLE_COUNT, check_files_and_report_result ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_limit_args, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) def parse_args(argv=None): parser = argparse.ArgumentParser( 'Get output files based on source files and suffix.' ) source = parser.add_argument_group('source') source.add_argument( '--source-file-list', type=str, required=True, help='path to source file list (tsv/csv/lst)' ) source.add_argument( '--source-file-column', type=str, required=False, default='url', help='csv/tsv column (ignored for plain file list)' ) source.add_argument( '--source-base-path', type=str, required=False, help='base data path for source file urls' ) output = parser.add_argument_group('output') output.add_argument( '--output-file-list', type=str, required=True, help='path to output file list (tsv/csv/lst)' ) output.add_argument( '--output-file-column', type=str, required=False, default='url', help='csv/tsv column (ignored for plain file list)' ) output.add_argument( '--output-file-suffix', type=str, required=False, help='file suffix (will be added to source urls after removing ext)' ) output.add_argument( '--output-base-path', type=str, required=False, help='base output path (by default source base path with"-results" suffix)' ) output.add_argument( '--use-relative-paths', action='store_true', help='create a file list with relative paths (relative to the output data path)' ) add_limit_args(parser) parser.add_argument( '--check', action='store_true', default=False, help='check whether the output files exist' ) parser.add_argument( '--check-limit', type=int, required=False, help='limit the files to check' ) parser.add_argument( '--example-count', type=int, required=False, default=DEFAULT_EXAMPLE_COUNT, help='number of missing examples to display' ) add_default_args(parser) return parser.parse_args(argv) def get_output_file_list(file_list, source_base_path, output_base_path, output_file_suffix): return [ get_output_file(filename, source_base_path, output_base_path, output_file_suffix) for filename in file_list ] def run(opt): source_file_list = load_file_list( join_if_relative_path( opt.source_base_path, opt.source_file_list ), column=opt.source_file_column, limit=opt.limit ) source_base_path = get_or_validate_base_path( source_file_list, opt.source_base_path ) target_file_list = get_output_file_list( source_file_list, source_base_path, opt.output_base_path, opt.output_file_suffix ) if opt.check: check_file_list = ( target_file_list[:opt.check_limit] if opt.check_limit else target_file_list ) LOGGER.info( 'checking %d (out of %d) files...', len(check_file_list), len(target_file_list) ) check_files_and_report_result( check_file_list, example_count=opt.example_count ) if opt.use_relative_paths: target_file_list = to_relative_file_list(opt.output_base_path, target_file_list) LOGGER.info( 'saving file list (with %d files) to: %s', len(target_file_list), opt.output_file_list ) save_file_list( opt.output_file_list, target_file_list, column=opt.output_file_column ) def process_args(args): if not args.output_base_path: args.output_base_path = args.source_base_path + '-results' def main(argv=None): args = parse_args(argv) process_default_args(args) process_args(args) run(args) if __name__ == '__main__': setup_logging() main()
sciencebeam-utils
/sciencebeam_utils-0.1.5.tar.gz/sciencebeam_utils-0.1.5/sciencebeam_utils/tools/get_output_files.py
get_output_files.py
import argparse import logging from sciencebeam_utils.utils.file_list import ( load_file_list, save_file_list, to_relative_file_list ) from sciencebeam_utils.utils.file_path import ( join_if_relative_path, get_or_validate_base_path, get_output_file ) from sciencebeam_utils.tools.check_file_list import ( DEFAULT_EXAMPLE_COUNT, check_files_and_report_result ) from sciencebeam_utils.tools.tool_utils import ( setup_logging, add_limit_args, add_default_args, process_default_args ) LOGGER = logging.getLogger(__name__) def parse_args(argv=None): parser = argparse.ArgumentParser( 'Get output files based on source files and suffix.' ) source = parser.add_argument_group('source') source.add_argument( '--source-file-list', type=str, required=True, help='path to source file list (tsv/csv/lst)' ) source.add_argument( '--source-file-column', type=str, required=False, default='url', help='csv/tsv column (ignored for plain file list)' ) source.add_argument( '--source-base-path', type=str, required=False, help='base data path for source file urls' ) output = parser.add_argument_group('output') output.add_argument( '--output-file-list', type=str, required=True, help='path to output file list (tsv/csv/lst)' ) output.add_argument( '--output-file-column', type=str, required=False, default='url', help='csv/tsv column (ignored for plain file list)' ) output.add_argument( '--output-file-suffix', type=str, required=False, help='file suffix (will be added to source urls after removing ext)' ) output.add_argument( '--output-base-path', type=str, required=False, help='base output path (by default source base path with"-results" suffix)' ) output.add_argument( '--use-relative-paths', action='store_true', help='create a file list with relative paths (relative to the output data path)' ) add_limit_args(parser) parser.add_argument( '--check', action='store_true', default=False, help='check whether the output files exist' ) parser.add_argument( '--check-limit', type=int, required=False, help='limit the files to check' ) parser.add_argument( '--example-count', type=int, required=False, default=DEFAULT_EXAMPLE_COUNT, help='number of missing examples to display' ) add_default_args(parser) return parser.parse_args(argv) def get_output_file_list(file_list, source_base_path, output_base_path, output_file_suffix): return [ get_output_file(filename, source_base_path, output_base_path, output_file_suffix) for filename in file_list ] def run(opt): source_file_list = load_file_list( join_if_relative_path( opt.source_base_path, opt.source_file_list ), column=opt.source_file_column, limit=opt.limit ) source_base_path = get_or_validate_base_path( source_file_list, opt.source_base_path ) target_file_list = get_output_file_list( source_file_list, source_base_path, opt.output_base_path, opt.output_file_suffix ) if opt.check: check_file_list = ( target_file_list[:opt.check_limit] if opt.check_limit else target_file_list ) LOGGER.info( 'checking %d (out of %d) files...', len(check_file_list), len(target_file_list) ) check_files_and_report_result( check_file_list, example_count=opt.example_count ) if opt.use_relative_paths: target_file_list = to_relative_file_list(opt.output_base_path, target_file_list) LOGGER.info( 'saving file list (with %d files) to: %s', len(target_file_list), opt.output_file_list ) save_file_list( opt.output_file_list, target_file_list, column=opt.output_file_column ) def process_args(args): if not args.output_base_path: args.output_base_path = args.source_base_path + '-results' def main(argv=None): args = parse_args(argv) process_default_args(args) process_args(args) run(args) if __name__ == '__main__': setup_logging() main()
0.396419
0.088387
[![image](https://zenodo.org/badge/81351748.svg)](https://zenodo.org/badge/latestdoi/81351748) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/scivision/sciencedates.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/scivision/sciencedates/context:python) [![Actions Status](https://github.com/scivision/sciencedates/workflows/ci/badge.svg)](https://github.com/scivision/sciencedates/actions) [![Python versions (PyPI)](https://img.shields.io/pypi/pyversions/sciencedates.svg)](https://pypi.python.org/pypi/sciencedates) [![PyPi Download stats](http://pepy.tech/badge/sciencedates)](http://pepy.tech/project/sciencedates) # Science Dates & Times Date & time conversions used in the sciences. The assumption is that datetimes are **timezone-naive**, as this is required in Numpy *et al* for `numpy.datetime64`. ## Install ```sh python -m pip install sciencedates ``` ## Usage ### Datetime => Year, DayOfYear ```python import sciencedates as sd T = '2013-07-02T12' yeardoy, utsec = sd.datetime2yd(T) ``` Results in year,DayOfYear; UTC fraction of day [seconds] > (2013102, 72000.0) ## Julia Julia [examples](./julia) are provided ## Matlab / GNU Octave Matlab / GNU Octave [examples](./matlab) are provided ## Fortran Fortran [examples](./fortran) are provided. For Python-like modern Fortran datetime, see [Datetime-Fortran](https://github.com/wavebitscientific/datetime-fortran).
sciencedates
/sciencedates-1.5.0.tar.gz/sciencedates-1.5.0/README.md
README.md
python -m pip install sciencedates import sciencedates as sd T = '2013-07-02T12' yeardoy, utsec = sd.datetime2yd(T)
0.335569
0.955026
### Science in Data Dates A simple library for generating dates in common scenarios for data analysis. ### Usage from scienceindata_dates import scienceindata_dates ### Functions create_date_from_str: Create a Datetime object from a string with specific date_format. <br>get_today: Create a Date Object or String of Today. <br>get_yesterday: Create a Date Object or String of Yesterday. <br>get_current_month: Return current month. <br>get_last_month: Return last month date. <br>get_previous_nmonth: Return last n-month. <br>get_same_day_last_week: Return the same day of the week of last week. <br>get_same_day_last_month: Return the same day of last month.
scienceindata-dates
/scienceindata_dates-0.0.3.tar.gz/scienceindata_dates-0.0.3/README.md
README.md
### Science in Data Dates A simple library for generating dates in common scenarios for data analysis. ### Usage from scienceindata_dates import scienceindata_dates ### Functions create_date_from_str: Create a Datetime object from a string with specific date_format. <br>get_today: Create a Date Object or String of Today. <br>get_yesterday: Create a Date Object or String of Yesterday. <br>get_current_month: Return current month. <br>get_last_month: Return last month date. <br>get_previous_nmonth: Return last n-month. <br>get_same_day_last_week: Return the same day of the week of last week. <br>get_same_day_last_month: Return the same day of last month.
0.694406
0.742375
# In[1]: from datetime import datetime, timedelta # In[2]: def create_date_from_str(date_str, date_format='%Y%m%d'): ''' Create a Datetime object from a string with specific date_format. date_str: a date string (required). date_format: the date format of date_str. Default is %Y%m%d. ''' return datetime.strptime(date_str, date_format) # In[3]: def get_today(date_format='%Y%m%d', date_object=False): ''' Create a Date Object or String of Today. date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = datetime.today() tody = datetime(t.year, t.month, t.day) if (date_object == True): return tody else: return datetime.strftime(tody, date_format) # In[4]: def get_yesterday(date_format='%Y%m%d', date_object=False): ''' Create a Date Object or String of Yesterday. date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = datetime.today() - timedelta(days=1) yesterday = datetime(t.year, t.month, t.day) if (date_object == True): return yesterday else: return datetime.strftime(yesterday, date_format) # In[5]: def get_current_month(date_format='%Y%m', date_object=False): ''' Return current month. date_format: desired string format. Default is %Y%m. date_object: If true, returns a Datetime object with day = 1. ''' t = datetime.today() if (date_object == True): return datetime(t.year, t.month, 1) else: return datetime.strftime(t, date_format) # In[6]: def get_last_month(date_format='%Y%m', date_object=False): ''' Return last month date. date_format: desired string format. Default is %Y%m. date_object: If true, returns a Datetime object with day = 1. ''' current_month = get_current_month(date_object=True) t = current_month - timedelta(days=current_month.day) if (date_object == True): return datetime(t.year, t.month, 1) else: return datetime.strftime(t, date_format) # In[7]: def get_previous_nmonth(n, date_format='%Y%m', date_object=False): ''' Return last n-month. n: number of previous month, n >= 0. (Required) date_format: desired string format. Default is %Y%m. date_object: If true, returns a Datetime object with day = 1. ''' t = get_current_month(date_object=True) for i in range(n): t = t - timedelta(days=t.day) if (date_object == True): return datetime(t.year, t.month, 1) else: return datetime.strftime(t, date_format) # In[16]: def get_same_day_last_week(date, date_format='%Y%m%d', date_object=False): ''' Return the same day of the week of last week. date: a date object. (Required) date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = date - timedelta(days=7) if (date_object == True): return t else: return datetime.strftime(t, date_format) # In[9]: def get_same_day_last_month(date, date_format='%Y%m%d', date_object=False): ''' Return the same day of last month. date: a date object. (Required) date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = date - timedelta(days=date.day) t = t.replace(day=date.day) if (date_object == True): return t else: return datetime.strftime(t, date_format) # In[ ]: #!jupyter nbconvert --to script human_date.ipynb
scienceindata-dates
/scienceindata_dates-0.0.3.tar.gz/scienceindata_dates-0.0.3/src/scienceindata_dates/scienceindata_dates.py
scienceindata_dates.py
# In[1]: from datetime import datetime, timedelta # In[2]: def create_date_from_str(date_str, date_format='%Y%m%d'): ''' Create a Datetime object from a string with specific date_format. date_str: a date string (required). date_format: the date format of date_str. Default is %Y%m%d. ''' return datetime.strptime(date_str, date_format) # In[3]: def get_today(date_format='%Y%m%d', date_object=False): ''' Create a Date Object or String of Today. date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = datetime.today() tody = datetime(t.year, t.month, t.day) if (date_object == True): return tody else: return datetime.strftime(tody, date_format) # In[4]: def get_yesterday(date_format='%Y%m%d', date_object=False): ''' Create a Date Object or String of Yesterday. date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = datetime.today() - timedelta(days=1) yesterday = datetime(t.year, t.month, t.day) if (date_object == True): return yesterday else: return datetime.strftime(yesterday, date_format) # In[5]: def get_current_month(date_format='%Y%m', date_object=False): ''' Return current month. date_format: desired string format. Default is %Y%m. date_object: If true, returns a Datetime object with day = 1. ''' t = datetime.today() if (date_object == True): return datetime(t.year, t.month, 1) else: return datetime.strftime(t, date_format) # In[6]: def get_last_month(date_format='%Y%m', date_object=False): ''' Return last month date. date_format: desired string format. Default is %Y%m. date_object: If true, returns a Datetime object with day = 1. ''' current_month = get_current_month(date_object=True) t = current_month - timedelta(days=current_month.day) if (date_object == True): return datetime(t.year, t.month, 1) else: return datetime.strftime(t, date_format) # In[7]: def get_previous_nmonth(n, date_format='%Y%m', date_object=False): ''' Return last n-month. n: number of previous month, n >= 0. (Required) date_format: desired string format. Default is %Y%m. date_object: If true, returns a Datetime object with day = 1. ''' t = get_current_month(date_object=True) for i in range(n): t = t - timedelta(days=t.day) if (date_object == True): return datetime(t.year, t.month, 1) else: return datetime.strftime(t, date_format) # In[16]: def get_same_day_last_week(date, date_format='%Y%m%d', date_object=False): ''' Return the same day of the week of last week. date: a date object. (Required) date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = date - timedelta(days=7) if (date_object == True): return t else: return datetime.strftime(t, date_format) # In[9]: def get_same_day_last_month(date, date_format='%Y%m%d', date_object=False): ''' Return the same day of last month. date: a date object. (Required) date_format: desired date format of the output. Default is %Y%m%d. date_object: If true, returns a datetime object. If false, return a string with date_format format. ''' t = date - timedelta(days=date.day) t = t.replace(day=date.day) if (date_object == True): return t else: return datetime.strftime(t, date_format) # In[ ]: #!jupyter nbconvert --to script human_date.ipynb
0.789356
0.374076
# Packaging and uploading to pypi These steps are derived from the offical [Packaging Python Projects article](https://packaging.python.org/tutorials/packaging-projects/). 0. Remember to update the version number tuple in `scienceio/__init__.py`. 1. [Create a release](https://docs.github.com/en/github/administering-a-repository/releasing-projects-on-github/managing-releases-in-a-repository) in our GitHub repo. 2. Clone this repo at the point of the newly-created release into a working directory. 3. Create and activate a virtual environment in the repo root directory. 4. Install `build`: `python3 -m pip install --upgrade build` 5. In the repo root directory, run: `python3 -m build` 6. Verify that a `dist/` subdirectory is created, and that it contains both a `*.tar.gz` and a `*.whl` file matching the new package version. 7. Create a TestPyPI account if needed, as described [here](https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives), saving the API key. 8. Install `twine`: `python3 -m pip install --upgrade twine` 9. Upload package to TestPyPI, using `__token__` and your TestPyPI API key for the username and password, respectively: `python3 -m twine upload --repository testpypi dist/*` 10. Create a new demo project to test installation of the new package. 11. Create and activate a demo virtualenv. 12. Install the package from TestPyPI in the demo virtualenv: `python3 -m pip install --index-url https://test.pypi.org/simple/ --no-deps scienceio` 13. Test that the package can be imported and the version number is present: `python -c 'import scienceio; print(scienceio.__version__)'` 14. Create a PyPI account if needed, as described [here](https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives), saving the API key. 15. Upload package to PyPI, using `__token__` and your PyPI API key for the username and password, respectively: `python3 -m twine upload --repository testpypi dist/*` 16. Done! ### Important files - `pyproject.toml` tells build tools (like pip and build) what is required to build your project - `setup.cfg` is the configuration file for setuptools. Content on this file is considered static metadata and should be preferred. - `setup.py` setup.py is the build script for setuptools. This is dynamic data and should be used only when absolutely necessary, for any items that are dynamic or determined at install-time, as well as extension modules or extensions to setuptools. **Help:** https://packaging.python.org/tutorials/packaging-projects/
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/PUBLISHING.md
PUBLISHING.md
# Packaging and uploading to pypi These steps are derived from the offical [Packaging Python Projects article](https://packaging.python.org/tutorials/packaging-projects/). 0. Remember to update the version number tuple in `scienceio/__init__.py`. 1. [Create a release](https://docs.github.com/en/github/administering-a-repository/releasing-projects-on-github/managing-releases-in-a-repository) in our GitHub repo. 2. Clone this repo at the point of the newly-created release into a working directory. 3. Create and activate a virtual environment in the repo root directory. 4. Install `build`: `python3 -m pip install --upgrade build` 5. In the repo root directory, run: `python3 -m build` 6. Verify that a `dist/` subdirectory is created, and that it contains both a `*.tar.gz` and a `*.whl` file matching the new package version. 7. Create a TestPyPI account if needed, as described [here](https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives), saving the API key. 8. Install `twine`: `python3 -m pip install --upgrade twine` 9. Upload package to TestPyPI, using `__token__` and your TestPyPI API key for the username and password, respectively: `python3 -m twine upload --repository testpypi dist/*` 10. Create a new demo project to test installation of the new package. 11. Create and activate a demo virtualenv. 12. Install the package from TestPyPI in the demo virtualenv: `python3 -m pip install --index-url https://test.pypi.org/simple/ --no-deps scienceio` 13. Test that the package can be imported and the version number is present: `python -c 'import scienceio; print(scienceio.__version__)'` 14. Create a PyPI account if needed, as described [here](https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives), saving the API key. 15. Upload package to PyPI, using `__token__` and your PyPI API key for the username and password, respectively: `python3 -m twine upload --repository testpypi dist/*` 16. Done! ### Important files - `pyproject.toml` tells build tools (like pip and build) what is required to build your project - `setup.cfg` is the configuration file for setuptools. Content on this file is considered static metadata and should be preferred. - `setup.py` setup.py is the build script for setuptools. This is dynamic data and should be used only when absolutely necessary, for any items that are dynamic or determined at install-time, as well as extension modules or extensions to setuptools. **Help:** https://packaging.python.org/tutorials/packaging-projects/
0.730578
0.658706
# ScienceIO The official ScienceIO Python SDK for the ScienceIO API. This package is available via [Pypi:scienceIO](https://pypi.org/project/scienceio/). View full documentation at [ScienceIO Docs](https://docs.science.io/docs). ## Usage and examples 1. Create a ScienceIO API key. Both the API key ID and the key secret will be needed in order to set up the ScienceIO Python SDK for use. 2. Install the ScienceIO Python SDK. ```python pip install scienceio ``` 3. Create a directory `.scienceio` in your home directory (Mac users, your home directory is `/Users/{username}`. Linux users, your home directory is `/home/{username}`. Windows users, your home directory is `C:\\Users\{username})` Inside this directory, create a text file called `config` containing your credentials: ``` [SETTINGS] KEY_ID={your ScienceIO API key ID} KEY_SECRET={your ScienceIO API key secret} ``` 4. Use the ScienceIO Python SDK to annotate text: ```python scio = ScienceIO() input_text = ( 'The COVID-19 pandemic has shown a markedly low proportion of ' 'cases among children 1–4. Age disparities in observed cases could be ' 'explained by children having lower susceptibility to infection, lower ' 'propensity to show clinical symptoms or both.' ) results = scio.structure(input_text) print(results) ```
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/README.md
README.md
# ScienceIO The official ScienceIO Python SDK for the ScienceIO API. This package is available via [Pypi:scienceIO](https://pypi.org/project/scienceio/). View full documentation at [ScienceIO Docs](https://docs.science.io/docs). ## Usage and examples 1. Create a ScienceIO API key. Both the API key ID and the key secret will be needed in order to set up the ScienceIO Python SDK for use. 2. Install the ScienceIO Python SDK. ```python pip install scienceio ``` 3. Create a directory `.scienceio` in your home directory (Mac users, your home directory is `/Users/{username}`. Linux users, your home directory is `/home/{username}`. Windows users, your home directory is `C:\\Users\{username})` Inside this directory, create a text file called `config` containing your credentials: ``` [SETTINGS] KEY_ID={your ScienceIO API key ID} KEY_SECRET={your ScienceIO API key secret} ``` 4. Use the ScienceIO Python SDK to annotate text: ```python scio = ScienceIO() input_text = ( 'The COVID-19 pandemic has shown a markedly low proportion of ' 'cases among children 1–4. Age disparities in observed cases could be ' 'explained by children having lower susceptibility to infection, lower ' 'propensity to show clinical symptoms or both.' ) results = scio.structure(input_text) print(results) ```
0.772959
0.90261
# ScienceIO API Demo In this demo, we'll: - Set up a user account - Make our first request - Put the request in a pandas dataframe ``` import pandas as pd from IPython.display import display, JSON from scienceio import ScienceIO ``` ## Make a request to the API ``` # instantiate the API scio = ScienceIO() # Now we'll submit a query query_text = ( """ Welcome to ScienceIO Annotate. In this onboarding, we will cover the basic of ScienceIO Annotate, and how it enables you to extract biomedical information from documents for downstream use. The ScienceIO biomedical language platform can identify and extract over 9 million terms, related to healthcare and biomedical sciences. These include: Medical conditions, such as ALS, triple negative cancer, cardiac hyptertrophy, MERS, or liver cirrhosis Medical procedures, such as magnetic resonance imaging, fMRI, spinal fusion, stress tests, or organ transplants Medical devices, such as suture, artificial limb, or ventricular assist device Chemicals and drugs, such as acetaminophen, pembrolizumab, statins Genes and mutations, such as MET, TRK, PPARa, or EGFR T790M Species and viruses, such as patients or humans, rats, monkeys, E.coli, or SARS-CoV-2 Anatomy and physiology, such as liver, lung, fibroblasts, T-cells, heart rate, or cardiac output Cell biology, such as DNA, RNA, GPCRs, or ribosomes Context for other information, such as when a drug is delivered by injection or orally The patient was admitted with chest pains and shortness of breath. Elevated blood pressure and presence of troponin-T and troponin-I in the blood indicated a STEMI or myocardial infarction. They were administered statins and put on saline drip. A stent was placed in the descending coronary artery. Troponin-t and Troponin-I levels stabilized. Chest pains abated and blood pressure normalized. """ ) response_query = scio.annotate(text=query_text) df = pd.DataFrame(response_query['annotations']) display(df) ```
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/examples/example-annotate-onboarding-text.ipynb
example-annotate-onboarding-text.ipynb
import pandas as pd from IPython.display import display, JSON from scienceio import ScienceIO # instantiate the API scio = ScienceIO() # Now we'll submit a query query_text = ( """ Welcome to ScienceIO Annotate. In this onboarding, we will cover the basic of ScienceIO Annotate, and how it enables you to extract biomedical information from documents for downstream use. The ScienceIO biomedical language platform can identify and extract over 9 million terms, related to healthcare and biomedical sciences. These include: Medical conditions, such as ALS, triple negative cancer, cardiac hyptertrophy, MERS, or liver cirrhosis Medical procedures, such as magnetic resonance imaging, fMRI, spinal fusion, stress tests, or organ transplants Medical devices, such as suture, artificial limb, or ventricular assist device Chemicals and drugs, such as acetaminophen, pembrolizumab, statins Genes and mutations, such as MET, TRK, PPARa, or EGFR T790M Species and viruses, such as patients or humans, rats, monkeys, E.coli, or SARS-CoV-2 Anatomy and physiology, such as liver, lung, fibroblasts, T-cells, heart rate, or cardiac output Cell biology, such as DNA, RNA, GPCRs, or ribosomes Context for other information, such as when a drug is delivered by injection or orally The patient was admitted with chest pains and shortness of breath. Elevated blood pressure and presence of troponin-T and troponin-I in the blood indicated a STEMI or myocardial infarction. They were administered statins and put on saline drip. A stent was placed in the descending coronary artery. Troponin-t and Troponin-I levels stabilized. Chest pains abated and blood pressure normalized. """ ) response_query = scio.annotate(text=query_text) df = pd.DataFrame(response_query['annotations']) display(df)
0.398406
0.940844
# ScienceIO API Demo In this demo, we'll: - Log in with our user account - Make our first request - Put the request in a pandas dataframe and analyze ``` import pandas as pd import yaml from IPython.display import display, JSON from analytics import * from scienceio import ScienceIO ``` ## Initialize client ``` scio = ScienceIO() ``` If the account already exists (based on the login), you will be notified and can proceed to logging in. ## Make a request to the API ``` query_text = ( """ The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature. """ ) # Make a request response_query = scio.annotate(text=query_text) # We can pass `spans` directly to a dataframe df = pd.DataFrame(response_query['annotations']) display(df) report(df) # This is the text we'll send to the API query_text = ( """ The COVID-19 pandemic has shown a markedly low proportion of cases among children. Age disparities in observed COVID-19 cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. COVID-19 has shown to induce Kawasaki syndrome in some children. Kawasaki (KD), or Mucocutaneous Lymph Node Syndrome as it is often called, is an acute illness that affects mostly children 6 months to 5 years old—median age in the KD cohort was 25 months—and features inflammation of small and medium blood vessels. Although the cause of KD is unknown, it is believed to occur in genetically predisposed children after exposure to an environmental trigger such as an infection. """ ) # Make a request response_query = scio.annotate(text=query_text) # We can pass `spans` directly to a dataframe df = pd.DataFrame(response_query['annotations']) display(df) ``` ## Viewing the results ``` report(df) # top mentions get_top(df, "text") # top concepts get_top(df, "concept_name") # top concept types get_top(df, "concept_type") ```
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/examples/example-analytics-2.ipynb
example-analytics-2.ipynb
import pandas as pd import yaml from IPython.display import display, JSON from analytics import * from scienceio import ScienceIO scio = ScienceIO() query_text = ( """ The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature. """ ) # Make a request response_query = scio.annotate(text=query_text) # We can pass `spans` directly to a dataframe df = pd.DataFrame(response_query['annotations']) display(df) report(df) # This is the text we'll send to the API query_text = ( """ The COVID-19 pandemic has shown a markedly low proportion of cases among children. Age disparities in observed COVID-19 cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. COVID-19 has shown to induce Kawasaki syndrome in some children. Kawasaki (KD), or Mucocutaneous Lymph Node Syndrome as it is often called, is an acute illness that affects mostly children 6 months to 5 years old—median age in the KD cohort was 25 months—and features inflammation of small and medium blood vessels. Although the cause of KD is unknown, it is believed to occur in genetically predisposed children after exposure to an environmental trigger such as an infection. """ ) # Make a request response_query = scio.annotate(text=query_text) # We can pass `spans` directly to a dataframe df = pd.DataFrame(response_query['annotations']) display(df) report(df) # top mentions get_top(df, "text") # top concepts get_top(df, "concept_name") # top concept types get_top(df, "concept_type")
0.479747
0.902395
import argparse import pandas as pd from convert_data_model import convert_data_model def count_text(df) -> int: """len(df) = # of text spans""" return len(df) def count_text_unique(df) -> int: """unique text spans (no correction for caps/lower/etc.)""" return df.text.nunique() def count_concepts_unique(df) -> int: """unique biomedical concepts""" return df.concept_id.nunique() def count_types_unique(df) -> int: """unique concept types""" return df.concept_type.nunique() def quantizer(score): """ Quantizes scores with desired range Run with: df[col] = df[col].apply(lambda x: quantizer(x)) to transform column into quantized values (or set to new column) """ if score >= 0.99: return "Very High" elif score >= 0.9: return "High" elif score >= 0.7: return "Moderate" elif score >= 0.5: return "Low" else: return "Very Low" def quantize_scores(df): """Quantize the scores in the dataframe""" df["score_id"] = df["score_id"].apply(lambda x: quantizer(x)) df["score_type"] = df["score_type"].apply(lambda x: quantizer(x)) return df def get_score_counts(df, col="score_id"): """Returns counts by score""" return ( df.groupby(col) .count()["pos_start"] .reset_index() .sort_values(by="pos_start", ascending=False) .rename(columns={"pos_start": "mentions"}) .reset_index(drop=True) ) def get_score_dict(df, col="score_id"): """Returns a dict of counts by score_id""" # get counts conf = get_score_counts(df, col) # zip two columns to create dict conf_dict = dict(zip(conf[col], conf["mentions"])) # add zero values for k in ["Very High", "High", "Moderate", "Low", "Very Low"]: if not k in conf_dict: conf_dict[k] = 0 return conf_dict def get_top(df, col="concept_name", N: int = 10): """get top N values by count""" return ( df.groupby(col) .count()["pos_start"] .reset_index() .sort_values(by="pos_start", ascending=False) .rename(columns={"pos_start": "mentions"}) .reset_index(drop=True) .head(n=N) ) def get_top_dict(df, col="concept_name", N: int = 10): """Get top values as dict with ordered lists""" return get_top(df, col, N).to_dict("list") def report(df): """get report of basic summary stats""" print( f"Found {count_text(df)} mentions of healthcare information ({count_text_unique(df)} unique)." ) print( f"Found {count_concepts_unique(df)} unique concepts, spanning {count_types_unique(df)} categories." ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("filename", type=str, default=None, help="File to analyze") args = parser.parse_args() # read file df = pd.read_csv(args.filename, sep=None, engine="python") # convert and quantize df = convert_data_model(df) df = quantize_scores(df)
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/examples/analytics.py
analytics.py
import argparse import pandas as pd from convert_data_model import convert_data_model def count_text(df) -> int: """len(df) = # of text spans""" return len(df) def count_text_unique(df) -> int: """unique text spans (no correction for caps/lower/etc.)""" return df.text.nunique() def count_concepts_unique(df) -> int: """unique biomedical concepts""" return df.concept_id.nunique() def count_types_unique(df) -> int: """unique concept types""" return df.concept_type.nunique() def quantizer(score): """ Quantizes scores with desired range Run with: df[col] = df[col].apply(lambda x: quantizer(x)) to transform column into quantized values (or set to new column) """ if score >= 0.99: return "Very High" elif score >= 0.9: return "High" elif score >= 0.7: return "Moderate" elif score >= 0.5: return "Low" else: return "Very Low" def quantize_scores(df): """Quantize the scores in the dataframe""" df["score_id"] = df["score_id"].apply(lambda x: quantizer(x)) df["score_type"] = df["score_type"].apply(lambda x: quantizer(x)) return df def get_score_counts(df, col="score_id"): """Returns counts by score""" return ( df.groupby(col) .count()["pos_start"] .reset_index() .sort_values(by="pos_start", ascending=False) .rename(columns={"pos_start": "mentions"}) .reset_index(drop=True) ) def get_score_dict(df, col="score_id"): """Returns a dict of counts by score_id""" # get counts conf = get_score_counts(df, col) # zip two columns to create dict conf_dict = dict(zip(conf[col], conf["mentions"])) # add zero values for k in ["Very High", "High", "Moderate", "Low", "Very Low"]: if not k in conf_dict: conf_dict[k] = 0 return conf_dict def get_top(df, col="concept_name", N: int = 10): """get top N values by count""" return ( df.groupby(col) .count()["pos_start"] .reset_index() .sort_values(by="pos_start", ascending=False) .rename(columns={"pos_start": "mentions"}) .reset_index(drop=True) .head(n=N) ) def get_top_dict(df, col="concept_name", N: int = 10): """Get top values as dict with ordered lists""" return get_top(df, col, N).to_dict("list") def report(df): """get report of basic summary stats""" print( f"Found {count_text(df)} mentions of healthcare information ({count_text_unique(df)} unique)." ) print( f"Found {count_concepts_unique(df)} unique concepts, spanning {count_types_unique(df)} categories." ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("filename", type=str, default=None, help="File to analyze") args = parser.parse_args() # read file df = pd.read_csv(args.filename, sep=None, engine="python") # convert and quantize df = convert_data_model(df) df = quantize_scores(df)
0.758242
0.430506
# ScienceIO API Analytics In this demo, we'll: - Log in with our user account - Make our first request - Put the request in a pandas dataframe and analyze ``` import pandas as pd import yaml from IPython.display import display, JSON from analytics import * from scienceio import ScienceIO ``` ## Initialize client ``` scio = ScienceIO() ``` If the account already exists (based on the login), you will be notified and can proceed to logging in. ## Make a request to the API ``` # This is the text we'll send to the API query_text = ( """ The COVID-19 pandemic has shown a markedly low proportion of cases among children. Age disparities in observed COVID-19 cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. COVID-19 has shown to induce Kawasaki syndrome in some children. Kawasaki (KD), or Mucocutaneous Lymph Node Syndrome as it is often called, is an acute illness that affects mostly children 6 months to 5 years old—median age in the KD cohort was 25 months—and features inflammation of small and medium blood vessels. Although the cause of KD is unknown, it is believed to occur in genetically predisposed children after exposure to an environmental trigger such as an infection. """ ) # Make a request response_query = scio.annotate(text=query_text) # We can pass `annotations` directly to a dataframe df = pd.DataFrame(response_query['annotations']) df = quantize_scores(df) display(df.head()) ``` ## Viewing the results ``` report(df) # top mentions get_top_dict(df, "text") # top concepts get_top_dict(df, "concept_name") # top concept types get_top_dict(df, "concept_type") # count for score_id get_score_dict(df) ```
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/examples/example-analytics-1.ipynb
example-analytics-1.ipynb
import pandas as pd import yaml from IPython.display import display, JSON from analytics import * from scienceio import ScienceIO scio = ScienceIO() # This is the text we'll send to the API query_text = ( """ The COVID-19 pandemic has shown a markedly low proportion of cases among children. Age disparities in observed COVID-19 cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. COVID-19 has shown to induce Kawasaki syndrome in some children. Kawasaki (KD), or Mucocutaneous Lymph Node Syndrome as it is often called, is an acute illness that affects mostly children 6 months to 5 years old—median age in the KD cohort was 25 months—and features inflammation of small and medium blood vessels. Although the cause of KD is unknown, it is believed to occur in genetically predisposed children after exposure to an environmental trigger such as an infection. """ ) # Make a request response_query = scio.annotate(text=query_text) # We can pass `annotations` directly to a dataframe df = pd.DataFrame(response_query['annotations']) df = quantize_scores(df) display(df.head()) report(df) # top mentions get_top_dict(df, "text") # top concepts get_top_dict(df, "concept_name") # top concept types get_top_dict(df, "concept_type") # count for score_id get_score_dict(df)
0.537041
0.886273
import argparse import pandas as pd def beta_mapper(): """For converting previous data models to beta model""" return { "text": "text", "start": "pos_start", "end": "pos_end", "text_norm": "concept_id", "entity": "concept_id", "canonical_name": "concept_name", "entity_p": "score_id", "tag": "concept_type", "entity_type": "concept_type", "entity_type_p": "score_type", "entity_subtype": "concept_subtype", } def remap_concept_types(df): """Convert legacy concept types to beta types""" type_mapper = { "Activity": "Context", "Anatomy": "Anatomy & Physiology", "Boolean": "Context", "Cardinal": "Context", "Cell": "Cell Biology", "Cell Component": "Cell Biology", "CellLine": "Cell Biology", "Chemical": "Chemicals & Drugs", "Concept": "Context", "Device": "Medical Devices", "Disease": "Medical Conditions", "Gene": "Genetics", "Geography": "Context", "Group": "Context", "Mutation": "Genetics", "None": "None", "Nucleic Acid, Nucleoside, or Nucleotide": "Genetics", "Object": "Context", "Occupation": "Context", "Organization": "Context", "Phenomenon": "Anatomy & Physiology", "Physiology": "Anatomy & Physiology", "Procedure": "Medical Procedures", "Species": "Species & Viruses", } if "concept_type" in df.columns: return df.replace({"concept_type": type_mapper}) else: return df.replace({"entity_type": type_mapper}) def convert_data_model(df): """Remap column names and change types""" df = df.rename(columns=beta_mapper()) df = remap_concept_types(df) return df def save_dataframe(df, filename: str = "input.tsv", sep: str = "\t"): """Save locally""" if "." in filename: filename = filename.split(".")[0] + "_REMAPPED.tsv" df.to_csv(filename, sep=sep, index=False) def main(filename): """Convert file to proper data model""" print(f"Reading: {filename}") df = pd.read_csv(filename, sep=None, engine="python") df_remapped = convert_data_model(df) save_dataframe(df_remapped, filename) print(f"Saved to: {filename}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "filename", type=str, default=None, help="File to have data model remapped" ) args = parser.parse_args() main(filename=args.filename)
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/examples/convert_data_model.py
convert_data_model.py
import argparse import pandas as pd def beta_mapper(): """For converting previous data models to beta model""" return { "text": "text", "start": "pos_start", "end": "pos_end", "text_norm": "concept_id", "entity": "concept_id", "canonical_name": "concept_name", "entity_p": "score_id", "tag": "concept_type", "entity_type": "concept_type", "entity_type_p": "score_type", "entity_subtype": "concept_subtype", } def remap_concept_types(df): """Convert legacy concept types to beta types""" type_mapper = { "Activity": "Context", "Anatomy": "Anatomy & Physiology", "Boolean": "Context", "Cardinal": "Context", "Cell": "Cell Biology", "Cell Component": "Cell Biology", "CellLine": "Cell Biology", "Chemical": "Chemicals & Drugs", "Concept": "Context", "Device": "Medical Devices", "Disease": "Medical Conditions", "Gene": "Genetics", "Geography": "Context", "Group": "Context", "Mutation": "Genetics", "None": "None", "Nucleic Acid, Nucleoside, or Nucleotide": "Genetics", "Object": "Context", "Occupation": "Context", "Organization": "Context", "Phenomenon": "Anatomy & Physiology", "Physiology": "Anatomy & Physiology", "Procedure": "Medical Procedures", "Species": "Species & Viruses", } if "concept_type" in df.columns: return df.replace({"concept_type": type_mapper}) else: return df.replace({"entity_type": type_mapper}) def convert_data_model(df): """Remap column names and change types""" df = df.rename(columns=beta_mapper()) df = remap_concept_types(df) return df def save_dataframe(df, filename: str = "input.tsv", sep: str = "\t"): """Save locally""" if "." in filename: filename = filename.split(".")[0] + "_REMAPPED.tsv" df.to_csv(filename, sep=sep, index=False) def main(filename): """Convert file to proper data model""" print(f"Reading: {filename}") df = pd.read_csv(filename, sep=None, engine="python") df_remapped = convert_data_model(df) save_dataframe(df_remapped, filename) print(f"Saved to: {filename}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "filename", type=str, default=None, help="File to have data model remapped" ) args = parser.parse_args() main(filename=args.filename)
0.580471
0.417568
# ScienceIO API Setup In this demo, we'll: - Set up a user account - Make our first request - Put the request in a pandas dataframe ``` from scienceio import ScienceIO import pandas as pd from IPython.display import display, JSON ``` ## Set up an account ``` # Register an account ScienceIO.register( first_name="Demo", last_name="User", email='[email protected]' ) ``` You will be sent an email asking to verify your email. If the account already exists (based on the email), you will be notified and can proceed to logging in. Create a config file Create ~/.scio/config with the following content ``` [SETTINGS] [email protected] ``` ## Make a request to the API ``` # instantiate the API with your credentials scio = ScienceIO() # Now we'll submit a query query_text = ( 'The COVID-19 pandemic has shown a markedly low proportion of ' 'cases among children 1–4. Age disparities in observed cases could be ' 'explained by children having lower susceptibility to infection, lower ' 'propensity to show clinical symptoms or both.' ) response_query = scio.annotate(text=query_text) # Let's check the keys list(response_query.keys()) ``` `text` is the original text submitted `request_id` is the unique ID for this request `characters` is the number of characters in text `billed_characters` is the number of characters billed (min: 300) `spans` is a list where each item is a biomedical concept identified by the model ## Viewing the results ``` try: import pandas as pd except: !pip install pandas import pandas as pd # We can pass `spans` directly to a dataframe df = pd.DataFrame(response_query['annotations']) display(df) ```
scienceio
/scienceio-2.2.0.tar.gz/scienceio-2.2.0/examples/example-onboarding.ipynb
example-onboarding.ipynb
from scienceio import ScienceIO import pandas as pd from IPython.display import display, JSON # Register an account ScienceIO.register( first_name="Demo", last_name="User", email='[email protected]' ) [SETTINGS] [email protected] # instantiate the API with your credentials scio = ScienceIO() # Now we'll submit a query query_text = ( 'The COVID-19 pandemic has shown a markedly low proportion of ' 'cases among children 1–4. Age disparities in observed cases could be ' 'explained by children having lower susceptibility to infection, lower ' 'propensity to show clinical symptoms or both.' ) response_query = scio.annotate(text=query_text) # Let's check the keys list(response_query.keys()) try: import pandas as pd except: !pip install pandas import pandas as pd # We can pass `spans` directly to a dataframe df = pd.DataFrame(response_query['annotations']) display(df)
0.354657
0.824179
============================================================ ScienceLogic - a Python library for the ScienceLogic EM7 API ============================================================ .. image:: https://img.shields.io/pypi/v/sciencelogic.svg :target: https://pypi.python.org/pypi/sciencelogic .. image:: https://img.shields.io/travis/tonybaloney/sciencelogic.svg :target: https://travis-ci.org/tonybaloney/sciencelogic .. image:: https://coveralls.io/repos/github/tonybaloney/sciencelogic/badge.svg?branch=master :target: https://coveralls.io/github/tonybaloney/sciencelogic?branch=master .. image:: https://readthedocs.org/projects/sciencelogic/badge/?version=latest :target: https://readthedocs.org/projects/sciencelogic/?badge=latest :alt: Documentation Status Client library for sciencelogic EM7 * Free software: MIT license * Documentation: https://sciencelogic.readthedocs.org. Usage -------- To use Python EM7 in a project .. code-block:: python from sciencelogic.client import Client c = Client('jazz', 'hands!', 'https://au-monitoring.mcp-services.net/') # API details print(c.sysinfo) Credits --------- This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template. Thanks to Georgi Dimitrov (@georgijd) for his contributions and testing .. _Cookiecutter: https://github.com/audreyr/cookiecutter .. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
sciencelogic
/sciencelogic-0.6.0.tar.gz/sciencelogic-0.6.0/README.rst
README.rst
============================================================ ScienceLogic - a Python library for the ScienceLogic EM7 API ============================================================ .. image:: https://img.shields.io/pypi/v/sciencelogic.svg :target: https://pypi.python.org/pypi/sciencelogic .. image:: https://img.shields.io/travis/tonybaloney/sciencelogic.svg :target: https://travis-ci.org/tonybaloney/sciencelogic .. image:: https://coveralls.io/repos/github/tonybaloney/sciencelogic/badge.svg?branch=master :target: https://coveralls.io/github/tonybaloney/sciencelogic?branch=master .. image:: https://readthedocs.org/projects/sciencelogic/badge/?version=latest :target: https://readthedocs.org/projects/sciencelogic/?badge=latest :alt: Documentation Status Client library for sciencelogic EM7 * Free software: MIT license * Documentation: https://sciencelogic.readthedocs.org. Usage -------- To use Python EM7 in a project .. code-block:: python from sciencelogic.client import Client c = Client('jazz', 'hands!', 'https://au-monitoring.mcp-services.net/') # API details print(c.sysinfo) Credits --------- This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template. Thanks to Georgi Dimitrov (@georgijd) for his contributions and testing .. _Cookiecutter: https://github.com/audreyr/cookiecutter .. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
0.801431
0.396886
.. highlight:: shell ============ Contributing ============ Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways: Types of Contributions ---------------------- Report Bugs ~~~~~~~~~~~ Report bugs at https://github.com/tonybaloney/sciencelogic/issues. If you are reporting a bug, please include: * Your operating system name and version. * Any details about your local setup that might be helpful in troubleshooting. * Detailed steps to reproduce the bug. Fix Bugs ~~~~~~~~ Look through the GitHub issues for bugs. Anything tagged with "bug" is open to whoever wants to implement it. Implement Features ~~~~~~~~~~~~~~~~~~ Look through the GitHub issues for features. Anything tagged with "feature" is open to whoever wants to implement it. Write Documentation ~~~~~~~~~~~~~~~~~~~ PythonEM7 could always use more documentation, whether as part of the official PythonEM7 docs, in docstrings, or even on the web in blog posts, articles, and such. Submit Feedback ~~~~~~~~~~~~~~~ The best way to send feedback is to file an issue at https://github.com/tonybaloney/sciencelogic/issues. If you are proposing a feature: * Explain in detail how it would work. * Keep the scope as narrow as possible, to make it easier to implement. * Remember that this is a volunteer-driven project, and that contributions are welcome :) Get Started! ------------ Ready to contribute? Here's how to set up `sciencelogic` for local development. 1. Fork the `sciencelogic` repo on GitHub. 2. Clone your fork locally:: $ git clone [email protected]:your_name_here/sciencelogic.git 3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:: $ virtualenv sciencelogic $ cd sciencelogic/ $ python setup.py develop 4. Create a branch for local development:: $ git checkout -b name-of-your-bugfix-or-feature Now you can make your changes locally. 5. When you're done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:: $ flake8 sciencelogic tests $ python setup.py test $ tox To get flake8 and tox, just pip install them into your virtualenv. 6. Commit your changes and push your branch to GitHub:: $ git add . $ git commit -m "Your detailed description of your changes." $ git push origin name-of-your-bugfix-or-feature 7. Submit a pull request through the GitHub website. Pull Request Guidelines ----------------------- Before you submit a pull request, check that it meets these guidelines: 1. The pull request should include tests. 2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst. 3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/tonybaloney/sciencelogic/pull_requests and make sure that the tests pass for all supported Python versions. Tips ---- To run a subset of tests:: $ python -m unittest tests.test_sciencelogic
sciencelogic
/sciencelogic-0.6.0.tar.gz/sciencelogic-0.6.0/CONTRIBUTING.rst
CONTRIBUTING.rst
.. highlight:: shell ============ Contributing ============ Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways: Types of Contributions ---------------------- Report Bugs ~~~~~~~~~~~ Report bugs at https://github.com/tonybaloney/sciencelogic/issues. If you are reporting a bug, please include: * Your operating system name and version. * Any details about your local setup that might be helpful in troubleshooting. * Detailed steps to reproduce the bug. Fix Bugs ~~~~~~~~ Look through the GitHub issues for bugs. Anything tagged with "bug" is open to whoever wants to implement it. Implement Features ~~~~~~~~~~~~~~~~~~ Look through the GitHub issues for features. Anything tagged with "feature" is open to whoever wants to implement it. Write Documentation ~~~~~~~~~~~~~~~~~~~ PythonEM7 could always use more documentation, whether as part of the official PythonEM7 docs, in docstrings, or even on the web in blog posts, articles, and such. Submit Feedback ~~~~~~~~~~~~~~~ The best way to send feedback is to file an issue at https://github.com/tonybaloney/sciencelogic/issues. If you are proposing a feature: * Explain in detail how it would work. * Keep the scope as narrow as possible, to make it easier to implement. * Remember that this is a volunteer-driven project, and that contributions are welcome :) Get Started! ------------ Ready to contribute? Here's how to set up `sciencelogic` for local development. 1. Fork the `sciencelogic` repo on GitHub. 2. Clone your fork locally:: $ git clone [email protected]:your_name_here/sciencelogic.git 3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:: $ virtualenv sciencelogic $ cd sciencelogic/ $ python setup.py develop 4. Create a branch for local development:: $ git checkout -b name-of-your-bugfix-or-feature Now you can make your changes locally. 5. When you're done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:: $ flake8 sciencelogic tests $ python setup.py test $ tox To get flake8 and tox, just pip install them into your virtualenv. 6. Commit your changes and push your branch to GitHub:: $ git add . $ git commit -m "Your detailed description of your changes." $ git push origin name-of-your-bugfix-or-feature 7. Submit a pull request through the GitHub website. Pull Request Guidelines ----------------------- Before you submit a pull request, check that it meets these guidelines: 1. The pull request should include tests. 2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst. 3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/tonybaloney/sciencelogic/pull_requests and make sure that the tests pass for all supported Python versions. Tips ---- To run a subset of tests:: $ python -m unittest tests.test_sciencelogic
0.591959
0.444324
.. sciencelogic documentation master file, created by sphinx-quickstart on Tue Jul 9 22:26:36 2013. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Welcome to PythonEM7's documentation! ====================================== Contents: .. toctree:: :maxdepth: 2 readme installation usage api contributing authors history Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
sciencelogic
/sciencelogic-0.6.0.tar.gz/sciencelogic-0.6.0/docs/index.rst
index.rst
.. sciencelogic documentation master file, created by sphinx-quickstart on Tue Jul 9 22:26:36 2013. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Welcome to PythonEM7's documentation! ====================================== Contents: .. toctree:: :maxdepth: 2 readme installation usage api contributing authors history Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
0.524882
0.132178
<div id="top"></div> <h1 align="center"> <br> Sciencer Toolkit </h1> <h4 align="center">A smarter way to find articles.</h4> <p align="center"> <a href="https://pypi.org/project/sciencer/"> <img src="https://img.shields.io/pypi/status/sciencer.svg?style=flat-square" alt="PyPi Package Version"></a> <a href="https://github.com/SciencerIO/sciencer-toolkit/issues"> <img src="https://img.shields.io/github/issues-raw/SciencerIO/sciencer-toolkit.svg?style=flat-square&logo=github&logoColor=white" alt="GitHub issues"></a> <a href="https://github.com/SciencerIO/sciencer-toolkit/pulls"> <img src="https://img.shields.io/github/issues-pr-raw/SciencerIO/sciencer-toolkit.svg?style=flat-square&logo=github&logoColor=white" alt="GitHub pull requests"></a> <a href="https://github.com/SciencerIO/sciencer-toolkit/LICENSE"> <img src="https://img.shields.io/github/license/SciencerIO/sciencer-toolkit.svg?style=flat-square" alt="License: MIT License"></a> </p> <p align="center"> <a href="#about">About</a> - <a href="#usage">Usage</a> - <a href="#roadmap">Roadmap</a> - <a href="#contributing">Contributing</a> </p> <p align="center"> <a href="#collectors">Collectors</a> - <a href="#expanders">Expanders</a> - <a href="#filters">Filters</a> - <a href="#providers">Providers</a> </p> --- ## About Sciencer Toolkit enables researchers to **programmatically conduct a literature review** using an intuitive yet flexible interface. At its core, Sciencer collects sets of papers. The initial set of papers is created through the use of **Collectors** (e.g. paper doi, author name). Then, Sciencer iteratively finds new papers using **Expanders** (e.g. authors, citations, references). Finally, new found papers need to satisfy a series of **Filters** in order to be accepted into the current set. Being iterative in nature, Sciencer allows you to repeat the above steps has many times as you'd like. This project was motivated by the absence of tools to automate systematic reviews using clear and well-defined criteria. Still, for literature reviews that do not need to follow specific criteria, there are a several tools that can help to discover new papers. ## Usage ```python # Create the Sciencer Core Component sciencer = Sciencer() # Define provider sciencer.add_provider(SemanticScholarProvider()) # Define collectors ## this collector will gather all known papers authored by "John Doe" into de set sciencer.add_collector(sciencer.collectors.CollectByAuthorID("John Doe")) ## this collector will collect the paper with DOI "1234567890" into the set sciencer.add_collector(sciencer.collectors.CollectByDOI("1234567890")) ## this collector will collect the papers with sciencer.add_collector(sciencer.collectors.CollectByTerms(["Term 1", "Term 2", "Term 3"])) # Define expanders ## this expander will gather all known papers written by authors in the current set. sciencer.add_expander(sciencer.expanders.ExpandByAuthors()) ## this expander will gather all the referenced papers sciencer.add_expander(sciencer.expanders.ExpandByReferences()) ## this expander will gather all the cited papers sciencer.add_expander(sciencer.expanders.ExpandByCitations()) # Define filters ## this filter will reject papers that were published before 2010 and after 2030 sciencer.add_filter(sciencer.filters.FilterByYear(min_year=2010, max_year=2030)) ## this filter will reject all the papers that do not have the word social on the abstract sciencer.add_filter(sciencer.filters.FilterByAbstract("social")) ## this filter will reject all the papers that do not have the field of study Computer Science sciencer.add_filter(sciencer.filters.FilterByFieldOfStudy("Computer Science")) # Run one iteration results = sciencer.iterate() ``` For more examples on how to use the Sciencer toolkit, please check the directory `examples/`. <p align="right">(<a href="#top">back to top</a>)</p> ## Collectors | Name | Description | Parameters | | --------- | :------------------------------------------- | :---------------------------------------- | | Author ID | Collects all the papers written by an author | Authors's SemanticScholar ID | | Paper DOI | Collects a paper by its DOI | Paper's DOI | | Terms | Collects papers by terms | Query Terms <br> Maximum Number of Papers | <p align="right">(<a href="#top">back to top</a>)</p> ## Expanders | Name | Description | | ---------- | :-------------------------------- | | Authors | Expands a paper by its authors | | References | Expands a paper by its references | | References | Expands a paper by its citations | <p align="right">(<a href="#top">back to top</a>)</p> ## Filters | Name | Description | Parameters | | ----------------- | :------------------------------------ | ----------------------------------------------------------------------------------- | | By Year | Filters a paper by its year | The lowest acceptable year (inclusive) <br> The highest acceptable year (inclusive) | | By Abstract Words | Filters a paper by its abstract | The collection of words the abstract should include (at least one) | | By Field Of Study | Filters a paper by its field of study | The field of study the paper should have | <p align="right">(<a href="#top">back to top</a>)</p> ## Providers | Name | Provider | Features | | :--------------: | :--------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------- | | Semantic Scholar | [Semantic Scholar Academic Graph API](https://www.semanticscholar.org/product/api) | **Search by Author** (Name, S2ID) <br> **Search By Paper ID** (S2ID, DOI, ArXiv, MAG, ACL, PubMed, Corpus) | | DBLP | [DBLP Search API](https://dblp.org/faq/How+to+use+the+dblp+search+API.html) | *Work in Progress* | <p align="right">(<a href="#top">back to top</a>)</p> ## Roadmap - [ ] Create Paper's and Author's Cache - [x] Add Bulk Expanders (to avoid redundancy) - [ ] Add support for multithreading - [ ] Add Collectors - [ ] Add Collect by Venue/Proceedings - [ ] Add Expanders - [x] Add Expand by Citations - [x] Add Expand by References - [ ] Add Expand by Venue/Proceedings - [ ] Add Filters - [ ] Add Filter by Number of Citations - [x] Add Filter by Topic - [ ] Add Filter by Keywords - [ ] Add Compound Filters - [x] Add utility to write results to a *.csv See the [open issues](https://github.com/SciencerIO/sciencer-toolkit/issues) for a full list of proposed features (and known issues). <p align="right">(<a href="#top">back to top</a>)</p> ## Contributing Want to **add a new provider, filter or expander**? Looking to improve **the core functionality of sciencer toolkit**. We look forward to include your contributions in the toolkit! If you have a suggestion that would improve the toolkit just send us a Pull Request! If you are looking for an additional collector/filter/expander/provider or just want to report a bug, you can also simply open an issue with the tag "enchament" or "bug", respectively. <p align="right">(<a href="#top">back to top</a>)</p>
sciencer
/sciencer-0.1.3.tar.gz/sciencer-0.1.3/README.md
README.md
# Create the Sciencer Core Component sciencer = Sciencer() # Define provider sciencer.add_provider(SemanticScholarProvider()) # Define collectors ## this collector will gather all known papers authored by "John Doe" into de set sciencer.add_collector(sciencer.collectors.CollectByAuthorID("John Doe")) ## this collector will collect the paper with DOI "1234567890" into the set sciencer.add_collector(sciencer.collectors.CollectByDOI("1234567890")) ## this collector will collect the papers with sciencer.add_collector(sciencer.collectors.CollectByTerms(["Term 1", "Term 2", "Term 3"])) # Define expanders ## this expander will gather all known papers written by authors in the current set. sciencer.add_expander(sciencer.expanders.ExpandByAuthors()) ## this expander will gather all the referenced papers sciencer.add_expander(sciencer.expanders.ExpandByReferences()) ## this expander will gather all the cited papers sciencer.add_expander(sciencer.expanders.ExpandByCitations()) # Define filters ## this filter will reject papers that were published before 2010 and after 2030 sciencer.add_filter(sciencer.filters.FilterByYear(min_year=2010, max_year=2030)) ## this filter will reject all the papers that do not have the word social on the abstract sciencer.add_filter(sciencer.filters.FilterByAbstract("social")) ## this filter will reject all the papers that do not have the field of study Computer Science sciencer.add_filter(sciencer.filters.FilterByFieldOfStudy("Computer Science")) # Run one iteration results = sciencer.iterate()
0.528777
0.817538
const path = require("path"); const webpack = require("webpack"); const HtmlWebpackPlugin = require("html-webpack-plugin"); const BundleAnalyzerPlugin = require('webpack-bundle-analyzer').BundleAnalyzerPlugin; // const ModuleFederationPlugin = require("webpack/lib/container/ModuleFederationPlugin"); // const deps = require("./package.json").dependencies; const shimJS = path.resolve(__dirname, "src", "emptyshim.js"); function shim(regExp) { return new webpack.NormalModuleReplacementPlugin(regExp, shimJS); } const JUPYTER_HOST = 'http://localhost:8686'; const IS_PRODUCTION = process.argv.indexOf('--mode=production') > -1; const mode = IS_PRODUCTION ? "production" : "development"; // inline-source-map const devtool = IS_PRODUCTION ? false : "inline-cheap-source-map"; const minimize = IS_PRODUCTION ? true : false; module.exports = { entry: "./src/Example", mode: mode, devServer: { port: 3063, client: { overlay: false }, historyApiFallback: true, // static: path.join(__dirname, "dist"), proxy: { '/api/jupyter': { target: JUPYTER_HOST, ws: true, secure: false, changeOrigin: true, }, '/plotly.js': { target: JUPYTER_HOST + '/api/jupyter/pool/react', ws: false, secure: false, changeOrigin: true, }, }, }, watchOptions: { aggregateTimeout: 300, poll: 2000, // Seems to stabilise HMR file change detection ignored: "/node_modules/" }, devtool, optimization: { minimize, // usedExports: true, }, output: { publicPath: "http://localhost:3063/", filename: '[name].[contenthash].datalayerIo.js', }, resolve: { extensions: [".ts", ".tsx", ".js", ".jsx"], alias: { path: "path-browserify", stream: "stream-browserify", }, }, module: { rules: [ /* { test: /bootstrap\.tsx$/, loader: "bundle-loader", options: { lazy: true, }, }, */ { test: /\.tsx?$/, loader: "babel-loader", options: { plugins: [ "@babel/plugin-proposal-class-properties", ], presets: [ ["@babel/preset-react", { runtime: 'automatic', /* importSource: '@emotion/react' */ }, ], "@babel/preset-typescript", ], cacheDirectory: true }, exclude: /node_modules/, }, { test: /\.m?js$/, resolve: { fullySpecified: false, }, }, { test: /\.jsx?$/, loader: "babel-loader", options: { presets: ["@babel/preset-react"], cacheDirectory: true } }, { test: /\.css?$/i, use: ['style-loader', 'css-loader'], }, { // In .css files, svg is loaded as a data URI. test: /\.svg(\?v=\d+\.\d+\.\d+)?$/, issuer: /\.css$/, use: { loader: 'svg-url-loader', options: { encoding: 'none', limit: 10000 } } }, { test: /\.svg(\?v=\d+\.\d+\.\d+)?$/, issuer: /\.tsx$/, use: [ '@svgr/webpack' ], }, { // In .ts and .tsx files (both of which compile to .js), svg files // must be loaded as a raw string instead of data URIs. test: /\.svg(\?v=\d+\.\d+\.\d+)?$/, issuer: /\.js$/, use: { loader: 'raw-loader' } }, { test: /\.(png|jpg|jpeg|gif|ttf|woff|woff2|eot)(\?v=[0-9]\.[0-9]\.[0-9])?$/, use: [{ loader: 'url-loader', options: { limit: 10000 } }], }, ] }, plugins: [ !IS_PRODUCTION ? new webpack.ProvidePlugin({ process: 'process/browser' }) : new webpack.ProvidePlugin({ process: 'process/browser' }), new BundleAnalyzerPlugin({ analyzerMode: IS_PRODUCTION ? "static" : "disabled", // server, static, json, disabled. openAnalyzer: false, generateStatsFile: false, }), /* shim(/@fortawesome/), shim(/moment/), shim(/react-jvectormap/), shim(/react-slick/), shim(/react-tagsinput/), */ new HtmlWebpackPlugin({ template: "./public/index.html", }), ], };
sciences
/sciences-0.0.2.tar.gz/sciences-0.0.2/webpack.config.js
webpack.config.js
const path = require("path"); const webpack = require("webpack"); const HtmlWebpackPlugin = require("html-webpack-plugin"); const BundleAnalyzerPlugin = require('webpack-bundle-analyzer').BundleAnalyzerPlugin; // const ModuleFederationPlugin = require("webpack/lib/container/ModuleFederationPlugin"); // const deps = require("./package.json").dependencies; const shimJS = path.resolve(__dirname, "src", "emptyshim.js"); function shim(regExp) { return new webpack.NormalModuleReplacementPlugin(regExp, shimJS); } const JUPYTER_HOST = 'http://localhost:8686'; const IS_PRODUCTION = process.argv.indexOf('--mode=production') > -1; const mode = IS_PRODUCTION ? "production" : "development"; // inline-source-map const devtool = IS_PRODUCTION ? false : "inline-cheap-source-map"; const minimize = IS_PRODUCTION ? true : false; module.exports = { entry: "./src/Example", mode: mode, devServer: { port: 3063, client: { overlay: false }, historyApiFallback: true, // static: path.join(__dirname, "dist"), proxy: { '/api/jupyter': { target: JUPYTER_HOST, ws: true, secure: false, changeOrigin: true, }, '/plotly.js': { target: JUPYTER_HOST + '/api/jupyter/pool/react', ws: false, secure: false, changeOrigin: true, }, }, }, watchOptions: { aggregateTimeout: 300, poll: 2000, // Seems to stabilise HMR file change detection ignored: "/node_modules/" }, devtool, optimization: { minimize, // usedExports: true, }, output: { publicPath: "http://localhost:3063/", filename: '[name].[contenthash].datalayerIo.js', }, resolve: { extensions: [".ts", ".tsx", ".js", ".jsx"], alias: { path: "path-browserify", stream: "stream-browserify", }, }, module: { rules: [ /* { test: /bootstrap\.tsx$/, loader: "bundle-loader", options: { lazy: true, }, }, */ { test: /\.tsx?$/, loader: "babel-loader", options: { plugins: [ "@babel/plugin-proposal-class-properties", ], presets: [ ["@babel/preset-react", { runtime: 'automatic', /* importSource: '@emotion/react' */ }, ], "@babel/preset-typescript", ], cacheDirectory: true }, exclude: /node_modules/, }, { test: /\.m?js$/, resolve: { fullySpecified: false, }, }, { test: /\.jsx?$/, loader: "babel-loader", options: { presets: ["@babel/preset-react"], cacheDirectory: true } }, { test: /\.css?$/i, use: ['style-loader', 'css-loader'], }, { // In .css files, svg is loaded as a data URI. test: /\.svg(\?v=\d+\.\d+\.\d+)?$/, issuer: /\.css$/, use: { loader: 'svg-url-loader', options: { encoding: 'none', limit: 10000 } } }, { test: /\.svg(\?v=\d+\.\d+\.\d+)?$/, issuer: /\.tsx$/, use: [ '@svgr/webpack' ], }, { // In .ts and .tsx files (both of which compile to .js), svg files // must be loaded as a raw string instead of data URIs. test: /\.svg(\?v=\d+\.\d+\.\d+)?$/, issuer: /\.js$/, use: { loader: 'raw-loader' } }, { test: /\.(png|jpg|jpeg|gif|ttf|woff|woff2|eot)(\?v=[0-9]\.[0-9]\.[0-9])?$/, use: [{ loader: 'url-loader', options: { limit: 10000 } }], }, ] }, plugins: [ !IS_PRODUCTION ? new webpack.ProvidePlugin({ process: 'process/browser' }) : new webpack.ProvidePlugin({ process: 'process/browser' }), new BundleAnalyzerPlugin({ analyzerMode: IS_PRODUCTION ? "static" : "disabled", // server, static, json, disabled. openAnalyzer: false, generateStatsFile: false, }), /* shim(/@fortawesome/), shim(/moment/), shim(/react-jvectormap/), shim(/react-slick/), shim(/react-tagsinput/), */ new HtmlWebpackPlugin({ template: "./public/index.html", }), ], };
0.356447
0.113826
# Making a new release of datalayer The extension can be published to `PyPI` and `npm` manually or using the [Jupyter Releaser](https://github.com/jupyter-server/jupyter_releaser). ## Manual release ### Python package This extension can be distributed as Python packages. All of the Python packaging instructions in the `pyproject.toml` file to wrap your extension in a Python package. Before generating a package, we first need to install `build`. ```bash pip install build twine hatch ``` Bump the version using `hatch`. By default this will create a tag. See the docs on [hatch-nodejs-version](https://github.com/agoose77/hatch-nodejs-version#semver) for details. ```bash hatch version <new-version> ``` To create a Python source package (`.tar.gz`) and the binary package (`.whl`) in the `dist/` directory, do: ```bash python -m build ``` > `python setup.py sdist bdist_wheel` is deprecated and will not work for this package. Then to upload the package to PyPI, do: ```bash twine upload dist/* ``` ### NPM package To publish the frontend part of the extension as a NPM package, do: ```bash npm login npm publish --access public ``` ## Automated releases with the Jupyter Releaser The extension repository should already be compatible with the Jupyter Releaser. Check out the [workflow documentation](https://github.com/jupyter-server/jupyter_releaser#typical-workflow) for more information. Here is a summary of the steps to cut a new release: - Fork the [`jupyter-releaser` repo](https://github.com/jupyter-server/jupyter_releaser) - Add `ADMIN_GITHUB_TOKEN`, `PYPI_TOKEN` and `NPM_TOKEN` to the Github Secrets in the fork - Go to the Actions panel - Run the "Draft Changelog" workflow - Merge the Changelog PR - Run the "Draft Release" workflow - Run the "Publish Release" workflow ## Publishing to `conda-forge` If the package is not on conda forge yet, check the documentation to learn how to add it: https://conda-forge.org/docs/maintainer/adding_pkgs.html Otherwise a bot should pick up the new version publish to PyPI, and open a new PR on the feedstock repository automatically.
sciences
/sciences-0.0.2.tar.gz/sciences-0.0.2/RELEASE.md
RELEASE.md
pip install build twine hatch hatch version <new-version> python -m build twine upload dist/* npm login npm publish --access public
0.405449
0.928018
import { JupyterFrontEnd, JupyterFrontEndPlugin } from '@jupyterlab/application'; import { ISettingRegistry } from '@jupyterlab/settingregistry'; import { MainAreaWidget, ICommandPalette } from '@jupyterlab/apputils'; import { ILauncher } from '@jupyterlab/launcher'; import { reactIcon } from '@jupyterlab/ui-components'; import { requestAPI } from './handler'; import { DatalayerWidget } from './widget'; import '../style/index.css'; /** * The command IDs used by the react-widget plugin. */ namespace CommandIDs { export const create = 'create-react-widget'; } /** * Initialization data for the @datalayer/sciences extension. */ const plugin: JupyterFrontEndPlugin<void> = { id: '@datalayer/sciences:plugin', autoStart: true, requires: [ICommandPalette], optional: [ISettingRegistry, ILauncher], activate: ( app: JupyterFrontEnd, palette: ICommandPalette, settingRegistry: ISettingRegistry | null, launcher: ILauncher ) => { const { commands } = app; const command = CommandIDs.create; commands.addCommand(command, { caption: 'Show Sciences', label: 'Sciences', icon: (args: any) => reactIcon, execute: () => { const content = new DatalayerWidget(); const widget = new MainAreaWidget<DatalayerWidget>({ content }); widget.title.label = 'Sciences'; widget.title.icon = reactIcon; app.shell.add(widget, 'main'); } }); const category = 'Sciences'; palette.addItem({ command, category, args: { origin: 'from palette' } }); if (launcher) { launcher.add({ command }); } console.log('JupyterLab extension @datalayer/sciences is activated!'); if (settingRegistry) { settingRegistry .load(plugin.id) .then(settings => { console.log('@datalayer/sciences settings loaded:', settings.composite); }) .catch(reason => { console.error('Failed to load settings for @datalayer/sciences.', reason); }); } requestAPI<any>('get_example') .then(data => { console.log(data); }) .catch(reason => { console.error( `The datalayer server extension appears to be missing.\n${reason}` ); }); } }; export default plugin;
sciences
/sciences-0.0.2.tar.gz/sciences-0.0.2/src/index.ts
index.ts
import { JupyterFrontEnd, JupyterFrontEndPlugin } from '@jupyterlab/application'; import { ISettingRegistry } from '@jupyterlab/settingregistry'; import { MainAreaWidget, ICommandPalette } from '@jupyterlab/apputils'; import { ILauncher } from '@jupyterlab/launcher'; import { reactIcon } from '@jupyterlab/ui-components'; import { requestAPI } from './handler'; import { DatalayerWidget } from './widget'; import '../style/index.css'; /** * The command IDs used by the react-widget plugin. */ namespace CommandIDs { export const create = 'create-react-widget'; } /** * Initialization data for the @datalayer/sciences extension. */ const plugin: JupyterFrontEndPlugin<void> = { id: '@datalayer/sciences:plugin', autoStart: true, requires: [ICommandPalette], optional: [ISettingRegistry, ILauncher], activate: ( app: JupyterFrontEnd, palette: ICommandPalette, settingRegistry: ISettingRegistry | null, launcher: ILauncher ) => { const { commands } = app; const command = CommandIDs.create; commands.addCommand(command, { caption: 'Show Sciences', label: 'Sciences', icon: (args: any) => reactIcon, execute: () => { const content = new DatalayerWidget(); const widget = new MainAreaWidget<DatalayerWidget>({ content }); widget.title.label = 'Sciences'; widget.title.icon = reactIcon; app.shell.add(widget, 'main'); } }); const category = 'Sciences'; palette.addItem({ command, category, args: { origin: 'from palette' } }); if (launcher) { launcher.add({ command }); } console.log('JupyterLab extension @datalayer/sciences is activated!'); if (settingRegistry) { settingRegistry .load(plugin.id) .then(settings => { console.log('@datalayer/sciences settings loaded:', settings.composite); }) .catch(reason => { console.error('Failed to load settings for @datalayer/sciences.', reason); }); } requestAPI<any>('get_example') .then(data => { console.log(data); }) .catch(reason => { console.error( `The datalayer server extension appears to be missing.\n${reason}` ); }); } }; export default plugin;
0.496338
0.065009
<h1 align="center"> ScienceWorld </h1> <p align="center"> <!-- Version badge using shields.io --> <a href="https://github.com/allenai/ScienceWorld/releases"> <img src="https://img.shields.io/github/v/release/allenai/ScienceWorld"> </a> <!-- Link to tutorials badge using shields.io --> <a href="https://huggingface.co/spaces/MarcCote/ScienceWorld"> <img src="https://img.shields.io/badge/🤗-Demo-yellow"> </a> <!-- Follow on twitter badge using shields.io --> <a href="https://sciworld.apps.allenai.org"> <img src="https://img.shields.io/badge/Website-green"> </a> </p> ScienceWorld is a text-based virtual environment centered around accomplishing tasks from the standardized elementary science curriculum. This code accompanies the paper [ScienceWorld: Is your Textual Agent Smarter than a 5th grader?](https://arxiv.org/abs/2203.07540). <h3 align="center"><img src="https://github.com/allenai/ScienceWorld/blob/main/media/scienceworld_environment.png" width="75%"/></h3> ### Demo and examples You can try ScienceWorld yourself via our [HuggingFace Space](https://huggingface.co/spaces/MarcCote/ScienceWorld) or read some of the [playthrough transcripts](https://sciworld.apps.allenai.org/explore). ### Citation ``` @misc{scienceworld2022, title={ScienceWorld: Is your Agent Smarter than a 5th Grader?}, author={Ruoyao Wang and Peter Jansen and Marc-Alexandre C{\^o}t{\'e} and Prithviraj Ammanabrolu}, year={2022}, eprint={2203.07540}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2203.07540} } ``` # Quickstart **Before running:** You will have to have `Java 1.8+` installed on your system (shipped with most linux distributions). Install with pip: ```bash conda create --name scienceworld python=3.8 conda activate scienceworld pip install scienceworld ``` Run an example random agent, on task 13 (classification: place a non-living thing in a box), for 5 episodes: > python examples/random_agent.py --task-num=13 --num-episodes=5 --simplifications-preset easy Run a user console where you can interact with the environment, on task 3 (change of state: melting): > python examples/human.py --task-num=3 --num-episodes=5 # Web Server Demo A web server demo is also available, that allows running a ScienceWorld user console that can be interacted with in a web browser. <h3 align="center"><img src="https://github.com/allenai/ScienceWorld/blob/main/media/web_demo_screenshot.png" width="75%"/></h3> To run the web server demo: ```bash conda create --name scienceworld python=3.8 conda activate scienceworld pip install scienceworld[webserver] ``` Run the web server: > python examples/scienceworld-web-server-example.py Point your web browser to: `localhost:8080` # ScienceWorld Design ScienceWorld is written in Scala (2.12.9), and compiles using `sbt` into a JAR file that is run with Java. For convenience, a Python API is provided (Python >= 3.7), which interfaces using the `py4j` package. # Tasks The tasks are listed in the table below along with their number of variations. Either the task ID or its name can be used to a task with `env.load()`. | Task ID | Task Name | # Variations | |-------|----------------------------------------------------|------| | 1-1 | boil | 30 | | 1-2 | melt | 30 | | 1-3 | freeze | 30 | | 1-4 | change-the-state-of-matter-of | 30 | | 2-1 | use-thermometer | 540 | | 2-2 | measure-melting-point-known-substance | 436 | | 2-3 | measure-melting-point-unknown-substance | 300 | | 3-1 | power-component | 20 | | 3-2 | power-component-renewable-vs-nonrenewable-energy | 20 | | 3-3 | test-conductivity | 900 | | 3-4 | test-conductivity-of-unknown-substances | 600 | | 4-1 | find-living-thing | 300 | | 4-2 | find-non-living-thing | 300 | | 4-3 | find-plant | 300 | | 4-4 | find-animal | 300 | | 5-1 | grow-plant | 126 | | 5-2 | grow-fruit | 126 | | 6-1 | chemistry-mix | 32 | | 6-2 | chemistry-mix-paint-secondary-color | 36 | | 6-3 | chemistry-mix-paint-tertiary-color | 36 | | 7-1 | lifespan-longest-lived | 125 | | 7-2 | lifespan-shortest-lived | 125 | | 7-3 | lifespan-longest-lived-then-shortest-lived | 125 | | 8-1 | identify-life-stages-1 | 14 | | 8-2 | identify-life-stages-2 | 10 | | 9-1 | inclined-plane-determine-angle | 168 | | 9-2 | inclined-plane-friction-named-surfaces | 1386 | | 9-3 | inclined-plane-friction-unnamed-surfaces | 162 | | 10-1 | mendelian-genetics-known-plant | 120 | | 10-2 | mendelian-genetics-unknown-plant | 480 | # Baseline Agents **DRRN:** https://github.com/cognitiveailab/drrn-scienceworld **KG-A2C:** https://github.com/cognitiveailab/kga2c-scienceworld **CALM:** https://github.com/cognitiveailab/calm-scienceworld **Behavior Cloning and Decision Transformer:** https://github.com/cognitiveailab/t5-scienceworld
scienceworld
/scienceworld-1.1.3.tar.gz/scienceworld-1.1.3/README.md
README.md
@misc{scienceworld2022, title={ScienceWorld: Is your Agent Smarter than a 5th Grader?}, author={Ruoyao Wang and Peter Jansen and Marc-Alexandre C{\^o}t{\'e} and Prithviraj Ammanabrolu}, year={2022}, eprint={2203.07540}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2203.07540} } conda create --name scienceworld python=3.8 conda activate scienceworld pip install scienceworld conda create --name scienceworld python=3.8 conda activate scienceworld pip install scienceworld[webserver]
0.512449
0.93744
Scienco ======= [![pipeline status][pipeline]][homepage] [![coverage report][coverage]][homepage] [![latest version][version]][pypi] [![python requires][pyversions]][pypi] Calculate the readability of text using one of a variety of computed indexes including: - Flesch-Kincaid score - Automated readability index - Coleman-Liau index Requirements ------------ Python 3.8+ Installation ------------ ``` $ pip install scienco ``` Usage ----- ```python >>> import scienco >>> metrics = scienco.compute_metrics("Lorem ipsum dolor sit amet ...") >>> metrics Metrics(sentences=32, words=250, letters=1329, syllables=489, is_russian=False) >>> indexes = scienco.compute_indexes(sentences=32, words=250, letters=1329, syllables=489, is_russian=False) >>> indexes Indexes(flesch_reading_ease_score=33.43, automated_readability_index=7.51, coleman_liau_index=11.67) ``` Distribution ------------ This project is licensed under the terms of the [MIT License](LICENSE). Links ----- - Documentation: <https://amalchuk.gitlab.io/scienco> - Code: <https://gitlab.com/amalchuk/scienco> - GitHub mirror: <https://github.com/amalchuk/scienco> [homepage]: <https://gitlab.com/amalchuk/scienco> [pypi]: <https://pypi.org/project/scienco> [pipeline]: <https://gitlab.com/amalchuk/scienco/badges/master/pipeline.svg?style=flat-square> [coverage]: <https://gitlab.com/amalchuk/scienco/badges/master/coverage.svg?style=flat-square> [version]: <https://img.shields.io/pypi/v/scienco?color=blue&style=flat-square> [pyversions]: <https://img.shields.io/pypi/pyversions/scienco?color=blue&style=flat-square>
scienco
/scienco-1.0.1.tar.gz/scienco-1.0.1/README.md
README.md
$ pip install scienco >>> import scienco >>> metrics = scienco.compute_metrics("Lorem ipsum dolor sit amet ...") >>> metrics Metrics(sentences=32, words=250, letters=1329, syllables=489, is_russian=False) >>> indexes = scienco.compute_indexes(sentences=32, words=250, letters=1329, syllables=489, is_russian=False) >>> indexes Indexes(flesch_reading_ease_score=33.43, automated_readability_index=7.51, coleman_liau_index=11.67)
0.532668
0.688881
# sciengdox A python package for creating scientific and engineering documents via [`pandoc`](https://pandoc.org/) including inline-executable Python code. ## Key Features 1. [Pandoc filter](https://pandoc.org/filters.html) for converting pandoc markdown to other formats (especially HTML and PDF). 2. Codeblock execution 3. Helper functions for generating tables, SVG [matplotlib](https://matplotlib.org/) plots, etc. # Motivation This is inspired by [`pweave`](http://mpastell.com/pweave/), [`codebraid`](https://github.com/gpoore/codebraid), [`knitr`](https://yihui.name/knitr/), and cousins, but I always seemed to have to do some pre/post-processing to get things the way I want them. I already use other pandoc filters (e.g. pandoc-citeproc, pandoc-crossref), so why not simply have another pandoc filter that will execute inline code and insert the results? Another key is getting quality diagrams from scientific python code. For example, pweave automatically inserts generated images, but there doesn't seem to be a way to get SVG images without, again, pre- and post-processing in another script. SVG plots are, obviously, scalable and work much better for web and PDF outputs. # Development Use [`poetry`](https://python-poetry.org/) for local environment management. After cloning the repository: ```shell $ cd <project-repo> $ poetry install $ poetry shell ``` To package and release: ```shell $ poetry build $ poetry publish ``` Be sure to [configure your credentials](https://python-poetry.org/docs/repositories/#configuring-credentials) prior to publishing. See also [this page](https://packaging.python.org/tutorials/packaging-projects/). # Use and Example An example Pandoc markdown file can be found in `example`. To process this file, you need to have [`pandoc`](https://pandoc.org/) installed and in your path. You also need to install the Pandoc filters [pandoc-crossref](https://github.com/lierdakil/pandoc-crossref) and [pandoc-citeproc](https://github.com/jgm/pandoc-citeproc) which provide nice cross-referencing and reference/bibliography handling. ## Installation When working with macOS or Linux or [Linux on Windows via WSL](https://gist.github.com/gbingersoll/9e18afb9f4c3acd8674f5595c7e010f5) `pandoc` and the filters can be installed via [Homebrew](https://brew.sh/). (On Linux/WSL, install [linuxbrew](https://docs.brew.sh/Homebrew-on-Linux).) Then simply run: ```shell $ brew install pandoc $ brew install pandoc-crossref $ brew install pandoc-citeproc $ brew install librsvg ``` Then, of course, you need to install this filter and some other helpers for the example. The example helpers can be installed into your Python virtual environment by running: ```shell $ poetry install -E examples ``` ### Windows-specific Install To set up an environment for Windows from scratch including terminals, editors, Python, etc., see [this gist](https://gist.github.com/gbingersoll/c3033f8cb41c3eb865563c0711a30545). Additional installation steps to use this library include installing `pandoc` and additional filters and utilities. Install `pandoc` by [downloading the installer](https://pandoc.org/installing.html) and following the standard instructions. This should also get you `pandoc-citeproc.exe` for managing citations. Install `pandoc-crossref` (for managing intra-document cross-references) by [downloading](https://github.com/lierdakil/pandoc-crossref/releases) the zipped Windows release. Unzip it, and move `pandoc-crossref.exe` to a location that is on your system path. For example, you can move to next to `pandoc-citeproc.exe` in `C:\Program Files\Pandoc`. Finally, to handle embedding SVG images in PDF documents, this library relies on `rsvg-convert`. This can be installed via [Chocolatey](https://chocolatey.org/). Install the Chocolatey package manager if you do not already have it, and then run: ```shell $ choco install rsvg-convert ``` Instead of (or in addition to) Chocolately, you can also install the [Scoop](https://scoop.sh/) installer. Scoop does not currently have a formula for `rsvg-convert`, but it can also be installed from [SourceForge](https://sourceforge.net/projects/tumagcc/files/rsvg-convert-dll-2.40.16.7z/download?use_mirror=phoenixnap) if you do not want to use Chocolatey. #### UTF-8 Note The underlying Pandoc filter for executing Python code embedded in your documents relies on inter-process communication with a Python REPL behind the scenes. The default inter-process character encoding for Python on Windows is [CP-1252](https://en.wikipedia.org/wiki/Windows-1252), and this can cause problems if your Python scripts generate output with special characters (and if you are doing any scientific or engineering writing, they definitely will). Fortunately, this is easily worked-around by setting a Windows environment variable `PYTHONIOENCODING` to `utf-8`. After setting this, be sure to restart any open terminal windows for the change to take effect. #### Matplotlib Note If you use `matplotlib` for generating plots in inline Python code in your document, you should explicity set the `Agg` backend early in your document (see the `example/example.md` in this repo). Without this, document conversion can hang when the `svg_figure` helper function is called. Somewhere near the top of your Markdown document, add an executable Python code block (without `.echo` so it won't appear in the output) that includes: ```python import matplotlib matplotlib.use('Agg') ``` #### Panflute Version Note This plugin relies on the [`panflute`](https://github.com/sergiocorreia/panflute) Python package as a bridge between Python and `pandoc`'s Haskell. The `panflute` [README](https://github.com/sergiocorreia/panflute#supported-pandoc-versions) lists API compatibility requirements between versions of `panflute` and versions of `pandoc`. Double-check this if you run into errors that mention `panflute` when compiling a document. If you are running an older version of `pandoc` (e.g. 2.9.2) and start a new project, you will need to explicitly install the compatible `panflute` version in your environment with e.g. `poetry add [email protected]`. Or alternatively install a `pandoc` version 2.11.x or later. ### PDF Generation To generate PDF files through Pandoc, you need to have `xelatex` installed. On Linux/WSL: ```shell $ sudo apt-get install texlive-xetex ``` On macOS: ```shell $ brew install --cask mactex ``` On Windows (without WSL): [Download the MikTeX installer](https://miktex.org/download) and install as usual. Then ensure that the binary folder is in your path (e.g. `C:\Users\<username>\AppData\Local\Programs\MiKTeX 2.9\miktex\bin\x64\`). Note that the first time you generate a document, MikTex will prompt you to install a lot of packages, so watch for a MikTeX window popping up (possibly behind other windows) and follow the prompts. ### Fonts The example templates rely on having a few fonts installed. The fonts to get are the Google [Source Sans Pro](https://fonts.google.com/specimen/Source+Sans+Pro), [Source Code Pro](https://fonts.google.com/specimen/Source+Code+Pro), and [Source Serif Pro](https://fonts.google.com/specimen/Source+Serif+Pro) families. On macOS or Windows (without WSL), these can simply be downloaded and installed as you would any other font. On Linux via WSL, you can install these normally on the Windows side and then synchronize the Windows font folder to the Linux side. To do this, edit (using `sudo`) `/etc/fonts/local.conf` and add: ```xml <?xml version="1.0"?> <!DOCTYPE fontconfig SYSTEM "fonts.dtd"> <fontconfig> <dir>/mnt/c/Windows/Fonts</dir> </fontconfig> ``` Then update the font cache on the Linux side: ```shell $ sudo fc-cache -fv ``` ### Stylesheets The example file uses an HTML template that includes a CSS stylesheet that is generated from [SCSS](https://sass-lang.com/documentation/syntax). To compile this automatically, you need to have [SASS installed](https://sass-lang.com/install). On macOS, this can be installed via Homebrew: ```shell $ brew install sass/sass/sass ``` On macOS/Linux/WSL/Windows it can be installed as a Node.js package (assuming you already have [Node.js/npm](https://nodejs.org/) installed): ```shell $ npm install -g sass ``` ## Building This Python library provides a script, `compiledoc`, that will appear in your `poetry` or `pipenv` virtual environment's path (or globally) once the library is installed. In general, you provide an output directory and an input markdown file, and it will build an HTML output when the `--html` flag is used (and also by default). ```shell $ compiledoc -o output --html mydoc.md ``` To build a PDF (via `xelatex`): ```shell $ compiledoc -o output --pdf mydoc.md ``` To build a Markdown file with executable Python output included (e.g. for debugging purposes), specify `--md`. This will generate a file in the output directory with (perhaps confusingly) the same name as the input: ```shell $ compiledoc -o output --md mydoc.md ``` To build everything, specify `--all`: ```shell $ compiledoc -o output --all mydoc.md ``` To see all available command line options (for specifying templates, paths to required external executables, static files like images and bibliography files, etc.): ```shell $ compiledoc --help ``` ## Building the Example Once everything is setup, compile the example HTML file by running: ```shell $ cd example $ compiledoc -o output example.md ``` Open `example/output/example.html` in your browser or use e.g. the [Live Server](https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer) plugin for VS Code. ## Auto Regen To autoregenerate the document (e.g. the HTML version, the output of which is watched by the [Live Server](https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer) ), you can use [Watchman](https://facebook.github.io/watchman/). To create a trigger on a particular directory (`doc/` in this example) with a `notebook.md` file (change this to suit your purposes), copy the following into a temporary `trigger.json` file: ```json [ "trigger", "doc/", { "name": "build_html", "expression": [ "anyof", [ "match", "notebook.md", "wholename" ] ], "command": [ "poetry", "run", "compiledoc", "-o", "output", "--html", "notebook.md" ] } ] ``` Then from your project root directory run: ```shell watchman -j < trigger.json rm trigger.json ``` It is also recommended that you add a `.watchmanconfig` file to the watched directory (e.g. `doc/`; also add `.watchmanconfig` to your `.gitignore`) with the following contents: ```json { "settle": 3000 } ``` The settle parameter is in milliseconds. To turn off watchman: ```shell watchman shutdown-server ``` To turn it back on: ```shell cd <project-root> watchman watch doc/ ``` To watch the Watchman: ```shell tail -f /usr/local/var/run/watchman/<username>-state/log ``` (Note that on Windows/WSL, to get `tail` to work the way you expect, you need to add `---disable-inotify` to the command; and yes, that's three `-` for some reason.) ## Older pandoc Versions For `pandoc` 2.9 and earlier, the citation manager `pandoc-citeproc` was a separate filter that gets added to the compliation pipeline. The path to this filter can be specified on the command line to `compiledoc` with the `--pandoc-citeproc PATH` flag. In newer versions of `pandoc` (2.11 and beyond), the citeproc filter is built-in to pandoc and is run by adding `--citeproc` to the `pandoc` command-line. The `compiledoc` script adds this by default unless the flag `--use-pandoc-citeproc` is added, in which case the older filter will be used. If you do not with to run `citeproc` at all, you can add the flag `compiledoc --no-citeproc` to skip citation processing altogether.
sciengdox
/sciengdox-0.11.0.tar.gz/sciengdox-0.11.0/README.md
README.md
$ cd <project-repo> $ poetry install $ poetry shell $ poetry build $ poetry publish $ brew install pandoc $ brew install pandoc-crossref $ brew install pandoc-citeproc $ brew install librsvg $ poetry install -E examples $ choco install rsvg-convert import matplotlib matplotlib.use('Agg') $ sudo apt-get install texlive-xetex $ brew install --cask mactex <?xml version="1.0"?> <!DOCTYPE fontconfig SYSTEM "fonts.dtd"> <fontconfig> <dir>/mnt/c/Windows/Fonts</dir> </fontconfig> $ sudo fc-cache -fv $ brew install sass/sass/sass $ npm install -g sass $ compiledoc -o output --html mydoc.md $ compiledoc -o output --pdf mydoc.md $ compiledoc -o output --md mydoc.md $ compiledoc -o output --all mydoc.md $ compiledoc --help $ cd example $ compiledoc -o output example.md [ "trigger", "doc/", { "name": "build_html", "expression": [ "anyof", [ "match", "notebook.md", "wholename" ] ], "command": [ "poetry", "run", "compiledoc", "-o", "output", "--html", "notebook.md" ] } ] watchman -j < trigger.json rm trigger.json { "settle": 3000 } watchman shutdown-server cd <project-root> watchman watch doc/ tail -f /usr/local/var/run/watchman/<username>-state/log
0.275422
0.985677
# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## [Unreleased] ## [0.11.0] - 2023-02-06 ### Changed - Updated dependencies ## [0.10.0] - 2022-03-01 ### Changed - Changed development and setup workflow to use [poetry](https://python-poetry.org) - Changed code style to follow flake8/black ### Fixed - Quantity Markdown formatting in newer versions of Pint [#22] - Documentation issues in README ## [0.9.0] - 2021-05-26 ### Added - Allow `pq()` helper function to print bare numbers (i.e. without units). - Add `pf()` and `pi()` helpers to print floats and integers. ### Fixed - Fixed test suite for saving figures. ## [0.8.0] - 2021-05-24 ### Added - Document output type is now accessible to executable Python code in the document via the global variable document_output_format. [#19](https://github.com/gbingersoll/sciengdox/issues/19) - Allow incorporating interactive Plotly plots in HTML output and the SVG version of the same in PDF output. [#10](https://github.com/gbingersoll/sciengdox/issues/10) ### Fixed - PythonRunner now uses the same python executable as is used to run the pandoc filter. This fixes an issue when running in a venv and necessary packages for your doc aren't installed globally. [#18](https://github.com/gbingersoll/sciengdox/issues/18) ## [0.7.0] - 2020-12-09 ### Changed - Updated citeproc handling for pandoc >=2.11. Default is now to use the `--citeproc` flag on the `pandoc` command line internally. - Various changes in example template for pandoc >=2.11. ### Fixed - matplotlib is no longer required to build. The example still uses it, but you don't have to have it to do a basic document build anymore. [#16](https://github.com/gbingersoll/sciengdox/issues/16) ## [0.6.3] - 2020-05-27 ### Fixed - Blank lines in code listings are no longer dropped in HTML output. [#14](https://github.com/gbingersoll/sciengdox/issues/14) ## [0.6.2] - 2020-05-27 ### Fixed - Moved `colorama` library to `install_requires` in `setup.py`. ## [0.6.1] - 2020-05-27 ### Fixed - Added `MANIFEST.in` to make sure `sciengdox/units/unit_defs.txt`, providing custom pint units definitions, is included in the output package. ## [0.6.0] - 2020-05-27 Initial public release [unreleased]: https://github.com/gbingersoll/sciengdox/compare/v0.11.0...HEAD [0.11.0]: https://github.com/gbingersoll/sciengdox/compare/v0.10.0...v0.11.0 [0.10.0]: https://github.com/gbingersoll/sciengdox/compare/v0.9.0...v0.10.0 [0.9.0]: https://github.com/gbingersoll/sciengdox/compare/v0.8.0...v0.9.0 [0.8.0]: https://github.com/gbingersoll/sciengdox/compare/v0.7.0...v0.8.0 [0.7.0]: https://github.com/gbingersoll/sciengdox/compare/v0.6.3...v0.7.0 [0.6.3]: https://github.com/gbingersoll/sciengdox/compare/v0.6.2...v0.6.3 [0.6.2]: https://github.com/gbingersoll/sciengdox/compare/v0.6.1...v0.6.2 [0.6.1]: https://github.com/gbingersoll/sciengdox/compare/v0.6.0...v0.6.1 [0.6.0]: https://github.com/gbingersoll/sciengdox/releases/tag/v0.6.0
sciengdox
/sciengdox-0.11.0.tar.gz/sciengdox-0.11.0/CHANGELOG.md
CHANGELOG.md
# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## [Unreleased] ## [0.11.0] - 2023-02-06 ### Changed - Updated dependencies ## [0.10.0] - 2022-03-01 ### Changed - Changed development and setup workflow to use [poetry](https://python-poetry.org) - Changed code style to follow flake8/black ### Fixed - Quantity Markdown formatting in newer versions of Pint [#22] - Documentation issues in README ## [0.9.0] - 2021-05-26 ### Added - Allow `pq()` helper function to print bare numbers (i.e. without units). - Add `pf()` and `pi()` helpers to print floats and integers. ### Fixed - Fixed test suite for saving figures. ## [0.8.0] - 2021-05-24 ### Added - Document output type is now accessible to executable Python code in the document via the global variable document_output_format. [#19](https://github.com/gbingersoll/sciengdox/issues/19) - Allow incorporating interactive Plotly plots in HTML output and the SVG version of the same in PDF output. [#10](https://github.com/gbingersoll/sciengdox/issues/10) ### Fixed - PythonRunner now uses the same python executable as is used to run the pandoc filter. This fixes an issue when running in a venv and necessary packages for your doc aren't installed globally. [#18](https://github.com/gbingersoll/sciengdox/issues/18) ## [0.7.0] - 2020-12-09 ### Changed - Updated citeproc handling for pandoc >=2.11. Default is now to use the `--citeproc` flag on the `pandoc` command line internally. - Various changes in example template for pandoc >=2.11. ### Fixed - matplotlib is no longer required to build. The example still uses it, but you don't have to have it to do a basic document build anymore. [#16](https://github.com/gbingersoll/sciengdox/issues/16) ## [0.6.3] - 2020-05-27 ### Fixed - Blank lines in code listings are no longer dropped in HTML output. [#14](https://github.com/gbingersoll/sciengdox/issues/14) ## [0.6.2] - 2020-05-27 ### Fixed - Moved `colorama` library to `install_requires` in `setup.py`. ## [0.6.1] - 2020-05-27 ### Fixed - Added `MANIFEST.in` to make sure `sciengdox/units/unit_defs.txt`, providing custom pint units definitions, is included in the output package. ## [0.6.0] - 2020-05-27 Initial public release [unreleased]: https://github.com/gbingersoll/sciengdox/compare/v0.11.0...HEAD [0.11.0]: https://github.com/gbingersoll/sciengdox/compare/v0.10.0...v0.11.0 [0.10.0]: https://github.com/gbingersoll/sciengdox/compare/v0.9.0...v0.10.0 [0.9.0]: https://github.com/gbingersoll/sciengdox/compare/v0.8.0...v0.9.0 [0.8.0]: https://github.com/gbingersoll/sciengdox/compare/v0.7.0...v0.8.0 [0.7.0]: https://github.com/gbingersoll/sciengdox/compare/v0.6.3...v0.7.0 [0.6.3]: https://github.com/gbingersoll/sciengdox/compare/v0.6.2...v0.6.3 [0.6.2]: https://github.com/gbingersoll/sciengdox/compare/v0.6.1...v0.6.2 [0.6.1]: https://github.com/gbingersoll/sciengdox/compare/v0.6.0...v0.6.1 [0.6.0]: https://github.com/gbingersoll/sciengdox/releases/tag/v0.6.0
0.872361
0.540075
# scienlib [![Build Status](https://img.shields.io/github/stars/dylan14567/scienlib.svg)](https://github.com/dylan14567/scienlib) [![License](https://img.shields.io/github/license/dylan14567/scienlib.svg)](https://github.com/dylan14567/scienlib/blob/main/.github/LICENSE) [![dylan14567](https://img.shields.io/badge/author-dylan14567-green.svg)](https://github.com/dylan14567) [![bug_report](https://img.shields.io/badge/bug-report-red.svg)](https://github.com/dylan14567/scienlib/blob/main/.github/ISSUE_TEMPLATE/bug_report.md) [![security_policy](https://img.shields.io/badge/security-policy-cyan.svg)](https://github.com/dylan14567/scienlib/blob/main/.github/SECURITY.md) [![Python](https://img.shields.io/badge/language-Python%20-yellow.svg)](https://www.python.org) Scienlib is a scientific Python library that adds mathematical functions and adds other functions like physics, but also has cybersecurity and other functions. ## Pre-requirements The requirements to use the system is to have the following python modules installed: ``` wheel requests python-nmap speedtest-cli ``` ## Installation To install scienlib on linux run these commands on your Linux Terminal. ```shell pip3 install scienlib ``` Once done, it begins to install. Ready ## Authors * **Dylan Meca** - *Initial Work* - [dylan14567](https://github.com/dylan14567) You can also look at the list of all [contributors](https://github.com/dylan14567/scienlib/contributors) who have participated in this project. ## Contributing Please read [CONTRIBUTING.md](https://github.com/dylan14567/scienlib/blob/main/.github/CONTRIBUTING.md) for details of our code of conduct, and the process for submitting pull requests. ## License The license for this project is [MIT](https://github.com/dylan14567/scienlib/blob/main/LICENSE)
scienlib
/scienlib-1.1.tar.gz/scienlib-1.1/README.md
README.md
wheel requests python-nmap speedtest-cli pip3 install scienlib
0.550849
0.870212
# Security policy ## Supported Versions | Version | Supported | | ------- | ------------------ | | 5.1.x | :white_check_mark: | | 5.0.x | :x: | | 4.0.x | :white_check_mark: | | < 4.0 | :x: | ## Report a vulnerability In case of error, in the scripts, inform us about the error in: [https://github.com/dylan14567/configserver/blob/master/.github/ISSUE_TEMPLATE/bug_report.md](https://github.com/dylan14567/scienlib/blob/master/.github/ISSUE_TEMPLATE/bug_report.md)
scienlib
/scienlib-1.1.tar.gz/scienlib-1.1/.github/SECURITY.md
SECURITY.md
# Security policy ## Supported Versions | Version | Supported | | ------- | ------------------ | | 5.1.x | :white_check_mark: | | 5.0.x | :x: | | 4.0.x | :white_check_mark: | | < 4.0 | :x: | ## Report a vulnerability In case of error, in the scripts, inform us about the error in: [https://github.com/dylan14567/configserver/blob/master/.github/ISSUE_TEMPLATE/bug_report.md](https://github.com/dylan14567/scienlib/blob/master/.github/ISSUE_TEMPLATE/bug_report.md)
0.561455
0.382257
# Contributing Hello! We are delighted that you want to contribute to the scienlib project. Your help is essential to keep it great. Following these guidelines helps communicate that you are respecting the time of the developers who manage and develop this open source project. In return, they should reciprocate that respect by addressing your issue, evaluating the changes, and helping you finalize your pull requests. # How to report a bug Do you think you found a bug? Check [the list of open issues](https://github.com/dylan14567/scienlib/issues) to see if your bug has already been reported. If not, send a new number. Here are some tips for writing great bug reports: * Describe the specific problem (eg, "The widget does not rotate clockwise" versus "an error appears") * Include steps to reproduce the error, what you expected to happen, and what happened instead * Check that you are using the latest version of the project and its dependencies. * Include what version of the project you are using, as well as any relevant dependencies. * Only includes one error per problem. If you have discovered two errors, present two problems * Even if you don't know how to correct the error, including a failed test can help others locate it. # How to suggest a feature or improvement Here are some general guidelines for proposing changes: * Each pull request must implement a function or bug fix. If you want to add or correct more than one thing, submit more than one pull request. * Do not commit changes to files that are irrelevant to their function or bug fixes. * Please do not increase the version number in your pull request (it will be changed before launch) * Write a good confirmation message At a high level, the process for proposing changes is: 1. Clone the project 2. Create a new branch: ``` git checkout -b my-branch-name ``` 3. Make your change, add tests, and make sure the tests still pass. 4. Submit a pull request. 5. Wait for your pull request to be reviewed and merged. Interested in submitting your first pull request? It is easy! You can learn how in this free series [How to contribute to a code project open on GitHub](https://egghead.io/series/how-to-contribute-to-an-open-source-project-on-github) # Your first contribution [Contribute to open source on GitHub](https://guides.github.com/activities/contributing-to-open-source) [Use pull requests](https://help.github.com/articles/using-pull-requests) [GitHub Help](https://help.github.com)
scienlib
/scienlib-1.1.tar.gz/scienlib-1.1/.github/CONTRIBUTING.md
CONTRIBUTING.md
# Contributing Hello! We are delighted that you want to contribute to the scienlib project. Your help is essential to keep it great. Following these guidelines helps communicate that you are respecting the time of the developers who manage and develop this open source project. In return, they should reciprocate that respect by addressing your issue, evaluating the changes, and helping you finalize your pull requests. # How to report a bug Do you think you found a bug? Check [the list of open issues](https://github.com/dylan14567/scienlib/issues) to see if your bug has already been reported. If not, send a new number. Here are some tips for writing great bug reports: * Describe the specific problem (eg, "The widget does not rotate clockwise" versus "an error appears") * Include steps to reproduce the error, what you expected to happen, and what happened instead * Check that you are using the latest version of the project and its dependencies. * Include what version of the project you are using, as well as any relevant dependencies. * Only includes one error per problem. If you have discovered two errors, present two problems * Even if you don't know how to correct the error, including a failed test can help others locate it. # How to suggest a feature or improvement Here are some general guidelines for proposing changes: * Each pull request must implement a function or bug fix. If you want to add or correct more than one thing, submit more than one pull request. * Do not commit changes to files that are irrelevant to their function or bug fixes. * Please do not increase the version number in your pull request (it will be changed before launch) * Write a good confirmation message At a high level, the process for proposing changes is: 1. Clone the project 2. Create a new branch: ``` git checkout -b my-branch-name ``` 3. Make your change, add tests, and make sure the tests still pass. 4. Submit a pull request. 5. Wait for your pull request to be reviewed and merged. Interested in submitting your first pull request? It is easy! You can learn how in this free series [How to contribute to a code project open on GitHub](https://egghead.io/series/how-to-contribute-to-an-open-source-project-on-github) # Your first contribution [Contribute to open source on GitHub](https://guides.github.com/activities/contributing-to-open-source) [Use pull requests](https://help.github.com/articles/using-pull-requests) [GitHub Help](https://help.github.com)
0.454714
0.520131
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at https://dylan1467.github.io/contact. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity). [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
scienlib
/scienlib-1.1.tar.gz/scienlib-1.1/.github/CODE_OF_CONDUCT.md
CODE_OF_CONDUCT.md
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at https://dylan1467.github.io/contact. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity). [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
0.58439
0.685038
--- name: Bug report about: Create a report to help us improve title: '' labels: '' assignees: '' --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: [e.g. iOS] - Browser [e.g. chrome, safari] - Version [e.g. 22] **Smartphone (please complete the following information):** - Device: [e.g. iPhone6] - OS: [e.g. iOS8.1] - Browser [e.g. stock browser, safari] - Version [e.g. 22] **Additional context** Add any other context about the problem here.
scienlib
/scienlib-1.1.tar.gz/scienlib-1.1/.github/ISSUE_TEMPLATE/bug_report.md
bug_report.md
--- name: Bug report about: Create a report to help us improve title: '' labels: '' assignees: '' --- **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: [e.g. iOS] - Browser [e.g. chrome, safari] - Version [e.g. 22] **Smartphone (please complete the following information):** - Device: [e.g. iPhone6] - OS: [e.g. iOS8.1] - Browser [e.g. stock browser, safari] - Version [e.g. 22] **Additional context** Add any other context about the problem here.
0.688678
0.38168
--- name: Feature request about: Suggest an idea for this project title: '' labels: '' assignees: '' --- **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
scienlib
/scienlib-1.1.tar.gz/scienlib-1.1/.github/ISSUE_TEMPLATE/feature_request.md
feature_request.md
--- name: Feature request about: Suggest an idea for this project title: '' labels: '' assignees: '' --- **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
0.661486
0.369799
# Colormaps in Matplotlib ## Installation ```bash pip install "git+https://github.com/gwerbin/scientific-colourmaps@master#egg_info=scientific-colormaps&subdirectory=python" ``` ## Usage - *module* `scientific_colourmaps` - *function* `load_cmap` - *arg* `cmap_name`: string. Required. - *kwarg* `cmap_path`: string or `os.PathLike`. Optional; default: `cmap_path=CMAP_DEFAULT_PATH` - *return*: instance of `matplotlib.colors.LinearSegmentedColormap`. - *function* `list_cmaps` - *kwarg* `cmap_path`: string or `os.PathLike`. Optional; default: `cmap_path=CMAP_DEFAULT_PATH` - *return* set of strings, containing available cmap names - *variable* `CMAP_DEFAULT_PATH`, instance of `pathlib.Path` - value: `pathlib.Path('./ScientificColourMaps4.zip')` ### Example In the shell: ```bash wget http://www.fabiocrameri.ch/resources/ScientificColourMaps4.zip ``` In Python: ```python import numpy as np import matplotlib.pyplot as plt from scientific_colourmaps import load_cmap # Make some fake data to plot plot_data = np.randn(50, 50) # Plot using the "nuuk" colormap cmap_nuuk = load_cmap('nuuk') plt.imshow(plot_data, cmap=cmap_nuuk) plt.colorbar() plt.show() ```
scientific-colourmaps
/scientific-colourmaps-1.0b0.tar.gz/scientific-colourmaps-1.0b0/README.md
README.md
pip install "git+https://github.com/gwerbin/scientific-colourmaps@master#egg_info=scientific-colormaps&subdirectory=python" wget http://www.fabiocrameri.ch/resources/ScientificColourMaps4.zip import numpy as np import matplotlib.pyplot as plt from scientific_colourmaps import load_cmap # Make some fake data to plot plot_data = np.randn(50, 50) # Plot using the "nuuk" colormap cmap_nuuk = load_cmap('nuuk') plt.imshow(plot_data, cmap=cmap_nuuk) plt.colorbar() plt.show()
0.649356
0.722111
# Plotter A simple-to-use Python package which allows you to plot x,y data using Python. You can select axes ranges, axes titles, figure titles, plotting styles, colours and also change axes type between linear and log plots. To use the package, run the plot.py script using your terminal. You will be prompted to select an Excel file with the relevant data and a GUI will open up where you can select a range of plotting options. You can also download this package from PyPi using the following link: https://pypi.org/project/scientific-data-plotter/
scientific-data-plotter
/scientific-data-plotter-1.0.1.tar.gz/scientific-data-plotter-1.0.1/README.md
README.md
# Plotter A simple-to-use Python package which allows you to plot x,y data using Python. You can select axes ranges, axes titles, figure titles, plotting styles, colours and also change axes type between linear and log plots. To use the package, run the plot.py script using your terminal. You will be prompted to select an Excel file with the relevant data and a GUI will open up where you can select a range of plotting options. You can also download this package from PyPi using the following link: https://pypi.org/project/scientific-data-plotter/
0.768993
0.623606
<h2 align="center"><i>SEM</i>: Scientific Experiment Manager</h2> <p align="center"><i>Streamline IO operations, storage, and retrieval of your scientific results</i></p> <p align="center"> <a href="https://github.com/nickruggeri/scientific-experiment-manager/blob/main/LICENSE"> <img alt="License: MIT" src="https://img.shields.io/github/license/nickruggeri/scientific-experiment-manager"> </a> <a href="https://www.python.org/"> <img alt="Made with Python" src="https://img.shields.io/badge/made%20with-python-1f425f.svg"> </a> <a href="https://github.com/psf/black"> <img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"> </a> </p> SEM helps streamline IO operations and organization of scientific results in Python. \ At its core, SEM is based on [regular expressions](https://docs.python.org/3/library/re.html) and simply creates, parses and manages intricate folder structures containing experimental results. <br/><br/> ## Minimal example Consider the results organized in the `example/example_results` folder. \ These are different directories containing the results of the same experiment, where two parameters are varied: the random `seed` and a threshold value `eps`. Every one of the folders contains some output files from ``` example_results │ └───seed=111 │ └───eps_1.3 │ │ └───... │ └───eps_7.4 │ └───... │ └───seed=222 │ └───... │ └───seed=333 │ └───... │ └───useless_files ``` SEM does not take care of loading and/or saving files. \ Rather, it takes care of the folder structure, leaving the user the freedom to manage the result's format. \ To retrieve the parameters relative to these results, `ResultManager` parses the folders' names and only returns the path relative to those that match. ```python import re from pathlib import Path from sem.manager import ResultManager example_res = Path("./example_results") parsers = [re.compile(r"seed=(?P<seed_value>\d+)"), re.compile(r"eps_(?P<eps>\d+.\d+)")] manager = ResultManager(root_dir=example_res, parsers=parsers) manager.parse_paths() ``` In the case above, the parser for `seed_value` expects a positive integer, specified by the regular expression `"\d+"`, and `eps` a float format. \ The results are stored in `manager.df`, a pandas [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html), which contains the parsed parameter values, as well as the path to the deepest sub-directories ``` __PATH__ seed_value eps 0 example_results/seed=333/eps_1.1 333 1.1 1 example_results/seed=333/eps_0.3 333 0.3 2 example_results/seed=222/eps_7.4 222 7.4 3 example_results/seed=222/eps_2.7 222 2.7 4 example_results/seed=111/eps_1.3 111 1.3 5 example_results/seed=111/eps_7.4 111 7.4 ... ``` Directories whose names don't match the patterns are ignored, e.g. `example_results/useless_files`. \ Notice that, since they are the results of parsing, all the values in the data frame are strings. \ The conversion to a different data type can be performed after parsing: ```python manager.df["seed_value"] = manager.df["seed_value"].astype(int) manager.df["eps"] = manager.df["eps"].astype(float) ``` ### Utilizing the parsed directories Once the directory names have been parsed, the main utility of the manager is to have a coupling between the parameters and the results. \ For example, one can read and insert the computational time of every experiment in the data frame: ```python def read_comp_time(res_dir): with open(res_dir / "computational_time.txt", "r") as file: time = float(file.read()) return time manager.df["time"] = manager.df["__PATH__"].map(read_comp_time) ``` From there, conventional pandas operations can be used. For example, the average computational time for seed `111` is given by ```python df = manager.df times = df["time"].loc[df["seed_value"] == 111] times.mean() ``` ### Loading more complex objects Pandas data frames can contain arbitrary objects. For example, one can create a column of numpy arrays from a model: ```python import numpy as np def load_mat(path): return np.load(path / "result_params.npy") df["mat"] = df["__PATH__"].map(load_mat) ``` <br/><br/> ## Creating default paths Standardizing result structure reduces the amount of code needed for simple IO operations, and eases compatibility across machines, e.g. local vs cloud or cluster results. \ To this end, <i>SEM</i> offers a way to create saving paths which only depend on the parameters specified by the user. \ For example, the paths of a repository with three levels and different parameters, can be created as: ```python root_dir = Path(".") / "tmp" for param1 in [True, False]: for param2 in ["a", "b"]: for param3 in [1, 2, 3]: values = [ {"param1": param1, "param2": param2}, "results_of_my_experiments", {"param3": param3}, ] new_path = ResultManager.create_default_path( root_dir, values, auto_sort=True ) new_path.mkdir(parents=True) print(new_path) ``` which produces ``` tmp/param1=True_param2=a/results_of_my_experiments/param3=1 tmp/param1=True_param2=a/results_of_my_experiments/param3=2 tmp/param1=True_param2=a/results_of_my_experiments/param3=3 tmp/param1=True_param2=b/results_of_my_experiments/param3=1 ... tmp/param1=False_param2=a/results_of_my_experiments/param3=1 ... ``` If desired, the argument `auto_sort` imposes a uniform order at every directory level.\ For example, using `{"param2": param2, "param1": param1}` would produce the same paths a above if `auto_sort=True`. \ Parsing directories with this structure is similarly easy: ```python manager = ResultManager.from_arguments( root_dir, arguments=[ {"param1": "True|False", "param2": "a|b"}, "results_of_my_experiments", {"param3": r"\d+"}, ], auto_sort=True ) manager.parse_paths() ``` which yields ``` __PATH__ param1 param2 param3 0 tmp/param1=False_param2=b/results_of_my_experi... False b 1 1 tmp/param1=False_param2=b/results_of_my_experi... False b 3 2 tmp/param1=False_param2=b/results_of_my_experi... False b 2 3 tmp/param1=True_param2=b/results_of_my_experim... True b 1 ... ``` <br/><br/> ## Initialization Notice that the advantage of using the default directory naming, as opposed to a custom one, is that the `ResultManager` can be initialized as above, by only specifying the arguments in `ResultManager.from_arguments`. \ A more flexible initialization for custom paths, can be performed by giving as input regular expression patterns. For example, an equivalent initialization to that above is given by: ```python parsers = [ re.compile("param1=(?P<param1>True|False)_param2=(?P<param2>a|b)"), re.compile("results_of_my_experiments"), re.compile("param3=(?P<param3>\d+)"), ] manager = ResultManager(root_dir, parsers) manager.parse_paths() ``` <br/><br/> ## Other utilities and tricks ### Filtering results Another useful `ResultManager` method is `ResultManager.filter`. This method filters the <i>rows</i> of the results' data frame. Results can be selected by specifying exact column values or a list of possible values. For example, for a manager whose data frame has columns ``` __PATH__ param1 param2 param3 0 tmp/param1=False_param2=b/results_of_my_experi... False b 1 1 tmp/param1=False_param2=b/results_of_my_experi... False b 3 2 tmp/param1=False_param2=b/results_of_my_experi... False b 2 3 tmp/param1=True_param2=b/results_of_my_experim... True b 1 ... ``` the query ```python manager.filter_results( equal={"param1": True}, contained={"param3": [1, 3]} ) ``` yields a filtered data frame ``` __PATH__ param1 param2 param3 3 tmp/param1=True_param2=b/results_of_my_experim... True b 1 4 tmp/param1=True_param2=b/results_of_my_experim... True b 3 9 tmp/param1=True_param2=a/results_of_my_experim... True a 1 10 tmp/param1=True_param2=a/results_of_my_experim... True a 3 ``` ### Loading fewer results While results can be filtered a posteriori as just explained, one can also load fewer results in the first place. \ This is done by specifying an appropriate regular expression parser in the first place. For example, to select only configurations where `param1` is equal to `True`, one can write ```python parsers = [ re.compile("param1=(?P<param1>True)_param2=(?P<param2>a|b)"), re.compile("results_of_my_experiments"), re.compile("param3=(?P<param3>\d+)"), ] manager = ResultManager(root_dir, parsers) ``` In general, any regular expression with named groups is considered valid, check [the docs](https://docs.python.org/3/library/re.html) for further details. ### Common parsing patterns Some common regular expression patterns are available at `sem.re_patterns`. \ These are strings that can be utilized for initializing parsers ```python from sem.re_patterns import INT_PATTERN parsers = [ re.compile("param1=(?P<param1>True|False)_param2=(?P<param2>a|b)"), re.compile("results_of_my_experiments"), re.compile(f"param3=(?P<param3>{INT_PATTERN})"), ] manager = ResultManager(root_dir, parsers) ``` or `ResultManager` arguments ```python manager = ResultManager.from_arguments( root_dir, arguments=[ {"param1": "True|False", "param2": "a|b"}, "results_of_my_experiments", {"param3": INT_PATTERN}, ], ) ``` ### Common type conversion from string Some common type conversion functions from string are available at `sem.str_to_type`. \ These are useful in combination with the `argparse` package, for command line inputs ```python from argparse import ArgumentParser from sem.str_to_type import bool_type, unit_float_or_positive_integer, none_or_type parser = ArgumentParser() parser.add_argument("--flag", type=bool_type) parser.add_argument("--train_size", type=unit_float_or_positive_integer) parser.add_argument("--K", type=none_or_type(int)) ``` Importantly, `bool_type` correctly converts both string inputs `"0"` or `"1"`, as well as the case-insensitive strings `"true"`, `"True"`, `"False"`, etc. Alternatively, these functions can also be used for type conversion inside pandas data frames ```python manager = ResultManager(root_dir, parsers) manager.parse_paths() manager.df["flag"] = manager.df["flag"].map(bool_type) ``` <br/><br/> ## Installation You can install this package by downloading the GitHub repository and, from inside the downloaded folder, running ``` pip install . ```
scientific-experiment-manager
/scientific-experiment-manager-0.1.0.tar.gz/scientific-experiment-manager-0.1.0/README.md
README.md
example_results │ └───seed=111 │ └───eps_1.3 │ │ └───... │ └───eps_7.4 │ └───... │ └───seed=222 │ └───... │ └───seed=333 │ └───... │ └───useless_files import re from pathlib import Path from sem.manager import ResultManager example_res = Path("./example_results") parsers = [re.compile(r"seed=(?P<seed_value>\d+)"), re.compile(r"eps_(?P<eps>\d+.\d+)")] manager = ResultManager(root_dir=example_res, parsers=parsers) manager.parse_paths() __PATH__ seed_value eps 0 example_results/seed=333/eps_1.1 333 1.1 1 example_results/seed=333/eps_0.3 333 0.3 2 example_results/seed=222/eps_7.4 222 7.4 3 example_results/seed=222/eps_2.7 222 2.7 4 example_results/seed=111/eps_1.3 111 1.3 5 example_results/seed=111/eps_7.4 111 7.4 ... manager.df["seed_value"] = manager.df["seed_value"].astype(int) manager.df["eps"] = manager.df["eps"].astype(float) def read_comp_time(res_dir): with open(res_dir / "computational_time.txt", "r") as file: time = float(file.read()) return time manager.df["time"] = manager.df["__PATH__"].map(read_comp_time) df = manager.df times = df["time"].loc[df["seed_value"] == 111] times.mean() import numpy as np def load_mat(path): return np.load(path / "result_params.npy") df["mat"] = df["__PATH__"].map(load_mat) root_dir = Path(".") / "tmp" for param1 in [True, False]: for param2 in ["a", "b"]: for param3 in [1, 2, 3]: values = [ {"param1": param1, "param2": param2}, "results_of_my_experiments", {"param3": param3}, ] new_path = ResultManager.create_default_path( root_dir, values, auto_sort=True ) new_path.mkdir(parents=True) print(new_path) tmp/param1=True_param2=a/results_of_my_experiments/param3=1 tmp/param1=True_param2=a/results_of_my_experiments/param3=2 tmp/param1=True_param2=a/results_of_my_experiments/param3=3 tmp/param1=True_param2=b/results_of_my_experiments/param3=1 ... tmp/param1=False_param2=a/results_of_my_experiments/param3=1 ... manager = ResultManager.from_arguments( root_dir, arguments=[ {"param1": "True|False", "param2": "a|b"}, "results_of_my_experiments", {"param3": r"\d+"}, ], auto_sort=True ) manager.parse_paths() __PATH__ param1 param2 param3 0 tmp/param1=False_param2=b/results_of_my_experi... False b 1 1 tmp/param1=False_param2=b/results_of_my_experi... False b 3 2 tmp/param1=False_param2=b/results_of_my_experi... False b 2 3 tmp/param1=True_param2=b/results_of_my_experim... True b 1 ... parsers = [ re.compile("param1=(?P<param1>True|False)_param2=(?P<param2>a|b)"), re.compile("results_of_my_experiments"), re.compile("param3=(?P<param3>\d+)"), ] manager = ResultManager(root_dir, parsers) manager.parse_paths() __PATH__ param1 param2 param3 0 tmp/param1=False_param2=b/results_of_my_experi... False b 1 1 tmp/param1=False_param2=b/results_of_my_experi... False b 3 2 tmp/param1=False_param2=b/results_of_my_experi... False b 2 3 tmp/param1=True_param2=b/results_of_my_experim... True b 1 ... manager.filter_results( equal={"param1": True}, contained={"param3": [1, 3]} ) __PATH__ param1 param2 param3 3 tmp/param1=True_param2=b/results_of_my_experim... True b 1 4 tmp/param1=True_param2=b/results_of_my_experim... True b 3 9 tmp/param1=True_param2=a/results_of_my_experim... True a 1 10 tmp/param1=True_param2=a/results_of_my_experim... True a 3 parsers = [ re.compile("param1=(?P<param1>True)_param2=(?P<param2>a|b)"), re.compile("results_of_my_experiments"), re.compile("param3=(?P<param3>\d+)"), ] manager = ResultManager(root_dir, parsers) from sem.re_patterns import INT_PATTERN parsers = [ re.compile("param1=(?P<param1>True|False)_param2=(?P<param2>a|b)"), re.compile("results_of_my_experiments"), re.compile(f"param3=(?P<param3>{INT_PATTERN})"), ] manager = ResultManager(root_dir, parsers) manager = ResultManager.from_arguments( root_dir, arguments=[ {"param1": "True|False", "param2": "a|b"}, "results_of_my_experiments", {"param3": INT_PATTERN}, ], ) from argparse import ArgumentParser from sem.str_to_type import bool_type, unit_float_or_positive_integer, none_or_type parser = ArgumentParser() parser.add_argument("--flag", type=bool_type) parser.add_argument("--train_size", type=unit_float_or_positive_integer) parser.add_argument("--K", type=none_or_type(int)) manager = ResultManager(root_dir, parsers) manager.parse_paths() manager.df["flag"] = manager.df["flag"].map(bool_type) pip install .
0.398758
0.973011
from __future__ import annotations import re from pathlib import Path from typing import Any, Dict, List, Optional import pandas as pd from sem.structure_parsing import recursive_folder_parsing class ResultManager: """A manager for experimental results. It takes care of collecting results organized in different folders. """ def __init__( self, root_dir: Optional[Path], parsers: List[re.Pattern], dataframe: Optional[pd.DataFrame] = None, ): """Initialize the ResultManager. :param root_dir: root directory. :param parsers: list of regular expression patterns. :param dataframe: optional dataframe of already parsed arguments. """ self.root_dir = root_dir self.parsers = parsers self.df = dataframe @classmethod def from_arguments( cls, root_dir: Path, arguments: List[Dict[str, str] | str] | Dict[str, str] | str, auto_sort: bool = False, ) -> ResultManager: """Create an instance of ResultManager from the given arguments. The single can be specified in two ways: - as a single string. In this case there will be no parsing and only folders with the specified name will be parsed - as a {key: value} dictionary. In this case, every key is the name of a parameter, and the value is a string specifying the regular expression for parsing. If a list of arguments is provided, this specifies a hierarchical folder structure, every level has parsing specified by the relative list argument. If auto_sort is set to True, within every dictionary the arguments are sorted in a canonical way. :param root_dir: root directory :param arguments: arguments, see `help(ResultManager)` :param auto_sort: whether to sort the arguments in the canonical order :return: a ArgumentManager instance """ if not isinstance(arguments, list): arguments = [arguments] parsers = [ re.compile(_pattern_from_arguments(arg, auto_sort)) for arg in arguments ] return ResultManager(root_dir, parsers) @classmethod def create_default_path( cls, root_dir: str | Path, values: List[Dict[str, Any] | str] | Dict[str, Any] | str, auto_sort: bool = False, ) -> Path: """Create the default path given :param root_dir: root directory :param values: the values specifying the directory structure. If it is a string, it specifies a simple directory name. If it is a dictionary, it specifies the {parameter name: value} that the directory name describes. If it is a list, it contains the string or dictionaries of values at every sub-level of root:dir. :param auto_sort: whether to sort the values specified as dictionaries according to the canonical order. :return: the path to a sub-folder with specified names. """ root_dir = Path(root_dir) if not isinstance(values, list): values = [values] path = root_dir for arg in values: dir_name = ( arg if isinstance(arg, str) else _dirname_from_values(arg, auto_sort) ) path = path / dir_name return path @property def patterns(self) -> List[str]: return [parser.pattern for parser in self.parsers] def parse_paths(self, **kwargs) -> None: """Recursively parse the root directory according to the specified parsers.""" records = [ {**{"__PATH__": res_path}, **match_group_args} for res_path, match_group_args in recursive_folder_parsing( self.root_dir, self.parsers ) ] self.df = pd.DataFrame.from_records(records, **kwargs) def filter_results( self, equal: Optional[Dict[str, Any]] = None, contained: Optional[Dict[str, Any]] = None, ) -> pd.DataFrame: """Filter the results in the result dataframe by row. The rows whose column values are equal and/or contained in those specified, are returned in the form of a new data frame. Notice that this method is different from pandas DataFrame's filter, which filters along both axes and only by column or row name. :param equal: dictionary of {column name: value} pairs. Rows with column value equal to that specified are returned. :param contained: dictionary of {column name: iterable of values} pairs: Rows with column values contained in those specified are returned. :return: a new data frame according to the specified filters. """ filtered = self.df if equal is not None: for key, val in equal.items(): mask = filtered[key] == val filtered = filtered[mask] if contained is not None: for key, val in contained.items(): mask = filtered[key].isin(val) filtered = filtered[mask] return filtered # Utility functions specifying how the ResultManager builds the patterns. # We use the following name convention for the dictionaries of arguments and values: # - arguments are utilized to build regular expression patterns. They consist of # {parameter name: string}, where the string are compiled to regular expression # patterns # - values are concrete {parameter name: value} pairs. def _pattern_from_arguments(arguments: Dict[str, str] | str, auto_sort=False) -> str: if isinstance(arguments, str): return arguments keys = _sorted_parameters(arguments) if auto_sort else arguments pattern = "_".join(_argument_pattern(key, arguments[key]) for key in keys) return pattern def _dirname_from_values(values: Dict[str, str] | str, auto_sort=False) -> str: if isinstance(values, str): return values keys = _sorted_parameters(values) if auto_sort else values dirname = "_".join(_value_pattern(key, values[key]) for key in keys) return dirname def _sorted_parameters(*params): return sorted(*params) def _argument_pattern(argument: str, expr: str) -> str: pattern = f"{argument}=(?P<{argument}>{expr})" return pattern def _value_pattern(argument: str, expr: Any) -> str: pattern = f"{argument}={expr}" return pattern
scientific-experiment-manager
/scientific-experiment-manager-0.1.0.tar.gz/scientific-experiment-manager-0.1.0/sem/manager.py
manager.py
from __future__ import annotations import re from pathlib import Path from typing import Any, Dict, List, Optional import pandas as pd from sem.structure_parsing import recursive_folder_parsing class ResultManager: """A manager for experimental results. It takes care of collecting results organized in different folders. """ def __init__( self, root_dir: Optional[Path], parsers: List[re.Pattern], dataframe: Optional[pd.DataFrame] = None, ): """Initialize the ResultManager. :param root_dir: root directory. :param parsers: list of regular expression patterns. :param dataframe: optional dataframe of already parsed arguments. """ self.root_dir = root_dir self.parsers = parsers self.df = dataframe @classmethod def from_arguments( cls, root_dir: Path, arguments: List[Dict[str, str] | str] | Dict[str, str] | str, auto_sort: bool = False, ) -> ResultManager: """Create an instance of ResultManager from the given arguments. The single can be specified in two ways: - as a single string. In this case there will be no parsing and only folders with the specified name will be parsed - as a {key: value} dictionary. In this case, every key is the name of a parameter, and the value is a string specifying the regular expression for parsing. If a list of arguments is provided, this specifies a hierarchical folder structure, every level has parsing specified by the relative list argument. If auto_sort is set to True, within every dictionary the arguments are sorted in a canonical way. :param root_dir: root directory :param arguments: arguments, see `help(ResultManager)` :param auto_sort: whether to sort the arguments in the canonical order :return: a ArgumentManager instance """ if not isinstance(arguments, list): arguments = [arguments] parsers = [ re.compile(_pattern_from_arguments(arg, auto_sort)) for arg in arguments ] return ResultManager(root_dir, parsers) @classmethod def create_default_path( cls, root_dir: str | Path, values: List[Dict[str, Any] | str] | Dict[str, Any] | str, auto_sort: bool = False, ) -> Path: """Create the default path given :param root_dir: root directory :param values: the values specifying the directory structure. If it is a string, it specifies a simple directory name. If it is a dictionary, it specifies the {parameter name: value} that the directory name describes. If it is a list, it contains the string or dictionaries of values at every sub-level of root:dir. :param auto_sort: whether to sort the values specified as dictionaries according to the canonical order. :return: the path to a sub-folder with specified names. """ root_dir = Path(root_dir) if not isinstance(values, list): values = [values] path = root_dir for arg in values: dir_name = ( arg if isinstance(arg, str) else _dirname_from_values(arg, auto_sort) ) path = path / dir_name return path @property def patterns(self) -> List[str]: return [parser.pattern for parser in self.parsers] def parse_paths(self, **kwargs) -> None: """Recursively parse the root directory according to the specified parsers.""" records = [ {**{"__PATH__": res_path}, **match_group_args} for res_path, match_group_args in recursive_folder_parsing( self.root_dir, self.parsers ) ] self.df = pd.DataFrame.from_records(records, **kwargs) def filter_results( self, equal: Optional[Dict[str, Any]] = None, contained: Optional[Dict[str, Any]] = None, ) -> pd.DataFrame: """Filter the results in the result dataframe by row. The rows whose column values are equal and/or contained in those specified, are returned in the form of a new data frame. Notice that this method is different from pandas DataFrame's filter, which filters along both axes and only by column or row name. :param equal: dictionary of {column name: value} pairs. Rows with column value equal to that specified are returned. :param contained: dictionary of {column name: iterable of values} pairs: Rows with column values contained in those specified are returned. :return: a new data frame according to the specified filters. """ filtered = self.df if equal is not None: for key, val in equal.items(): mask = filtered[key] == val filtered = filtered[mask] if contained is not None: for key, val in contained.items(): mask = filtered[key].isin(val) filtered = filtered[mask] return filtered # Utility functions specifying how the ResultManager builds the patterns. # We use the following name convention for the dictionaries of arguments and values: # - arguments are utilized to build regular expression patterns. They consist of # {parameter name: string}, where the string are compiled to regular expression # patterns # - values are concrete {parameter name: value} pairs. def _pattern_from_arguments(arguments: Dict[str, str] | str, auto_sort=False) -> str: if isinstance(arguments, str): return arguments keys = _sorted_parameters(arguments) if auto_sort else arguments pattern = "_".join(_argument_pattern(key, arguments[key]) for key in keys) return pattern def _dirname_from_values(values: Dict[str, str] | str, auto_sort=False) -> str: if isinstance(values, str): return values keys = _sorted_parameters(values) if auto_sort else values dirname = "_".join(_value_pattern(key, values[key]) for key in keys) return dirname def _sorted_parameters(*params): return sorted(*params) def _argument_pattern(argument: str, expr: str) -> str: pattern = f"{argument}=(?P<{argument}>{expr})" return pattern def _value_pattern(argument: str, expr: Any) -> str: pattern = f"{argument}={expr}" return pattern
0.942122
0.608216
# Scientific Information Change Lightweight package for measuring the information matching score (IMS) between two scientific sentences. This is a measure of the similarity in the information contained in the _findings_ of two different scientific sentences. Useful for research in science communication for matching similar findings as described between scientific papers, news media, and social media at scale and analyzing these findings. The code and models in this repo come from the following paper: >Dustin Wright*, Jiaxin Pei*, David Jurgens, and Isabelle Augenstein. 2022. Modeling Information Change in Science Communication with Semantically Matched Paraphrases. In Proceedings of EMNLP 2022. Association for Computational Linguistics. Please use the following bibtex when referencing this work: ``` @article{modeling-information-change, title={{Modeling Information Change in Science Communication with Semantically Matched Paraphrases}}, author={Wright, Dustin and Jiaxin, Pei and Jurgens, David and Augenstein, Isabelle}, year={2022}, booktitle = {Proceedings of EMNLP}, publisher = {Association for Computational Linguistics}, year = 2022 } ``` ## Installation Install directly using `pip`: ``` pip install scientific-information-change ``` ### Dependencies ``` python>=3.6.0 torch>=1.10.0 sentence-transformers>=2.2.2 numpy ``` If you wish to use CUDA to accelerate inference, install torch with cuda enabled (see https://pytorch.org/) ## Usage Import the IMS estimator as follows: ``` from scientific_information_change.estimate_similarity import SimilarityEstimator ``` Create the estimator as follows: ``` estimator = SimilarityEstimator() ``` **Note: During your first usage, the package will download a model file automatically, which is about 500MB.** The similarity estimator takes the following arguments: ``` :param model_name_or_path: If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from Huggingface models repository with that name. Defaults to the best model from Wright et al. 2022. :param device: Device (like ‘cuda’ / ‘cpu’) that should be used for computation. If None, checks if a GPU can be used. :param use_auth_token: HuggingFace authentication token to download private models. :param cache_folder: Path to store models ``` If you create the estimator with no arguments, it will default to the best trained model from our EMNLP 2022 paper (`copenlu/spiced` in Huggingface). This is an SBERT model pretrained on a large corpus of >1B sentence pairs and further fine-tuned on SPICED. The model will be run on the best available device (GPU if available) The estimator has two methods for measuring the IMS between sentences. `estimate_ims` takes a list of sentences $a$ of length $N$ and a list of sentences $b$ of length $M$ and returns a numpy array $S$ of size $N \times M$, where $S_{ij}$ is the IMS between $a_{i}$ and $b_{j}$. For example: ``` estimator.estimate_ims( a = [ 'Higher-income professionals had less tolerance for smartphone use in business meetings.', 'Papers with shorter titles get more citations #science #metascience #sciencemetrics' ], b = [ 'We are intrigued by the result that professionals with higher incomes are less accepting of mobile phone use in meetings.', 'Allowing users to retract recently posted comments may help minimize regret.', 'Our analysis suggests that papers with shorter titles do receive greater numbers of citations.' ] ) >>> returns: array([[4.370547 , 1.042849 , 1. ], [1.1089203, 1. , 4.596382 ]], dtype=float32) ``` `estimate_ims_array` takes two lists of sentences of the same length $N$, and returns a list of length $N$ measuring the IMS between corresponding sentences in each list: ``` estimator.estimate_ims_array( a = [ 'Higher-income professionals had less tolerance for smartphone use in business meetings.', 'Papers with shorter titles get more citations #science #metascience #sciencemetrics' ], b = [ 'We are intrigued by the result that professionals with higher incomes are less accepting of mobile phone use in meetings.', 'Our analysis suggests that papers with shorter titles do receive greater numbers of citations.' ] ) >>> returns: [4.370546817779541, 4.596382141113281] ```
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/README.md
README.md
@article{modeling-information-change, title={{Modeling Information Change in Science Communication with Semantically Matched Paraphrases}}, author={Wright, Dustin and Jiaxin, Pei and Jurgens, David and Augenstein, Isabelle}, year={2022}, booktitle = {Proceedings of EMNLP}, publisher = {Association for Computational Linguistics}, year = 2022 } pip install scientific-information-change python>=3.6.0 torch>=1.10.0 sentence-transformers>=2.2.2 numpy from scientific_information_change.estimate_similarity import SimilarityEstimator estimator = SimilarityEstimator() :param model_name_or_path: If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from Huggingface models repository with that name. Defaults to the best model from Wright et al. 2022. :param device: Device (like ‘cuda’ / ‘cpu’) that should be used for computation. If None, checks if a GPU can be used. :param use_auth_token: HuggingFace authentication token to download private models. :param cache_folder: Path to store models estimator.estimate_ims( a = [ 'Higher-income professionals had less tolerance for smartphone use in business meetings.', 'Papers with shorter titles get more citations #science #metascience #sciencemetrics' ], b = [ 'We are intrigued by the result that professionals with higher incomes are less accepting of mobile phone use in meetings.', 'Allowing users to retract recently posted comments may help minimize regret.', 'Our analysis suggests that papers with shorter titles do receive greater numbers of citations.' ] ) >>> returns: array([[4.370547 , 1.042849 , 1. ], [1.1089203, 1. , 4.596382 ]], dtype=float32) estimator.estimate_ims_array( a = [ 'Higher-income professionals had less tolerance for smartphone use in business meetings.', 'Papers with shorter titles get more citations #science #metascience #sciencemetrics' ], b = [ 'We are intrigued by the result that professionals with higher incomes are less accepting of mobile phone use in meetings.', 'Our analysis suggests that papers with shorter titles do receive greater numbers of citations.' ] ) >>> returns: [4.370546817779541, 4.596382141113281]
0.740362
0.988119
import torch import random import numpy as np import argparse from sentence_transformers import SentenceTransformer, util from transformers import DataCollatorWithPadding from collections import defaultdict import json import wandb import ipdb import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm sns.set() from utils.data_processor import clean_tweet def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the data to predict on", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--problem_type", help="The problem type", type=str, choices=['tweets', 'news'], default='tweets') parser.add_argument("--output_file", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=2e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) args = parser.parse_args() seed = args.seed model_name = args.model_name problem_type = args.problem_type num_labels = 1 if problem_type == 'regression' else 2 # Enforce reproducibility # Always first enforce_reproducibility(seed) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") with open(args.data_loc) as f: data = [json.loads(l) for l in f] model = SentenceTransformer(model_name) predictions = [] if problem_type == 'tweets': for row in tqdm(data): tweet_embeddings = model.encode([clean_tweet(t) for t in row['tweets']]) paper_embeddings = model.encode(list(row['paper_sentences'])) # Convert to range [1,5] scores = (util.cos_sim(tweet_embeddings, paper_embeddings).clip(min=0, max=1) * 4) + 1 for s,tweet in zip(scores, row['full_tweets']): tweet['paper_sentence_scores'] = s.tolist() predictions.extend(s.tolist()) elif problem_type == 'news': for row in tqdm(data): news_text = [sent['text'] for url in row['news'] for sent in row['news'][url]] news_embeddings = model.encode(news_text) paper_text = [p['text'] for p in row['paper']] paper_embeddings = model.encode(paper_text) # Convert to range [1,5] scores = (util.cos_sim(news_embeddings, paper_embeddings).clip(min=0, max=1) * 4) + 1 j = 0 for url in row['news']: for sent in row['news'][url]: sent['paper_sentence_scores'] = scores[j].tolist() predictions.extend(scores[j].tolist()) j += 1 # Get the original data and attach the scores with open(args.output_file, 'wt') as f: for d in data: f.write(json.dumps(d) + '\n') fig = plt.figure(figsize=(6,5)) sns.kdeplot(predictions) plt.tight_layout() plt.savefig('data/dev-dist.png')
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/predict_similarity_scoring_unlabelled_sbert.py
predict_similarity_scoring_unlabelled_sbert.py
import torch import random import numpy as np import argparse from sentence_transformers import SentenceTransformer, util from transformers import DataCollatorWithPadding from collections import defaultdict import json import wandb import ipdb import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm sns.set() from utils.data_processor import clean_tweet def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the data to predict on", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--problem_type", help="The problem type", type=str, choices=['tweets', 'news'], default='tweets') parser.add_argument("--output_file", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=2e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) args = parser.parse_args() seed = args.seed model_name = args.model_name problem_type = args.problem_type num_labels = 1 if problem_type == 'regression' else 2 # Enforce reproducibility # Always first enforce_reproducibility(seed) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") with open(args.data_loc) as f: data = [json.loads(l) for l in f] model = SentenceTransformer(model_name) predictions = [] if problem_type == 'tweets': for row in tqdm(data): tweet_embeddings = model.encode([clean_tweet(t) for t in row['tweets']]) paper_embeddings = model.encode(list(row['paper_sentences'])) # Convert to range [1,5] scores = (util.cos_sim(tweet_embeddings, paper_embeddings).clip(min=0, max=1) * 4) + 1 for s,tweet in zip(scores, row['full_tweets']): tweet['paper_sentence_scores'] = s.tolist() predictions.extend(s.tolist()) elif problem_type == 'news': for row in tqdm(data): news_text = [sent['text'] for url in row['news'] for sent in row['news'][url]] news_embeddings = model.encode(news_text) paper_text = [p['text'] for p in row['paper']] paper_embeddings = model.encode(paper_text) # Convert to range [1,5] scores = (util.cos_sim(news_embeddings, paper_embeddings).clip(min=0, max=1) * 4) + 1 j = 0 for url in row['news']: for sent in row['news'][url]: sent['paper_sentence_scores'] = scores[j].tolist() predictions.extend(scores[j].tolist()) j += 1 # Get the original data and attach the scores with open(args.output_file, 'wt') as f: for d in data: f.write(json.dumps(d) + '\n') fig = plt.figure(figsize=(6,5)) sns.kdeplot(predictions) plt.tight_layout() plt.savefig('data/dev-dist.png')
0.682785
0.261312
import torch import random import numpy as np import argparse import pandas as pd from functools import partial from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification, AutoModel from transformers import AutoConfig from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding from collections import defaultdict import json import wandb import ipdb import seaborn as sns import matplotlib.pyplot as plt sns.set() from utils.data_processor import read_unlabelled_tweet_dataset from utils.trainer import CustomTrainer from utils.metrics import compute_f1, acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the data to predict on", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--problem_type", help="The problem type", type=str, choices=['regression', 'single_label_classification'], default='regression') parser.add_argument("--output_file", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=2e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) args = parser.parse_args() seed = args.seed model_name = args.model_name problem_type = args.problem_type num_labels = 1 if problem_type == 'regression' else 2 # Enforce reproducibility # Always first enforce_reproducibility(seed) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") # Create the tokenizer and model tk = AutoTokenizer.from_pretrained(model_name) dataset = read_unlabelled_tweet_dataset(args.data_loc, tk) collator = DataCollatorWithPadding(tk) # Get the F1 metric compute_metric = compute_regression_metrics if problem_type == 'regression' else partial(acc_f1, 'binary') # Create the training arguments training_args = TrainingArguments( per_device_train_batch_size=32, per_device_eval_batch_size=32, learning_rate=args.learning_rate, weight_decay=args.weight_decay, max_grad_norm=None, warmup_steps=args.warmup_steps, num_train_epochs=args.n_epochs, seed=seed, output_dir='./output' ) # Get the dataset config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, problem_type=problem_type) model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config) trainer = Trainer( model=model, args=training_args, data_collator=collator ) pred_output = trainer.predict(dataset) predictions = pred_output.predictions # Group the scores by tweet ID and sentence tweet_id_to_scores = defaultdict(list) for id_,pred in zip(dataset['tweet_id'], predictions): tweet_id_to_scores[id_].append(float(pred)) # Open the original data with open(args.data_loc) as f: data = [json.loads(l) for l in f] for row in data: for tweet in row['full_tweets']: tweet['sentence_scores'] = tweet_id_to_scores[tweet['tweet_id']] # Get the original data and attach the scores with open(args.output_file, 'wt') as f: for d in data: f.write(json.dumps(d) + '\n') sns.kdeplot(predictions.squeeze()) plt.savefig('data/dev-dist.png')
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/predict_similarity_scoring_unlabelled.py
predict_similarity_scoring_unlabelled.py
import torch import random import numpy as np import argparse import pandas as pd from functools import partial from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification, AutoModel from transformers import AutoConfig from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding from collections import defaultdict import json import wandb import ipdb import seaborn as sns import matplotlib.pyplot as plt sns.set() from utils.data_processor import read_unlabelled_tweet_dataset from utils.trainer import CustomTrainer from utils.metrics import compute_f1, acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the data to predict on", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--problem_type", help="The problem type", type=str, choices=['regression', 'single_label_classification'], default='regression') parser.add_argument("--output_file", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=2e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) args = parser.parse_args() seed = args.seed model_name = args.model_name problem_type = args.problem_type num_labels = 1 if problem_type == 'regression' else 2 # Enforce reproducibility # Always first enforce_reproducibility(seed) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") # Create the tokenizer and model tk = AutoTokenizer.from_pretrained(model_name) dataset = read_unlabelled_tweet_dataset(args.data_loc, tk) collator = DataCollatorWithPadding(tk) # Get the F1 metric compute_metric = compute_regression_metrics if problem_type == 'regression' else partial(acc_f1, 'binary') # Create the training arguments training_args = TrainingArguments( per_device_train_batch_size=32, per_device_eval_batch_size=32, learning_rate=args.learning_rate, weight_decay=args.weight_decay, max_grad_norm=None, warmup_steps=args.warmup_steps, num_train_epochs=args.n_epochs, seed=seed, output_dir='./output' ) # Get the dataset config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, problem_type=problem_type) model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config) trainer = Trainer( model=model, args=training_args, data_collator=collator ) pred_output = trainer.predict(dataset) predictions = pred_output.predictions # Group the scores by tweet ID and sentence tweet_id_to_scores = defaultdict(list) for id_,pred in zip(dataset['tweet_id'], predictions): tweet_id_to_scores[id_].append(float(pred)) # Open the original data with open(args.data_loc) as f: data = [json.loads(l) for l in f] for row in data: for tweet in row['full_tweets']: tweet['sentence_scores'] = tweet_id_to_scores[tweet['tweet_id']] # Get the original data and attach the scores with open(args.output_file, 'wt') as f: for d in data: f.write(json.dumps(d) + '\n') sns.kdeplot(predictions.squeeze()) plt.savefig('data/dev-dist.png')
0.785144
0.242295
import torch import random import numpy as np import argparse import json import os from functools import partial from datasets import load_metric from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification, AutoModel from transformers import AutoConfig from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding import wandb import pandas as pd import ipdb from utils.data_processor import read_datasets from utils.trainer import CustomTrainer from utils.metrics import compute_f1, acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--problem_type", help="The problem type", type=str, choices=['regression', 'single_label_classification'], default='regression') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=2e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) parser.add_argument("--train_split", help="Decide which data to train on", type=str, default='all', choices=['all', 'tweets', 'news']) parser.add_argument("--test_split", help="Decide which test split to use", type=str, default='all', choices=['all', 'tweets', 'news']) parser.add_argument("--use_context", help="Flag to switch to using the context", action='store_true') args = parser.parse_args() seed = args.seed model_name = args.model_name problem_type = args.problem_type test_filter = args.test_filter use_context = args.use_context num_labels = 1 if problem_type == 'regression' else 2 train_split = args.train_split test_split = args.test_split # Enforce reproducibility # Always first enforce_reproducibility(seed) config = { 'run_name': args.run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'output_dir': args.output_dir, 'batch_size': args.batch_size, 'learning_rate': args.learning_rate, 'weight_decay': args.weight_decay, 'warmup_steps': args.warmup_steps, 'epochs': args.n_epochs, 'seed': args.seed, 'problem_type': args.problem_type, 'test_filter': args.test_filter, 'use_context': use_context, 'train_split': train_split, 'test_split': test_split } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # Create the tokenizer and model if 'scibert' in model_name or 'citebert' in model_name: tk = AutoTokenizer.from_pretrained(model_name, model_max_length=512) else: tk = AutoTokenizer.from_pretrained(model_name) dataset = read_datasets(args.data_loc, tk, problem_type, test_filter, train_split, test_split, use_context) collator = DataCollatorWithPadding(tk) # Get the F1 metric compute_metric = compute_regression_metrics if problem_type == 'regression' else partial(acc_f1, 'binary') # Create the training arguments training_args = TrainingArguments( output_dir=args.output_dir, do_train=True, do_eval=True, evaluation_strategy='epoch', per_device_train_batch_size=args.batch_size, learning_rate=args.learning_rate, weight_decay=args.weight_decay, max_grad_norm=None, warmup_steps=args.warmup_steps, num_train_epochs=args.n_epochs, logging_dir=args.output_dir, save_strategy='epoch', seed=seed, run_name=args.run_name, load_best_model_at_end=True, report_to=['tensorboard', 'wandb'] ) # Get the dataset config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, problem_type=problem_type) model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config) if problem_type == 'regression': trainer = Trainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['validation'], compute_metrics=compute_metric, data_collator=collator ) else: # Get label weights labels = dataset["train"]['label'] weight = torch.tensor(len(labels) / (2 * np.bincount(labels))) weight = weight.type(torch.FloatTensor) # Create the trainer and train trainer = CustomTrainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['validation'], compute_metrics=compute_metric, data_collator=collator, weight=weight ) train_output = trainer.train() model.save_pretrained(args.output_dir) tk.save_pretrained(args.output_dir) pred_output = trainer.predict(dataset['test']) pred_metrics = pred_output.metrics wandb.log(pred_metrics) if test_split == 'all': # Get tweet performance tweet_data = dataset['test'].filter(lambda example: example['source'] == 'tweets') tweet_metrics = trainer.predict(tweet_data, metric_key_prefix='tweet') pred_metrics.update(tweet_metrics.metrics) # Rank the errors for analysis preds = tweet_metrics.predictions.squeeze() labels = tweet_data['final_score_hard'] AE = np.abs(preds - np.array(labels)) ranking = np.argsort(AE)[::-1] analysis_dframe = [[tweet_data['News Finding'][r], tweet_data['Paper Finding'][r], preds[r], labels[r]] for r in ranking] analysis_dframe = pd.DataFrame(analysis_dframe, columns=['Tweet', 'Paper', 'Pred', 'Label']) analysis_dframe.to_csv(f"{args.metrics_dir}/tweet_errors.csv", index=False) # Get news performance news_data = dataset['test'].filter(lambda example: example['source'] == 'news') news_metrics = trainer.predict(news_data, metric_key_prefix='news') pred_metrics.update(news_metrics.metrics) # Iterate through the categories for cat in categories: curr_dataset = dataset['test'].filter(lambda example: cat in example['instance_id']) # Predict pred_output = trainer.predict(curr_dataset, metric_key_prefix=cat) pred_metrics.update(pred_output.metrics) tweet_curr = curr_dataset.filter(lambda example: example['source'] == 'tweets') pred_output = trainer.predict(tweet_curr, metric_key_prefix=cat + '_tweet') pred_metrics.update(pred_output.metrics) news_curr = curr_dataset.filter(lambda example: example['source'] == 'news') pred_output = trainer.predict(news_curr, metric_key_prefix=cat + '_news') pred_metrics.update(pred_output.metrics) wandb.log(pred_metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(pred_metrics))
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/train_supervised.py
train_supervised.py
import torch import random import numpy as np import argparse import json import os from functools import partial from datasets import load_metric from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification, AutoModel from transformers import AutoConfig from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding import wandb import pandas as pd import ipdb from utils.data_processor import read_datasets from utils.trainer import CustomTrainer from utils.metrics import compute_f1, acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--problem_type", help="The problem type", type=str, choices=['regression', 'single_label_classification'], default='regression') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=2e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) parser.add_argument("--train_split", help="Decide which data to train on", type=str, default='all', choices=['all', 'tweets', 'news']) parser.add_argument("--test_split", help="Decide which test split to use", type=str, default='all', choices=['all', 'tweets', 'news']) parser.add_argument("--use_context", help="Flag to switch to using the context", action='store_true') args = parser.parse_args() seed = args.seed model_name = args.model_name problem_type = args.problem_type test_filter = args.test_filter use_context = args.use_context num_labels = 1 if problem_type == 'regression' else 2 train_split = args.train_split test_split = args.test_split # Enforce reproducibility # Always first enforce_reproducibility(seed) config = { 'run_name': args.run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'output_dir': args.output_dir, 'batch_size': args.batch_size, 'learning_rate': args.learning_rate, 'weight_decay': args.weight_decay, 'warmup_steps': args.warmup_steps, 'epochs': args.n_epochs, 'seed': args.seed, 'problem_type': args.problem_type, 'test_filter': args.test_filter, 'use_context': use_context, 'train_split': train_split, 'test_split': test_split } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # Create the tokenizer and model if 'scibert' in model_name or 'citebert' in model_name: tk = AutoTokenizer.from_pretrained(model_name, model_max_length=512) else: tk = AutoTokenizer.from_pretrained(model_name) dataset = read_datasets(args.data_loc, tk, problem_type, test_filter, train_split, test_split, use_context) collator = DataCollatorWithPadding(tk) # Get the F1 metric compute_metric = compute_regression_metrics if problem_type == 'regression' else partial(acc_f1, 'binary') # Create the training arguments training_args = TrainingArguments( output_dir=args.output_dir, do_train=True, do_eval=True, evaluation_strategy='epoch', per_device_train_batch_size=args.batch_size, learning_rate=args.learning_rate, weight_decay=args.weight_decay, max_grad_norm=None, warmup_steps=args.warmup_steps, num_train_epochs=args.n_epochs, logging_dir=args.output_dir, save_strategy='epoch', seed=seed, run_name=args.run_name, load_best_model_at_end=True, report_to=['tensorboard', 'wandb'] ) # Get the dataset config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, problem_type=problem_type) model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config) if problem_type == 'regression': trainer = Trainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['validation'], compute_metrics=compute_metric, data_collator=collator ) else: # Get label weights labels = dataset["train"]['label'] weight = torch.tensor(len(labels) / (2 * np.bincount(labels))) weight = weight.type(torch.FloatTensor) # Create the trainer and train trainer = CustomTrainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['validation'], compute_metrics=compute_metric, data_collator=collator, weight=weight ) train_output = trainer.train() model.save_pretrained(args.output_dir) tk.save_pretrained(args.output_dir) pred_output = trainer.predict(dataset['test']) pred_metrics = pred_output.metrics wandb.log(pred_metrics) if test_split == 'all': # Get tweet performance tweet_data = dataset['test'].filter(lambda example: example['source'] == 'tweets') tweet_metrics = trainer.predict(tweet_data, metric_key_prefix='tweet') pred_metrics.update(tweet_metrics.metrics) # Rank the errors for analysis preds = tweet_metrics.predictions.squeeze() labels = tweet_data['final_score_hard'] AE = np.abs(preds - np.array(labels)) ranking = np.argsort(AE)[::-1] analysis_dframe = [[tweet_data['News Finding'][r], tweet_data['Paper Finding'][r], preds[r], labels[r]] for r in ranking] analysis_dframe = pd.DataFrame(analysis_dframe, columns=['Tweet', 'Paper', 'Pred', 'Label']) analysis_dframe.to_csv(f"{args.metrics_dir}/tweet_errors.csv", index=False) # Get news performance news_data = dataset['test'].filter(lambda example: example['source'] == 'news') news_metrics = trainer.predict(news_data, metric_key_prefix='news') pred_metrics.update(news_metrics.metrics) # Iterate through the categories for cat in categories: curr_dataset = dataset['test'].filter(lambda example: cat in example['instance_id']) # Predict pred_output = trainer.predict(curr_dataset, metric_key_prefix=cat) pred_metrics.update(pred_output.metrics) tweet_curr = curr_dataset.filter(lambda example: example['source'] == 'tweets') pred_output = trainer.predict(tweet_curr, metric_key_prefix=cat + '_tweet') pred_metrics.update(pred_output.metrics) news_curr = curr_dataset.filter(lambda example: example['source'] == 'news') pred_output = trainer.predict(news_curr, metric_key_prefix=cat + '_news') pred_metrics.update(pred_output.metrics) wandb.log(pred_metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(pred_metrics))
0.662687
0.22378
import argparse import random from functools import partial import wandb import json import os import numpy as np import torch import torch.nn.functional as F from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from transformers import DataCollatorWithPadding from transformers import Trainer from transformers import TrainingArguments from utils.data_processor import read_datasets from utils.metrics import acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='coderpotter/adversarial-paraphrasing-detector') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name test_filter = args.test_filter config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'test_filter': test_filter } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") # Create the tokenizer and model tk = AutoTokenizer.from_pretrained(model_name) # config = AutoConfig.from_pretrained(model_name, num_labels=3) # Initialization warning is apparently normal: https://github.com/huggingface/transformers/issues/5421 model = AutoModelForSequenceClassification.from_pretrained(model_name) dataset = read_datasets(args.data_loc, tk, test_filter=test_filter) labels = np.array(dataset['test']['label']) dataset = dataset.remove_columns("label") collator = DataCollatorWithPadding(tk) # Create the training arguments training_args = TrainingArguments( output_dir=args.output_dir, do_train=True, do_eval=True, evaluation_strategy='epoch', max_grad_norm=None, logging_dir=args.output_dir, save_strategy='epoch', seed=seed, run_name=args.run_name, load_best_model_at_end=True, report_to=['tensorboard', 'wandb'] ) # Get the dataset # Create the trainer and train trainer = Trainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['validation'], data_collator=collator ) pred_output = trainer.predict(dataset['test']) logits_orig = pred_output.predictions # Take a softmax over logits probs = F.softmax(torch.tensor(logits_orig), -1) similarity = probs[:, 1] # Convert to range [1,5] preds = (similarity * 4) + 1 metrics = compute_regression_metrics((preds, labels), prefix='unsupervised_') tweet_selector = [source == 'tweets' for source in dataset['test']['source']] tweet_idx = np.where(tweet_selector) tweet_metrics = compute_regression_metrics((preds[tweet_idx], labels[tweet_idx]), prefix='tweet_') metrics.update(tweet_metrics) news_selector = [source == 'news' for source in dataset['test']['source']] news_idx = np.where(news_selector) news_metrics = compute_regression_metrics((preds[news_idx], labels[news_idx]), prefix='news_') metrics.update(news_metrics) for cat in categories: selector = [cat in instance_id for instance_id in dataset['test']['instance_id']] # Predict idx = np.where(selector) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_') metrics.update(metrics_cat) tweets = list(np.array(selector) & np.array(tweet_selector)) idx = np.where(tweets) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news = list(np.array(selector) & np.array(news_selector)) idx = np.where(news) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/eval_unsupervised_paraphrase_detection.py
eval_unsupervised_paraphrase_detection.py
import argparse import random from functools import partial import wandb import json import os import numpy as np import torch import torch.nn.functional as F from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from transformers import DataCollatorWithPadding from transformers import Trainer from transformers import TrainingArguments from utils.data_processor import read_datasets from utils.metrics import acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='coderpotter/adversarial-paraphrasing-detector') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name test_filter = args.test_filter config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'test_filter': test_filter } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") # Create the tokenizer and model tk = AutoTokenizer.from_pretrained(model_name) # config = AutoConfig.from_pretrained(model_name, num_labels=3) # Initialization warning is apparently normal: https://github.com/huggingface/transformers/issues/5421 model = AutoModelForSequenceClassification.from_pretrained(model_name) dataset = read_datasets(args.data_loc, tk, test_filter=test_filter) labels = np.array(dataset['test']['label']) dataset = dataset.remove_columns("label") collator = DataCollatorWithPadding(tk) # Create the training arguments training_args = TrainingArguments( output_dir=args.output_dir, do_train=True, do_eval=True, evaluation_strategy='epoch', max_grad_norm=None, logging_dir=args.output_dir, save_strategy='epoch', seed=seed, run_name=args.run_name, load_best_model_at_end=True, report_to=['tensorboard', 'wandb'] ) # Get the dataset # Create the trainer and train trainer = Trainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['validation'], data_collator=collator ) pred_output = trainer.predict(dataset['test']) logits_orig = pred_output.predictions # Take a softmax over logits probs = F.softmax(torch.tensor(logits_orig), -1) similarity = probs[:, 1] # Convert to range [1,5] preds = (similarity * 4) + 1 metrics = compute_regression_metrics((preds, labels), prefix='unsupervised_') tweet_selector = [source == 'tweets' for source in dataset['test']['source']] tweet_idx = np.where(tweet_selector) tweet_metrics = compute_regression_metrics((preds[tweet_idx], labels[tweet_idx]), prefix='tweet_') metrics.update(tweet_metrics) news_selector = [source == 'news' for source in dataset['test']['source']] news_idx = np.where(news_selector) news_metrics = compute_regression_metrics((preds[news_idx], labels[news_idx]), prefix='news_') metrics.update(news_metrics) for cat in categories: selector = [cat in instance_id for instance_id in dataset['test']['instance_id']] # Predict idx = np.where(selector) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_') metrics.update(metrics_cat) tweets = list(np.array(selector) & np.array(tweet_selector)) idx = np.where(tweets) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news = list(np.array(selector) & np.array(news_selector)) idx = np.where(news) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
0.625209
0.257479
import torch import random import numpy as np import argparse import wandb import torch.nn.functional as F import torch import json import os from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding from datasets import load_dataset from functools import partial import ipdb from utils.data_processor import read_datasets from utils.metrics import acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name test_filter = args.test_filter config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'test_filter': test_filter } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") # Create the tokenizer and model tk = AutoTokenizer.from_pretrained(model_name) # config = AutoConfig.from_pretrained(model_name, num_labels=3) # Initialization warning is apparently normal: https://github.com/huggingface/transformers/issues/5421 model = AutoModelForSequenceClassification.from_pretrained(model_name) dataset = read_datasets(args.data_loc, tk, test_filter=test_filter) labels = np.array(dataset['test']['label']) dataset = dataset.remove_columns("label") collator = DataCollatorWithPadding(tk) # Create the training arguments training_args = TrainingArguments( output_dir=args.output_dir, evaluation_strategy='epoch', max_grad_norm=None, logging_dir=args.output_dir, save_strategy='epoch', seed=seed, run_name=args.run_name, load_best_model_at_end=True, report_to=['tensorboard', 'wandb'] ) # Get the dataset # Create the trainer and train trainer = Trainer( model=model, args=training_args, data_collator=collator ) pred_output = trainer.predict(dataset['test']) logits_orig = pred_output.predictions # Take a softmax over logits probs = F.softmax(torch.tensor(logits_orig), -1) similarity = probs[:,0] # Convert to range [1,5] preds = (similarity * 4) + 1 metrics = compute_regression_metrics((preds, labels), prefix='unsupervised_') tweet_selector = [source == 'tweets' for source in dataset['test']['source']] tweet_idx = np.where(tweet_selector) tweet_metrics = compute_regression_metrics((preds[tweet_idx], labels[tweet_idx]), prefix='tweet_') metrics.update(tweet_metrics) news_selector = [source == 'news' for source in dataset['test']['source']] news_idx = np.where(news_selector) news_metrics = compute_regression_metrics((preds[news_idx], labels[news_idx]), prefix='news_') metrics.update(news_metrics) for cat in categories: selector = [cat in instance_id for instance_id in dataset['test']['instance_id']] # Predict idx = np.where(selector) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_') metrics.update(metrics_cat) tweets = list(np.array(selector) & np.array(tweet_selector)) idx = np.where(tweets) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news = list(np.array(selector) & np.array(news_selector)) idx = np.where(news) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/eval_unsupervised_nli.py
eval_unsupervised_nli.py
import torch import random import numpy as np import argparse import wandb import torch.nn.functional as F import torch import json import os from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding from datasets import load_dataset from functools import partial import ipdb from utils.data_processor import read_datasets from utils.metrics import acc_f1, compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name test_filter = args.test_filter config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'test_filter': test_filter } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") # Create the tokenizer and model tk = AutoTokenizer.from_pretrained(model_name) # config = AutoConfig.from_pretrained(model_name, num_labels=3) # Initialization warning is apparently normal: https://github.com/huggingface/transformers/issues/5421 model = AutoModelForSequenceClassification.from_pretrained(model_name) dataset = read_datasets(args.data_loc, tk, test_filter=test_filter) labels = np.array(dataset['test']['label']) dataset = dataset.remove_columns("label") collator = DataCollatorWithPadding(tk) # Create the training arguments training_args = TrainingArguments( output_dir=args.output_dir, evaluation_strategy='epoch', max_grad_norm=None, logging_dir=args.output_dir, save_strategy='epoch', seed=seed, run_name=args.run_name, load_best_model_at_end=True, report_to=['tensorboard', 'wandb'] ) # Get the dataset # Create the trainer and train trainer = Trainer( model=model, args=training_args, data_collator=collator ) pred_output = trainer.predict(dataset['test']) logits_orig = pred_output.predictions # Take a softmax over logits probs = F.softmax(torch.tensor(logits_orig), -1) similarity = probs[:,0] # Convert to range [1,5] preds = (similarity * 4) + 1 metrics = compute_regression_metrics((preds, labels), prefix='unsupervised_') tweet_selector = [source == 'tweets' for source in dataset['test']['source']] tweet_idx = np.where(tweet_selector) tweet_metrics = compute_regression_metrics((preds[tweet_idx], labels[tweet_idx]), prefix='tweet_') metrics.update(tweet_metrics) news_selector = [source == 'news' for source in dataset['test']['source']] news_idx = np.where(news_selector) news_metrics = compute_regression_metrics((preds[news_idx], labels[news_idx]), prefix='news_') metrics.update(news_metrics) for cat in categories: selector = [cat in instance_id for instance_id in dataset['test']['instance_id']] # Predict idx = np.where(selector) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_') metrics.update(metrics_cat) tweets = list(np.array(selector) & np.array(tweet_selector)) idx = np.where(tweets) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news = list(np.array(selector) & np.array(news_selector)) idx = np.where(news) metrics_cat = compute_regression_metrics((preds[idx], labels[idx]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
0.646014
0.269736
import torch from torch import nn import random import numpy as np import argparse import json import os import torch.nn.functional as F from sentence_transformers import SentenceTransformer, losses, evaluation, models from torch.utils.data import DataLoader import wandb import pandas as pd import ipdb from utils.data_processor import read_datasets_sentence_transformers, read_dataset_raw, filter_data_sentence_transformers from utils.data_processor import LABEL_COLUMN from utils.metrics import compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=1e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) parser.add_argument("--train_split", help="Decide which data to train on", type=str, default='all', choices=['all', 'tweets', 'news']) parser.add_argument("--test_split", help="Decide which test split to use", type=str, default='all', choices=['all', 'tweets', 'news']) args = parser.parse_args() seed = args.seed model_name = args.model_name train_split = args.train_split test_split = args.test_split # Enforce reproducibility # Always first enforce_reproducibility(seed) config = { 'run_name': args.run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'output_dir': args.output_dir, 'batch_size': args.batch_size, 'learning_rate': args.learning_rate, 'weight_decay': args.weight_decay, 'warmup_steps': args.warmup_steps, 'epochs': args.n_epochs, 'seed': args.seed, 'train_split': train_split, 'test_split': test_split } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # Create the model model = SentenceTransformer(model_name) dataset = read_datasets_sentence_transformers(args.data_loc, args.test_filter, train_split, test_split) train_dataloader = DataLoader(dataset['train'], shuffle=True, batch_size=args.batch_size) dev_data = read_dataset_raw(f"{args.data_loc}/dev.csv") dev_sentences1 = list(dev_data['Paper Finding']) dev_sentences2 = list(dev_data['News Finding']) dev_scores = [(s-1)/4 for s in dev_data[LABEL_COLUMN]] evaluator = evaluation.EmbeddingSimilarityEvaluator(dev_sentences1, dev_sentences2, dev_scores) train_loss = losses.CosineSimilarityLoss(model) # Same loss used to train mpnet model #train_loss = losses.MultipleNegativesRankingLoss(model) model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=args.n_epochs, evaluator=evaluator, evaluation_steps=len(train_dataloader), output_path=args.output_dir, save_best_model=True, optimizer_params={'lr': args.learning_rate} ) # Test test_data = read_dataset_raw(f"{args.data_loc}/test.csv") test_data = filter_data_sentence_transformers(test_data, args.test_filter, test_split) if args.test_filter == 'easy': test_data = test_data[test_data['instance_id'].str.contains('easy')] elif args.test_filter == 'hard': test_data = test_data[~test_data['instance_id'].str.contains('easy')] paper_embeddings = model.encode(list(test_data['Paper Finding'])) news_embeddings = model.encode(list(test_data['News Finding'])) scores = F.cosine_similarity(torch.Tensor(paper_embeddings), torch.Tensor(news_embeddings), dim=1).clip( min=0).squeeze().cpu().numpy() # Convert to range [1,5], assume anything below 0 is 0 preds = (scores * 4) + 1 labels = test_data[LABEL_COLUMN] metrics = compute_regression_metrics((preds, labels), prefix='test_') if test_split == 'all': tweet_selector = test_data['source'] == 'tweets' tweet_metrics = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix='tweet_') metrics.update(tweet_metrics) tweet_data = test_data[tweet_selector] tweets = list(tweet_data['News Finding']) paper = list(tweet_data['Paper Finding']) preds_tweet = preds[tweet_selector] labels_tweet = list(labels[tweet_selector]) AE = np.abs(preds_tweet - np.array(labels_tweet)) assert len(tweets) == len(paper) assert len(tweets) == len(preds_tweet) assert len(tweets) == len(labels_tweet) ranking = np.argsort(AE)[::-1] analysis_dframe = [[tweets[r], paper[r], preds_tweet[r], labels_tweet[r]] for r in ranking] analysis_dframe = pd.DataFrame(analysis_dframe, columns=['Tweet', 'Paper', 'Pred', 'Label']) analysis_dframe.to_csv(f"{args.metrics_dir}/tweet_errors.csv", index=False) news_selector = test_data['source'] == 'news' news_metrics = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix='news_') metrics.update(news_metrics) wandb.log(metrics) for cat in categories: selector = test_data['instance_id'].str.contains(cat) # Predict metrics_cat = compute_regression_metrics((preds[selector], labels[selector]), prefix=cat + '_') metrics.update(metrics_cat) tweet_selector = selector & (test_data['source'] == 'tweets') metrics_cat = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news_selector = selector & (test_data['source'] == 'news') metrics_cat = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/train_supervised_sentence_transformers.py
train_supervised_sentence_transformers.py
import torch from torch import nn import random import numpy as np import argparse import json import os import torch.nn.functional as F from sentence_transformers import SentenceTransformer, losses, evaluation, models from torch.utils.data import DataLoader import wandb import pandas as pd import ipdb from utils.data_processor import read_datasets_sentence_transformers, read_dataset_raw, filter_data_sentence_transformers from utils.data_processor import LABEL_COLUMN from utils.metrics import compute_regression_metrics def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the training data", type=str, required=True) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='allenai/scibert_scivocab_uncased') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--batch_size", help="The batch size", type=int, default=8) parser.add_argument("--learning_rate", help="The learning rate", type=float, default=1e-5) parser.add_argument("--weight_decay", help="Amount of weight decay", type=float, default=0.0) parser.add_argument("--dropout_prob", help="The dropout probability", type=float, default=0.1) parser.add_argument("--n_epochs", help="The number of epochs to run", type=int, default=2) parser.add_argument("--n_gpu", help="The number of gpus to use", type=int, default=1) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--warmup_steps", help="The number of warmup steps", type=int, default=200) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) parser.add_argument("--train_split", help="Decide which data to train on", type=str, default='all', choices=['all', 'tweets', 'news']) parser.add_argument("--test_split", help="Decide which test split to use", type=str, default='all', choices=['all', 'tweets', 'news']) args = parser.parse_args() seed = args.seed model_name = args.model_name train_split = args.train_split test_split = args.test_split # Enforce reproducibility # Always first enforce_reproducibility(seed) config = { 'run_name': args.run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'output_dir': args.output_dir, 'batch_size': args.batch_size, 'learning_rate': args.learning_rate, 'weight_decay': args.weight_decay, 'warmup_steps': args.warmup_steps, 'epochs': args.n_epochs, 'seed': args.seed, 'train_split': train_split, 'test_split': test_split } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] # Create the model model = SentenceTransformer(model_name) dataset = read_datasets_sentence_transformers(args.data_loc, args.test_filter, train_split, test_split) train_dataloader = DataLoader(dataset['train'], shuffle=True, batch_size=args.batch_size) dev_data = read_dataset_raw(f"{args.data_loc}/dev.csv") dev_sentences1 = list(dev_data['Paper Finding']) dev_sentences2 = list(dev_data['News Finding']) dev_scores = [(s-1)/4 for s in dev_data[LABEL_COLUMN]] evaluator = evaluation.EmbeddingSimilarityEvaluator(dev_sentences1, dev_sentences2, dev_scores) train_loss = losses.CosineSimilarityLoss(model) # Same loss used to train mpnet model #train_loss = losses.MultipleNegativesRankingLoss(model) model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=args.n_epochs, evaluator=evaluator, evaluation_steps=len(train_dataloader), output_path=args.output_dir, save_best_model=True, optimizer_params={'lr': args.learning_rate} ) # Test test_data = read_dataset_raw(f"{args.data_loc}/test.csv") test_data = filter_data_sentence_transformers(test_data, args.test_filter, test_split) if args.test_filter == 'easy': test_data = test_data[test_data['instance_id'].str.contains('easy')] elif args.test_filter == 'hard': test_data = test_data[~test_data['instance_id'].str.contains('easy')] paper_embeddings = model.encode(list(test_data['Paper Finding'])) news_embeddings = model.encode(list(test_data['News Finding'])) scores = F.cosine_similarity(torch.Tensor(paper_embeddings), torch.Tensor(news_embeddings), dim=1).clip( min=0).squeeze().cpu().numpy() # Convert to range [1,5], assume anything below 0 is 0 preds = (scores * 4) + 1 labels = test_data[LABEL_COLUMN] metrics = compute_regression_metrics((preds, labels), prefix='test_') if test_split == 'all': tweet_selector = test_data['source'] == 'tweets' tweet_metrics = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix='tweet_') metrics.update(tweet_metrics) tweet_data = test_data[tweet_selector] tweets = list(tweet_data['News Finding']) paper = list(tweet_data['Paper Finding']) preds_tweet = preds[tweet_selector] labels_tweet = list(labels[tweet_selector]) AE = np.abs(preds_tweet - np.array(labels_tweet)) assert len(tweets) == len(paper) assert len(tweets) == len(preds_tweet) assert len(tweets) == len(labels_tweet) ranking = np.argsort(AE)[::-1] analysis_dframe = [[tweets[r], paper[r], preds_tweet[r], labels_tweet[r]] for r in ranking] analysis_dframe = pd.DataFrame(analysis_dframe, columns=['Tweet', 'Paper', 'Pred', 'Label']) analysis_dframe.to_csv(f"{args.metrics_dir}/tweet_errors.csv", index=False) news_selector = test_data['source'] == 'news' news_metrics = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix='news_') metrics.update(news_metrics) wandb.log(metrics) for cat in categories: selector = test_data['instance_id'].str.contains(cat) # Predict metrics_cat = compute_regression_metrics((preds[selector], labels[selector]), prefix=cat + '_') metrics.update(metrics_cat) tweet_selector = selector & (test_data['source'] == 'tweets') metrics_cat = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news_selector = selector & (test_data['source'] == 'news') metrics_cat = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
0.744749
0.218899
import torch import random import numpy as np import argparse from sentence_transformers import SentenceTransformer import wandb import json import os import ipdb import torch.nn.functional as F from utils.data_processor import read_dataset_raw from utils.metrics import compute_regression_metrics from utils.data_processor import LABEL_COLUMN def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the test data", type=str, required=True) parser.add_argument("--eval_data_loc", help="The location of the validation data", type=str, required=True) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='all-MiniLM-L6-v2') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name test_filter = args.test_filter categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'test_filter': args.test_filter } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) # Load the data val_data = read_dataset_raw(args.eval_data_loc) test_data = read_dataset_raw(args.data_loc) if args.test_filter == 'easy': test_data = test_data[test_data['instance_id'].str.contains('easy')] elif args.test_filter == 'hard': test_data = test_data[~test_data['instance_id'].str.contains('easy')] # Load the model model = SentenceTransformer(model_name) paper_embeddings = model.encode(list(test_data['Paper Finding'])) news_embeddings = model.encode(list(test_data['News Finding'])) scores = F.cosine_similarity(torch.Tensor(paper_embeddings), torch.Tensor(news_embeddings), dim=1).clip(min=0).squeeze().cpu().numpy() # Convert to range [1,5], assume anything below 0 is 0 preds = (scores * 4) + 1 labels = test_data[LABEL_COLUMN] metrics = compute_regression_metrics((preds,labels), prefix='unsupervised_') tweet_selector = test_data['source'] == 'tweets' tweet_metrics = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix='tweet_') metrics.update(tweet_metrics) news_selector = test_data['source'] == 'news' news_metrics = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix='news_') metrics.update(news_metrics) for cat in categories: selector = test_data['instance_id'].str.contains(cat) # Predict metrics_cat = compute_regression_metrics((preds[selector], labels[selector]), prefix=cat + '_') metrics.update(metrics_cat) tweet_selector = selector & (test_data['source'] == 'tweets') metrics_cat = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news_selector = selector & (test_data['source'] == 'news') metrics_cat = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/eval_unsupervised_sts.py
eval_unsupervised_sts.py
import torch import random import numpy as np import argparse from sentence_transformers import SentenceTransformer import wandb import json import os import ipdb import torch.nn.functional as F from utils.data_processor import read_dataset_raw from utils.metrics import compute_regression_metrics from utils.data_processor import LABEL_COLUMN def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the test data", type=str, required=True) parser.add_argument("--eval_data_loc", help="The location of the validation data", type=str, required=True) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='all-MiniLM-L6-v2') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--test_filter", help="Decide which test samples to test on", type=str, default='none', choices=['none', 'easy', 'hard']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name test_filter = args.test_filter categories = ['Medicine', 'Biology', 'Psychology', 'Computer_Science'] config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'test_filter': args.test_filter } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) # Load the data val_data = read_dataset_raw(args.eval_data_loc) test_data = read_dataset_raw(args.data_loc) if args.test_filter == 'easy': test_data = test_data[test_data['instance_id'].str.contains('easy')] elif args.test_filter == 'hard': test_data = test_data[~test_data['instance_id'].str.contains('easy')] # Load the model model = SentenceTransformer(model_name) paper_embeddings = model.encode(list(test_data['Paper Finding'])) news_embeddings = model.encode(list(test_data['News Finding'])) scores = F.cosine_similarity(torch.Tensor(paper_embeddings), torch.Tensor(news_embeddings), dim=1).clip(min=0).squeeze().cpu().numpy() # Convert to range [1,5], assume anything below 0 is 0 preds = (scores * 4) + 1 labels = test_data[LABEL_COLUMN] metrics = compute_regression_metrics((preds,labels), prefix='unsupervised_') tweet_selector = test_data['source'] == 'tweets' tweet_metrics = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix='tweet_') metrics.update(tweet_metrics) news_selector = test_data['source'] == 'news' news_metrics = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix='news_') metrics.update(news_metrics) for cat in categories: selector = test_data['instance_id'].str.contains(cat) # Predict metrics_cat = compute_regression_metrics((preds[selector], labels[selector]), prefix=cat + '_') metrics.update(metrics_cat) tweet_selector = selector & (test_data['source'] == 'tweets') metrics_cat = compute_regression_metrics((preds[tweet_selector], labels[tweet_selector]), prefix=cat + '_tweet_') metrics.update(metrics_cat) news_selector = selector & (test_data['source'] == 'news') metrics_cat = compute_regression_metrics((preds[news_selector], labels[news_selector]), prefix=cat + '_news_') metrics.update(metrics_cat) wandb.log(metrics) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
0.671363
0.266406
import torch import random import numpy as np import argparse from sentence_transformers import SentenceTransformer, util from transformers import AutoModelForSequenceClassification from transformers import AutoConfig from transformers import AutoTokenizer from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding import pandas as pd from datasets import Dataset import wandb import json import os from tqdm import tqdm from rank_bm25 import BM25Okapi from datasets import load_dataset import ipdb import torch.nn.functional as F from utils.data_processor import read_covert_dataset, read_covidfact_dataset from utils.metrics import acc_f1, compute_regression_metrics from utils.rank_metrics import mean_average_precision, mean_reciprocal_rank def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) def bm25(claims, evidence): corpus = [e[1].split(" ") for e in evidence] bm25 = BM25Okapi(corpus) ranked_lists = [] for claim,ev_id in tqdm(claims): # Create dataset to pass through model preds = bm25.get_scores(claim.split(" ")) # Get order rank = np.argsort(preds)[::-1] # Get labels labels = np.zeros(len(evidence)) labels[ev_id] = 1 ranked_lists.append(labels[rank]) return {'MAP': mean_average_precision(ranked_lists), 'MRR': mean_reciprocal_rank(ranked_lists)} def sts_model(claims, evidence, args): #Load the model model = SentenceTransformer(args.model_name) evidence_embeddings = model.encode([e[1] for e in evidence]) claim_embeddings = model.encode([c[0] for c in claims]) scores = util.cos_sim(claim_embeddings, evidence_embeddings) ranked_lists = [] for row_score,(claim, ev_id) in zip(scores, claims): # Get order rank = np.argsort(row_score.numpy())[::-1] # Get labels labels = np.zeros(len(evidence)) labels[ev_id] = 1 ranked_lists.append(labels[rank]) return {'MAP': mean_average_precision(ranked_lists), 'MRR': mean_reciprocal_rank(ranked_lists)} def trained_model(claims, evidence, args): tk = AutoTokenizer.from_pretrained(args.base_model, model_max_length=512) config = AutoConfig.from_pretrained(args.model_name, num_labels=1) model = AutoModelForSequenceClassification.from_pretrained(args.model_name, config=config) training_args = TrainingArguments( output_dir=args.output_dir ) collator = DataCollatorWithPadding(tk) trainer = Trainer( model=model, args=training_args, data_collator=collator ) def preprocess(examples): batch = tk(examples['claim'], text_pair=examples['evidence'], truncation=True) return batch # Iterate through each claim and get a ranked list ranked_lists = [] for claim,ev_id in tqdm(claims): # Create dataset to pass through model pairs = [[e[0], claim, e[1]] for e in evidence] dframe = pd.DataFrame(pairs, columns=['id', 'claim', 'evidence']) dataset = Dataset.from_pandas(dframe) dataset = dataset.map(preprocess, batched=True) pred_output = trainer.predict(dataset) preds = pred_output.predictions.squeeze() # Get order rank = np.argsort(preds)[::-1] # Get labels labels = np.zeros(len(evidence)) labels[ev_id] = 1 ranked_lists.append(labels[rank]) return {'MAP': mean_average_precision(ranked_lists), 'MRR': mean_reciprocal_rank(ranked_lists)} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the COVERT data", type=str, required=True) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='copenlu/citebert') parser.add_argument("--base_model", help="The base model", type=str, default='copenlu/citebert') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--dataset", help="The name of the dataset to use", type=str, default='covert', choices=['covert', 'covidfact']) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--eval_type", help="Decide which test samples to test on", type=str, default='ours', choices=['ours', 'sts', 'bm25']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name eval_type = args.eval_type dataset_name = args.dataset config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'eval_type': args.eval_type, 'dataset': dataset_name } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) # Load the data if dataset_name == 'covert': claim_label,evidence = read_covert_dataset(args.data_loc) elif dataset_name == 'covidfact': claim_label, evidence = read_covidfact_dataset(args.data_loc) if eval_type == 'ours': metrics = trained_model(claim_label, evidence, args) elif eval_type == 'bm25': metrics = bm25(claim_label, evidence) elif eval_type == 'sts': metrics = sts_model(claim_label, evidence, args) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/eval_evidence_retrieval.py
eval_evidence_retrieval.py
import torch import random import numpy as np import argparse from sentence_transformers import SentenceTransformer, util from transformers import AutoModelForSequenceClassification from transformers import AutoConfig from transformers import AutoTokenizer from transformers import Trainer from transformers import TrainingArguments from transformers import DataCollatorWithPadding import pandas as pd from datasets import Dataset import wandb import json import os from tqdm import tqdm from rank_bm25 import BM25Okapi from datasets import load_dataset import ipdb import torch.nn.functional as F from utils.data_processor import read_covert_dataset, read_covidfact_dataset from utils.metrics import acc_f1, compute_regression_metrics from utils.rank_metrics import mean_average_precision, mean_reciprocal_rank def enforce_reproducibility(seed=1000): # Sets seed manually for both CPU and CUDA torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For atomic operations there is currently # no simple way to enforce determinism, as # the order of parallel operations is not known. # CUDNN torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # System based random.seed(seed) np.random.seed(seed) def bm25(claims, evidence): corpus = [e[1].split(" ") for e in evidence] bm25 = BM25Okapi(corpus) ranked_lists = [] for claim,ev_id in tqdm(claims): # Create dataset to pass through model preds = bm25.get_scores(claim.split(" ")) # Get order rank = np.argsort(preds)[::-1] # Get labels labels = np.zeros(len(evidence)) labels[ev_id] = 1 ranked_lists.append(labels[rank]) return {'MAP': mean_average_precision(ranked_lists), 'MRR': mean_reciprocal_rank(ranked_lists)} def sts_model(claims, evidence, args): #Load the model model = SentenceTransformer(args.model_name) evidence_embeddings = model.encode([e[1] for e in evidence]) claim_embeddings = model.encode([c[0] for c in claims]) scores = util.cos_sim(claim_embeddings, evidence_embeddings) ranked_lists = [] for row_score,(claim, ev_id) in zip(scores, claims): # Get order rank = np.argsort(row_score.numpy())[::-1] # Get labels labels = np.zeros(len(evidence)) labels[ev_id] = 1 ranked_lists.append(labels[rank]) return {'MAP': mean_average_precision(ranked_lists), 'MRR': mean_reciprocal_rank(ranked_lists)} def trained_model(claims, evidence, args): tk = AutoTokenizer.from_pretrained(args.base_model, model_max_length=512) config = AutoConfig.from_pretrained(args.model_name, num_labels=1) model = AutoModelForSequenceClassification.from_pretrained(args.model_name, config=config) training_args = TrainingArguments( output_dir=args.output_dir ) collator = DataCollatorWithPadding(tk) trainer = Trainer( model=model, args=training_args, data_collator=collator ) def preprocess(examples): batch = tk(examples['claim'], text_pair=examples['evidence'], truncation=True) return batch # Iterate through each claim and get a ranked list ranked_lists = [] for claim,ev_id in tqdm(claims): # Create dataset to pass through model pairs = [[e[0], claim, e[1]] for e in evidence] dframe = pd.DataFrame(pairs, columns=['id', 'claim', 'evidence']) dataset = Dataset.from_pandas(dframe) dataset = dataset.map(preprocess, batched=True) pred_output = trainer.predict(dataset) preds = pred_output.predictions.squeeze() # Get order rank = np.argsort(preds)[::-1] # Get labels labels = np.zeros(len(evidence)) labels[ev_id] = 1 ranked_lists.append(labels[rank]) return {'MAP': mean_average_precision(ranked_lists), 'MRR': mean_reciprocal_rank(ranked_lists)} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_loc", help="The location of the COVERT data", type=str, required=True) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--model_name", help="The name of the model to train. Can be a directory for a local model", type=str, default='copenlu/citebert') parser.add_argument("--base_model", help="The base model", type=str, default='copenlu/citebert') parser.add_argument("--output_dir", help="Top level directory to save the models", required=True, type=str) parser.add_argument("--dataset", help="The name of the dataset to use", type=str, default='covert', choices=['covert', 'covidfact']) parser.add_argument("--run_name", help="A name for this run", required=True, type=str) parser.add_argument("--tags", help="Tags to pass to wandb", required=False, type=str, default=[], nargs='+') parser.add_argument("--metrics_dir", help="Directory to store metrics for making latex tables", required=True, type=str) parser.add_argument("--eval_type", help="Decide which test samples to test on", type=str, default='ours', choices=['ours', 'sts', 'bm25']) args = parser.parse_args() seed = args.seed model_name = args.model_name run_name = args.run_name eval_type = args.eval_type dataset_name = args.dataset config = { 'run_name': run_name, 'seed': seed, 'model_name': model_name, 'output_dir': args.output_dir, 'tags': args.tags, 'eval_type': args.eval_type, 'dataset': dataset_name } run = wandb.init( name=args.run_name, config=config, reinit=True, tags=args.tags ) # Enforce reproducibility # Always first enforce_reproducibility(seed) # Load the data if dataset_name == 'covert': claim_label,evidence = read_covert_dataset(args.data_loc) elif dataset_name == 'covidfact': claim_label, evidence = read_covidfact_dataset(args.data_loc) if eval_type == 'ours': metrics = trained_model(claim_label, evidence, args) elif eval_type == 'bm25': metrics = bm25(claim_label, evidence) elif eval_type == 'sts': metrics = sts_model(claim_label, evidence, args) wandb.log(metrics) if not os.path.exists(f"{args.metrics_dir}"): os.makedirs(f"{args.metrics_dir}") with open(f"{args.metrics_dir}/{seed}.json", 'wt') as f: f.write(json.dumps(metrics))
0.700588
0.269416
import ipdb import numpy as np from datasets import load_dataset from datasets import Dataset from functools import partial import pandas as pd import json from sentence_transformers import InputExample import re LABEL_COLUMN = 'final_score_hard' def clean_tweet(text): no_html = re.sub(r'http\S+', '', text) return re.sub(r'@([A-Za-z]+[A-Za-z0-9-_]+)', '@username', no_html) def prepare_context_sample(text, context): text_loc = context.find(text) text_end = text_loc + len(text) return f"{context[:text_loc]}{{{{{text}}}}}{context[text_end:]}" def preprocess_matching_data(tk, type, use_context, examples): if use_context: paper = [prepare_context_sample(f,c) for f,c in zip(examples['Paper Finding'], examples['Paper Context'])] news = [prepare_context_sample(n,c) for n,c in zip(examples['News Finding'], examples['News Context'])] batch = tk(paper, text_pair=news, truncation=True) else: batch = tk(examples['Paper Finding'], text_pair=examples['News Finding'], truncation=True) if LABEL_COLUMN in examples or 'binary_label' in examples: if type == 'regression': batch['label'] = [float(l) for l in examples[LABEL_COLUMN]] else: batch['label'] = [int(l) for l in examples['binary_label']] return batch def filter_data(data, filter, split): if filter == 'easy': data = data.filter(lambda example: 'easy' in example['instance_id']) elif filter == 'hard': data = data.filter(lambda example: 'easy' not in example['instance_id']) # TODO: See what the actual fields/names are if split == 'all': return data elif split == 'tweets': return data.filter(lambda example: example['source'] == 'tweets') elif split == 'news': return data.filter(lambda example: example['source'] == 'news') def read_datasets(data_loc, tokenizer, type='regression', test_filter='none', train_split='all', test_split='all', use_context=False): # Something like this dataset = load_dataset('csv', data_files={'train': f"{data_loc}/train.csv", 'validation': f"{data_loc}/dev.csv", 'test': f"{data_loc}/test.csv"}) dataset['train'] = filter_data(dataset['train'], 'none', train_split) dataset['validation'] = filter_data(dataset['validation'], test_filter, test_split) dataset['test'] = filter_data(dataset['test'], test_filter, test_split) dataset.cleanup_cache_files() dataset = dataset.map(partial(preprocess_matching_data, tokenizer, type, use_context), batched=True) return dataset def read_dataset(data_loc, tokenizer, type='regression'): # Something like this dataset = load_dataset('csv', data_files={'data': f"{data_loc}"}) dataset.cleanup_cache_files() dataset = dataset.map(partial(preprocess_matching_data, tokenizer, type, False), batched=True, remove_columns=dataset['train'].column_names) return dataset def preprocess_matching_data_domains(tk, examples): selector = np.array(examples[LABEL_COLUMN]) > 3 batch = tk(list(np.array(examples['Paper Finding'])[selector]) + list(np.array(examples['News Finding'])[selector]), truncation=True) batch['label'] = [0] * sum(selector) + [1] * sum(selector) return batch def read_datasets_domain(data_loc, tokenizer): # Something like this dataset = load_dataset('csv', data_files={'train': f"{data_loc}/train.csv", 'validation': f"{data_loc}/dev.csv", 'test': f"{data_loc}/test.csv"}) dataset.cleanup_cache_files() dataset = dataset.map(partial(preprocess_matching_data_domains, tokenizer), batched=True, remove_columns=dataset['train'].column_names) return dataset def read_dataset_raw(data_loc): return pd.read_csv(data_loc).fillna('') def read_unlabelled_tweet_dataset(data_loc, tokenizer): with open(data_loc) as f: data = [json.loads(l) for l in f] dframe = [] for row in data: for tweet in row['full_tweets']: for sent in row['paper_sentences']: dframe.append([row['doi'], tweet['tweet_id'], clean_tweet(json.loads(tweet['tweet'])['text']), sent]) dframe = pd.DataFrame(dframe, columns=['doi', 'tweet_id', 'News Finding', 'Paper Finding']) dataset = Dataset.from_pandas(dframe) dataset = dataset.map(partial(preprocess_matching_data, tokenizer, type, False), batched=True) return dataset def filter_data_sentence_transformers(data, filter, split): if filter == 'easy': data = data[data['instance_id'].str.contains('easy')] elif filter == 'hard': data = data[~data['instance_id'].str.contains('easy')] # TODO: See what the actual fields/names are if split == 'all': return data elif split == 'tweets': return data[data['source'] == 'tweets'] elif split == 'news': return data[data['source'] == 'news'] def read_datasets_sentence_transformers(data_loc, test_filter='none', train_split='all', test_split='all'): # Something like this dataset = {} for split in ['train', 'dev', 'test']: data = read_dataset_raw(f"{data_loc}/{split}.csv") if split == 'train': data = filter_data_sentence_transformers(data, 'none', train_split) else: data = filter_data_sentence_transformers(data, test_filter, test_split) samples = [] for i,row in data.iterrows(): samples.append(InputExample(texts=[row['Paper Finding'], row['News Finding']], label=(row[LABEL_COLUMN] - 1) / 4)) # Convert score to [0,1] name = split if split != 'dev' else 'validation' dataset[name] = samples return dataset def read_covert_dataset(data_loc): with open(data_loc) as f: all_data = [json.loads(l) for l in f] # Collect all of the evidence and use that as the corpus id_ = 0 claim_labels = [] evidence = [] # Because there are repeats ev_to_id = {} for row in all_data: claim = clean_tweet(row['claim']) labs_curr = [] for ev in row['evidence']: if ev[0] != 'NOT ENOUGH INFO' and isinstance(ev[2], str): if ev[2] in ev_to_id: labs_curr.append(ev_to_id[ev[2]]) else: labs_curr.append(id_) evidence.append([id_, ev[2]]) ev_to_id[ev[2]] = id_ id_ += 1 claim_labels.append([claim, labs_curr]) print(len(evidence)) return claim_labels,evidence def read_covidfact_dataset(data_loc): with open(data_loc) as f: all_data = [json.loads(l) for l in f] # Collect all of the evidence and use that as the corpus id_ = 0 claim_labels = [] evidence = [] ev_to_id = {} for row in all_data: claim = row['claim'] labs_curr = [] for ev in row['evidence']: if ev in ev_to_id: labs_curr.append(ev_to_id[ev]) else: labs_curr.append(id_) evidence.append([id_, ev]) ev_to_id[ev] = id_ id_ += 1 claim_labels.append([claim, labs_curr]) print(len(evidence)) return claim_labels,evidence
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/utils/data_processor.py
data_processor.py
import ipdb import numpy as np from datasets import load_dataset from datasets import Dataset from functools import partial import pandas as pd import json from sentence_transformers import InputExample import re LABEL_COLUMN = 'final_score_hard' def clean_tweet(text): no_html = re.sub(r'http\S+', '', text) return re.sub(r'@([A-Za-z]+[A-Za-z0-9-_]+)', '@username', no_html) def prepare_context_sample(text, context): text_loc = context.find(text) text_end = text_loc + len(text) return f"{context[:text_loc]}{{{{{text}}}}}{context[text_end:]}" def preprocess_matching_data(tk, type, use_context, examples): if use_context: paper = [prepare_context_sample(f,c) for f,c in zip(examples['Paper Finding'], examples['Paper Context'])] news = [prepare_context_sample(n,c) for n,c in zip(examples['News Finding'], examples['News Context'])] batch = tk(paper, text_pair=news, truncation=True) else: batch = tk(examples['Paper Finding'], text_pair=examples['News Finding'], truncation=True) if LABEL_COLUMN in examples or 'binary_label' in examples: if type == 'regression': batch['label'] = [float(l) for l in examples[LABEL_COLUMN]] else: batch['label'] = [int(l) for l in examples['binary_label']] return batch def filter_data(data, filter, split): if filter == 'easy': data = data.filter(lambda example: 'easy' in example['instance_id']) elif filter == 'hard': data = data.filter(lambda example: 'easy' not in example['instance_id']) # TODO: See what the actual fields/names are if split == 'all': return data elif split == 'tweets': return data.filter(lambda example: example['source'] == 'tweets') elif split == 'news': return data.filter(lambda example: example['source'] == 'news') def read_datasets(data_loc, tokenizer, type='regression', test_filter='none', train_split='all', test_split='all', use_context=False): # Something like this dataset = load_dataset('csv', data_files={'train': f"{data_loc}/train.csv", 'validation': f"{data_loc}/dev.csv", 'test': f"{data_loc}/test.csv"}) dataset['train'] = filter_data(dataset['train'], 'none', train_split) dataset['validation'] = filter_data(dataset['validation'], test_filter, test_split) dataset['test'] = filter_data(dataset['test'], test_filter, test_split) dataset.cleanup_cache_files() dataset = dataset.map(partial(preprocess_matching_data, tokenizer, type, use_context), batched=True) return dataset def read_dataset(data_loc, tokenizer, type='regression'): # Something like this dataset = load_dataset('csv', data_files={'data': f"{data_loc}"}) dataset.cleanup_cache_files() dataset = dataset.map(partial(preprocess_matching_data, tokenizer, type, False), batched=True, remove_columns=dataset['train'].column_names) return dataset def preprocess_matching_data_domains(tk, examples): selector = np.array(examples[LABEL_COLUMN]) > 3 batch = tk(list(np.array(examples['Paper Finding'])[selector]) + list(np.array(examples['News Finding'])[selector]), truncation=True) batch['label'] = [0] * sum(selector) + [1] * sum(selector) return batch def read_datasets_domain(data_loc, tokenizer): # Something like this dataset = load_dataset('csv', data_files={'train': f"{data_loc}/train.csv", 'validation': f"{data_loc}/dev.csv", 'test': f"{data_loc}/test.csv"}) dataset.cleanup_cache_files() dataset = dataset.map(partial(preprocess_matching_data_domains, tokenizer), batched=True, remove_columns=dataset['train'].column_names) return dataset def read_dataset_raw(data_loc): return pd.read_csv(data_loc).fillna('') def read_unlabelled_tweet_dataset(data_loc, tokenizer): with open(data_loc) as f: data = [json.loads(l) for l in f] dframe = [] for row in data: for tweet in row['full_tweets']: for sent in row['paper_sentences']: dframe.append([row['doi'], tweet['tweet_id'], clean_tweet(json.loads(tweet['tweet'])['text']), sent]) dframe = pd.DataFrame(dframe, columns=['doi', 'tweet_id', 'News Finding', 'Paper Finding']) dataset = Dataset.from_pandas(dframe) dataset = dataset.map(partial(preprocess_matching_data, tokenizer, type, False), batched=True) return dataset def filter_data_sentence_transformers(data, filter, split): if filter == 'easy': data = data[data['instance_id'].str.contains('easy')] elif filter == 'hard': data = data[~data['instance_id'].str.contains('easy')] # TODO: See what the actual fields/names are if split == 'all': return data elif split == 'tweets': return data[data['source'] == 'tweets'] elif split == 'news': return data[data['source'] == 'news'] def read_datasets_sentence_transformers(data_loc, test_filter='none', train_split='all', test_split='all'): # Something like this dataset = {} for split in ['train', 'dev', 'test']: data = read_dataset_raw(f"{data_loc}/{split}.csv") if split == 'train': data = filter_data_sentence_transformers(data, 'none', train_split) else: data = filter_data_sentence_transformers(data, test_filter, test_split) samples = [] for i,row in data.iterrows(): samples.append(InputExample(texts=[row['Paper Finding'], row['News Finding']], label=(row[LABEL_COLUMN] - 1) / 4)) # Convert score to [0,1] name = split if split != 'dev' else 'validation' dataset[name] = samples return dataset def read_covert_dataset(data_loc): with open(data_loc) as f: all_data = [json.loads(l) for l in f] # Collect all of the evidence and use that as the corpus id_ = 0 claim_labels = [] evidence = [] # Because there are repeats ev_to_id = {} for row in all_data: claim = clean_tweet(row['claim']) labs_curr = [] for ev in row['evidence']: if ev[0] != 'NOT ENOUGH INFO' and isinstance(ev[2], str): if ev[2] in ev_to_id: labs_curr.append(ev_to_id[ev[2]]) else: labs_curr.append(id_) evidence.append([id_, ev[2]]) ev_to_id[ev[2]] = id_ id_ += 1 claim_labels.append([claim, labs_curr]) print(len(evidence)) return claim_labels,evidence def read_covidfact_dataset(data_loc): with open(data_loc) as f: all_data = [json.loads(l) for l in f] # Collect all of the evidence and use that as the corpus id_ = 0 claim_labels = [] evidence = [] ev_to_id = {} for row in all_data: claim = row['claim'] labs_curr = [] for ev in row['evidence']: if ev in ev_to_id: labs_curr.append(ev_to_id[ev]) else: labs_curr.append(id_) evidence.append([id_, ev]) ev_to_id[ev] = id_ id_ += 1 claim_labels.append([claim, labs_curr]) print(len(evidence)) return claim_labels,evidence
0.275422
0.349838
import numpy as np from sklearn.metrics import precision_recall_fscore_support from typing import List, AnyStr, Tuple, Dict from sklearn.metrics import mean_squared_error from scipy.stats import pearsonr, spearmanr import ipdb def accuracy(preds: np.ndarray, labels: np.ndarray) -> float: return np.sum(preds == labels).astype(np.float32) / float(labels.shape[0]) def acc_f1(averaging, eval_pred) -> Dict: logits, labels = eval_pred if len(logits.shape) > 1: preds = np.argmax(logits, axis=-1) else: preds = logits acc = accuracy(preds, labels) P, R, F1, _ = precision_recall_fscore_support(labels, preds, average=averaging) return {'accuracy': acc, 'precision': P, 'recall': R, 'f1': F1} def compute_regression_metrics(eval_pred, clip_value=(1.0,5.0), prefix=''): predictions, labels = eval_pred predictions = np.clip(predictions, clip_value[0], clip_value[1]) mse = mean_squared_error(labels, predictions) if len(predictions.shape) > 1: predictions = predictions[:,0] rho = pearsonr(predictions, labels.squeeze()) psi = spearmanr(predictions, labels.squeeze()) return {f"{prefix}mse": mse, f'{prefix}rho': rho[0], f'{prefix}rho-p': rho[1], f'{prefix}psi': psi[0], f'{prefix}psi-p': psi[1]} def compute_f1(f1_metric, average, eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return f1_metric.compute(predictions=predictions, references=labels, average=average) def compute_rouge(tokenizer, metric, eval_preds): preds, labels = eval_preds if isinstance(preds, tuple): preds = preds[0] preds = np.where(preds != -100, preds, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds = [pred.strip() for pred in decoded_preds] decoded_labels = [lab.strip() for lab in decoded_labels] result = metric.compute(predictions=decoded_preds, references=decoded_labels) #result = {"rouge": result["score"]} result = { 'rouge1_low_p': result['rouge1'].low.precision, 'rouge1_low_r': result['rouge1'].low.recall, 'rouge1_low_fmeasure': result['rouge1'].low.fmeasure, 'rouge1_mid_p': result['rouge1'].mid.precision, 'rouge1_mid_r': result['rouge1'].mid.recall, 'rouge1_mid_fmeasure': result['rouge1'].mid.fmeasure, 'rouge1_high_p': result['rouge1'].high.precision, 'rouge1_high_r': result['rouge1'].high.recall, 'rouge1_high_fmeasure': result['rouge1'].high.fmeasure, 'rouge2_low_p': result['rouge2'].low.precision, 'rouge2_low_r': result['rouge2'].low.recall, 'rouge2_low_fmeasure': result['rouge2'].low.fmeasure, 'rouge2_mid_p': result['rouge2'].mid.precision, 'rouge2_mid_r': result['rouge2'].mid.recall, 'rouge2_mid_fmeasure': result['rouge2'].mid.fmeasure, 'rouge2_high_p': result['rouge2'].high.precision, 'rouge2_high_r': result['rouge2'].high.recall, 'rouge2_high_fmeasure': result['rouge2'].high.fmeasure, 'rougeL_low_p': result['rougeL'].low.precision, 'rougeL_low_r': result['rougeL'].low.recall, 'rougeL_low_fmeasure': result['rougeL'].low.fmeasure, 'rougeL_mid_p': result['rougeL'].mid.precision, 'rougeL_mid_r': result['rougeL'].mid.recall, 'rougeL_mid_fmeasure': result['rougeL'].mid.fmeasure, 'rougeL_high_p': result['rougeL'].high.precision, 'rougeL_high_r': result['rougeL'].high.recall, 'rougeL_high_fmeasure': result['rougeL'].high.fmeasure, 'rougeLsum_low_p': result['rougeLsum'].low.precision, 'rougeLsum_low_r': result['rougeLsum'].low.recall, 'rougeLsum_low_fmeasure': result['rougeLsum'].low.fmeasure, 'rougeLsum_mid_p': result['rougeLsum'].mid.precision, 'rougeLsum_mid_r': result['rougeLsum'].mid.recall, 'rougeLsum_mid_fmeasure': result['rougeLsum'].mid.fmeasure, 'rougeLsum_high_p': result['rougeLsum'].high.precision, 'rougeLsum_high_r': result['rougeLsum'].high.recall, 'rougeLsum_high_fmeasure': result['rougeLsum'].high.fmeasure, } #prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] #result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 6) for k, v in result.items()} return result
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/utils/metrics.py
metrics.py
import numpy as np from sklearn.metrics import precision_recall_fscore_support from typing import List, AnyStr, Tuple, Dict from sklearn.metrics import mean_squared_error from scipy.stats import pearsonr, spearmanr import ipdb def accuracy(preds: np.ndarray, labels: np.ndarray) -> float: return np.sum(preds == labels).astype(np.float32) / float(labels.shape[0]) def acc_f1(averaging, eval_pred) -> Dict: logits, labels = eval_pred if len(logits.shape) > 1: preds = np.argmax(logits, axis=-1) else: preds = logits acc = accuracy(preds, labels) P, R, F1, _ = precision_recall_fscore_support(labels, preds, average=averaging) return {'accuracy': acc, 'precision': P, 'recall': R, 'f1': F1} def compute_regression_metrics(eval_pred, clip_value=(1.0,5.0), prefix=''): predictions, labels = eval_pred predictions = np.clip(predictions, clip_value[0], clip_value[1]) mse = mean_squared_error(labels, predictions) if len(predictions.shape) > 1: predictions = predictions[:,0] rho = pearsonr(predictions, labels.squeeze()) psi = spearmanr(predictions, labels.squeeze()) return {f"{prefix}mse": mse, f'{prefix}rho': rho[0], f'{prefix}rho-p': rho[1], f'{prefix}psi': psi[0], f'{prefix}psi-p': psi[1]} def compute_f1(f1_metric, average, eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return f1_metric.compute(predictions=predictions, references=labels, average=average) def compute_rouge(tokenizer, metric, eval_preds): preds, labels = eval_preds if isinstance(preds, tuple): preds = preds[0] preds = np.where(preds != -100, preds, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds = [pred.strip() for pred in decoded_preds] decoded_labels = [lab.strip() for lab in decoded_labels] result = metric.compute(predictions=decoded_preds, references=decoded_labels) #result = {"rouge": result["score"]} result = { 'rouge1_low_p': result['rouge1'].low.precision, 'rouge1_low_r': result['rouge1'].low.recall, 'rouge1_low_fmeasure': result['rouge1'].low.fmeasure, 'rouge1_mid_p': result['rouge1'].mid.precision, 'rouge1_mid_r': result['rouge1'].mid.recall, 'rouge1_mid_fmeasure': result['rouge1'].mid.fmeasure, 'rouge1_high_p': result['rouge1'].high.precision, 'rouge1_high_r': result['rouge1'].high.recall, 'rouge1_high_fmeasure': result['rouge1'].high.fmeasure, 'rouge2_low_p': result['rouge2'].low.precision, 'rouge2_low_r': result['rouge2'].low.recall, 'rouge2_low_fmeasure': result['rouge2'].low.fmeasure, 'rouge2_mid_p': result['rouge2'].mid.precision, 'rouge2_mid_r': result['rouge2'].mid.recall, 'rouge2_mid_fmeasure': result['rouge2'].mid.fmeasure, 'rouge2_high_p': result['rouge2'].high.precision, 'rouge2_high_r': result['rouge2'].high.recall, 'rouge2_high_fmeasure': result['rouge2'].high.fmeasure, 'rougeL_low_p': result['rougeL'].low.precision, 'rougeL_low_r': result['rougeL'].low.recall, 'rougeL_low_fmeasure': result['rougeL'].low.fmeasure, 'rougeL_mid_p': result['rougeL'].mid.precision, 'rougeL_mid_r': result['rougeL'].mid.recall, 'rougeL_mid_fmeasure': result['rougeL'].mid.fmeasure, 'rougeL_high_p': result['rougeL'].high.precision, 'rougeL_high_r': result['rougeL'].high.recall, 'rougeL_high_fmeasure': result['rougeL'].high.fmeasure, 'rougeLsum_low_p': result['rougeLsum'].low.precision, 'rougeLsum_low_r': result['rougeLsum'].low.recall, 'rougeLsum_low_fmeasure': result['rougeLsum'].low.fmeasure, 'rougeLsum_mid_p': result['rougeLsum'].mid.precision, 'rougeLsum_mid_r': result['rougeLsum'].mid.recall, 'rougeLsum_mid_fmeasure': result['rougeLsum'].mid.fmeasure, 'rougeLsum_high_p': result['rougeLsum'].high.precision, 'rougeLsum_high_r': result['rougeLsum'].high.recall, 'rougeLsum_high_fmeasure': result['rougeLsum'].high.fmeasure, } #prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] #result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 6) for k, v in result.items()} return result
0.825343
0.645357
import torch from torch import nn from torch.optim import SGD from transformers import AutoModel from tqdm import tqdm import torch.nn.functional as F import ipdb class GradientReversal(torch.autograd.Function): """ Basic layer for doing gradient reversal """ lambd = 1.0 @staticmethod def forward(ctx, x): return x @staticmethod def backward(ctx, grad_output): return GradientReversal.lambd * grad_output.neg() class DomainAdversarialModel(nn.Module): """ A really basic wrapper around BERT """ def __init__(self, model: AutoModel, n_classes: int = 2, **kwargs): super(DomainAdversarialModel, self).__init__() self.model = AutoModel.from_pretrained(model) self.domain_classifier = nn.Linear(self.model.config.hidden_size, n_classes) def forward( self, input_ids: torch.LongTensor, attention_mask: torch.LongTensor, labels: torch.LongTensor = None, **kwargs ): # 1) Get the CLS representation from BERT outputs = self.model( input_ids, attention_mask=attention_mask ) # (b x n_classes) cls_hidden_state = outputs.pooler_output adv_input = GradientReversal.apply(cls_hidden_state) adv_logits = self.domain_classifier(adv_input) outputs['logits'] = adv_logits loss_fn = nn.CrossEntropyLoss() if labels is not None: loss = loss_fn(adv_logits, labels) outputs['loss'] = loss return outputs def save_pretrained(self, output_dir: str): self.model.save_pretrained(output_dir) # Optimize the softmax temperature to minimize the negative log likelihood class Temp(nn.Module): def __init__(self): super().__init__() self.T = nn.Parameter(torch.ones(1)) def forward(self, logits): return logits / self.T def calculate_log_likelihood(model, loader, T, device): # loader = torch.utils.data.DataLoader(dset, batch_size=32, # num_workers=2) with torch.no_grad(): labels_all = [] preds_all = [] for i, batch in enumerate(tqdm(loader), 0): # get the inputs; data is a list of [inputs, labels] for b in batch: batch[b] = batch[b].to(device) labels = batch.pop('labels') # forward + backward + optimize outputs = model(**batch) logits = outputs['logits'] logits /= T preds = F.log_softmax(logits, dim=-1) labels_all.append(labels.detach()) preds_all.append(preds.detach()) nll = F.nll_loss(torch.concat(preds_all), torch.concat(labels_all), reduction='mean') return nll.item() def calibrate_temperature(model, loader, device): # loader = torch.utils.data.DataLoader(dset, batch_size=32, # num_workers=2) T = Temp().to(device) optim = SGD(T.parameters(), lr=1e-3) patience = 10 c = 0 eps = 1e-5 t_curr = 1.0 done = False print(f"NLL before calibration: {calculate_log_likelihood(model, loader, t_curr, device)}") for epoch in range(3): # loop over the dataset multiple times for i, batch in enumerate(tqdm(loader), 0): # get the inputs; data is a list of [inputs, labels] for b in batch: batch[b] = batch[b].to(device) labels = batch.pop('labels') # zero the parameter gradients optim.zero_grad() # forward + backward + optimize outputs = model(**batch) logits = outputs['logits'] logits = T(logits) preds = F.log_softmax(logits, dim=-1) nll = F.nll_loss(preds, labels, reduction='mean') nll.backward() optim.step() if abs(t_curr - T.T.item()) > eps: c = 0 else: c += 1 if c == patience: done = True break t_curr = T.T.item() if done: break print(f"NLL after calibration: {calculate_log_likelihood(model, loader, t_curr, device)}") return t_curr
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/utils/model.py
model.py
import torch from torch import nn from torch.optim import SGD from transformers import AutoModel from tqdm import tqdm import torch.nn.functional as F import ipdb class GradientReversal(torch.autograd.Function): """ Basic layer for doing gradient reversal """ lambd = 1.0 @staticmethod def forward(ctx, x): return x @staticmethod def backward(ctx, grad_output): return GradientReversal.lambd * grad_output.neg() class DomainAdversarialModel(nn.Module): """ A really basic wrapper around BERT """ def __init__(self, model: AutoModel, n_classes: int = 2, **kwargs): super(DomainAdversarialModel, self).__init__() self.model = AutoModel.from_pretrained(model) self.domain_classifier = nn.Linear(self.model.config.hidden_size, n_classes) def forward( self, input_ids: torch.LongTensor, attention_mask: torch.LongTensor, labels: torch.LongTensor = None, **kwargs ): # 1) Get the CLS representation from BERT outputs = self.model( input_ids, attention_mask=attention_mask ) # (b x n_classes) cls_hidden_state = outputs.pooler_output adv_input = GradientReversal.apply(cls_hidden_state) adv_logits = self.domain_classifier(adv_input) outputs['logits'] = adv_logits loss_fn = nn.CrossEntropyLoss() if labels is not None: loss = loss_fn(adv_logits, labels) outputs['loss'] = loss return outputs def save_pretrained(self, output_dir: str): self.model.save_pretrained(output_dir) # Optimize the softmax temperature to minimize the negative log likelihood class Temp(nn.Module): def __init__(self): super().__init__() self.T = nn.Parameter(torch.ones(1)) def forward(self, logits): return logits / self.T def calculate_log_likelihood(model, loader, T, device): # loader = torch.utils.data.DataLoader(dset, batch_size=32, # num_workers=2) with torch.no_grad(): labels_all = [] preds_all = [] for i, batch in enumerate(tqdm(loader), 0): # get the inputs; data is a list of [inputs, labels] for b in batch: batch[b] = batch[b].to(device) labels = batch.pop('labels') # forward + backward + optimize outputs = model(**batch) logits = outputs['logits'] logits /= T preds = F.log_softmax(logits, dim=-1) labels_all.append(labels.detach()) preds_all.append(preds.detach()) nll = F.nll_loss(torch.concat(preds_all), torch.concat(labels_all), reduction='mean') return nll.item() def calibrate_temperature(model, loader, device): # loader = torch.utils.data.DataLoader(dset, batch_size=32, # num_workers=2) T = Temp().to(device) optim = SGD(T.parameters(), lr=1e-3) patience = 10 c = 0 eps = 1e-5 t_curr = 1.0 done = False print(f"NLL before calibration: {calculate_log_likelihood(model, loader, t_curr, device)}") for epoch in range(3): # loop over the dataset multiple times for i, batch in enumerate(tqdm(loader), 0): # get the inputs; data is a list of [inputs, labels] for b in batch: batch[b] = batch[b].to(device) labels = batch.pop('labels') # zero the parameter gradients optim.zero_grad() # forward + backward + optimize outputs = model(**batch) logits = outputs['logits'] logits = T(logits) preds = F.log_softmax(logits, dim=-1) nll = F.nll_loss(preds, labels, reduction='mean') nll.backward() optim.step() if abs(t_curr - T.T.item()) > eps: c = 0 else: c += 1 if c == patience: done = True break t_curr = T.T.item() if done: break print(f"NLL after calibration: {calculate_log_likelihood(model, loader, t_curr, device)}") return t_curr
0.93528
0.508971
import numpy as np def mean_reciprocal_rank(rs): """Score is reciprocal of the rank of the first relevant item First element is 'rank 1'. Relevance is binary (nonzero is relevant). Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank >>> rs = [[0, 0, 1], [0, 1, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.61111111111111105 >>> rs = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]]) >>> mean_reciprocal_rank(rs) 0.5 >>> rs = [[0, 0, 0, 1], [1, 0, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.75 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean reciprocal rank """ rs = (np.asarray(r).nonzero()[0] for r in rs) return np.mean([1. / (r[0] + 1) if r.size else 0. for r in rs]) def r_precision(r): """Score is precision after all relevant documents have been retrieved Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> r_precision(r) 0.33333333333333331 >>> r = [0, 1, 0] >>> r_precision(r) 0.5 >>> r = [1, 0, 0] >>> r_precision(r) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: R Precision """ r = np.asarray(r) != 0 z = r.nonzero()[0] if not z.size: return 0. return np.mean(r[:z[-1] + 1]) def precision_at_k(r, k): """Score is precision @ k Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> precision_at_k(r, 1) 0.0 >>> precision_at_k(r, 2) 0.0 >>> precision_at_k(r, 3) 0.33333333333333331 >>> precision_at_k(r, 4) Traceback (most recent call last): File "<stdin>", line 1, in ? ValueError: Relevance score length < k Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Precision @ k Raises: ValueError: len(r) must be >= k """ assert k >= 1 r = np.asarray(r)[:k] != 0 if r.size != k: raise ValueError('Relevance score length < k') return np.mean(r) def average_precision(r): """Score is average precision (area under PR curve) Relevance is binary (nonzero is relevant). >>> r = [1, 1, 0, 1, 0, 1, 0, 0, 0, 1] >>> delta_r = 1. / sum(r) >>> sum([sum(r[:x + 1]) / (x + 1.) * delta_r for x, y in enumerate(r) if y]) 0.7833333333333333 >>> average_precision(r) 0.78333333333333333 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Average precision """ r = np.asarray(r) != 0 out = [precision_at_k(r, k + 1) for k in range(r.size) if r[k]] if not out: return 0. return np.mean(out) def mean_average_precision(rs): """Score is mean average precision Relevance is binary (nonzero is relevant). >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1]] >>> mean_average_precision(rs) 0.78333333333333333 >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1], [0]] >>> mean_average_precision(rs) 0.39166666666666666 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean average precision """ return np.mean([average_precision(r) for r in rs]) def dcg_at_k(r, k, method=0): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> dcg_at_k(r, 1) 3.0 >>> dcg_at_k(r, 1, method=1) 3.0 >>> dcg_at_k(r, 2) 5.0 >>> dcg_at_k(r, 2, method=1) 4.2618595071429155 >>> dcg_at_k(r, 10) 9.6051177391888114 >>> dcg_at_k(r, 11) 9.6051177391888114 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0. def ndcg_at_k(r, k, method=0): """Score is normalized discounted cumulative gain (ndcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> ndcg_at_k(r, 1) 1.0 >>> r = [2, 1, 2, 0] >>> ndcg_at_k(r, 4) 0.9203032077642922 >>> ndcg_at_k(r, 4, method=1) 0.96519546960144276 >>> ndcg_at_k([0], 1) 0.0 >>> ndcg_at_k([1], 2) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Normalized discounted cumulative gain """ dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max if __name__ == "__main__": import doctest doctest.testmod()
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/matching_experiments/utils/rank_metrics.py
rank_metrics.py
import numpy as np def mean_reciprocal_rank(rs): """Score is reciprocal of the rank of the first relevant item First element is 'rank 1'. Relevance is binary (nonzero is relevant). Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank >>> rs = [[0, 0, 1], [0, 1, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.61111111111111105 >>> rs = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]]) >>> mean_reciprocal_rank(rs) 0.5 >>> rs = [[0, 0, 0, 1], [1, 0, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.75 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean reciprocal rank """ rs = (np.asarray(r).nonzero()[0] for r in rs) return np.mean([1. / (r[0] + 1) if r.size else 0. for r in rs]) def r_precision(r): """Score is precision after all relevant documents have been retrieved Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> r_precision(r) 0.33333333333333331 >>> r = [0, 1, 0] >>> r_precision(r) 0.5 >>> r = [1, 0, 0] >>> r_precision(r) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: R Precision """ r = np.asarray(r) != 0 z = r.nonzero()[0] if not z.size: return 0. return np.mean(r[:z[-1] + 1]) def precision_at_k(r, k): """Score is precision @ k Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> precision_at_k(r, 1) 0.0 >>> precision_at_k(r, 2) 0.0 >>> precision_at_k(r, 3) 0.33333333333333331 >>> precision_at_k(r, 4) Traceback (most recent call last): File "<stdin>", line 1, in ? ValueError: Relevance score length < k Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Precision @ k Raises: ValueError: len(r) must be >= k """ assert k >= 1 r = np.asarray(r)[:k] != 0 if r.size != k: raise ValueError('Relevance score length < k') return np.mean(r) def average_precision(r): """Score is average precision (area under PR curve) Relevance is binary (nonzero is relevant). >>> r = [1, 1, 0, 1, 0, 1, 0, 0, 0, 1] >>> delta_r = 1. / sum(r) >>> sum([sum(r[:x + 1]) / (x + 1.) * delta_r for x, y in enumerate(r) if y]) 0.7833333333333333 >>> average_precision(r) 0.78333333333333333 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Average precision """ r = np.asarray(r) != 0 out = [precision_at_k(r, k + 1) for k in range(r.size) if r[k]] if not out: return 0. return np.mean(out) def mean_average_precision(rs): """Score is mean average precision Relevance is binary (nonzero is relevant). >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1]] >>> mean_average_precision(rs) 0.78333333333333333 >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1], [0]] >>> mean_average_precision(rs) 0.39166666666666666 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean average precision """ return np.mean([average_precision(r) for r in rs]) def dcg_at_k(r, k, method=0): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> dcg_at_k(r, 1) 3.0 >>> dcg_at_k(r, 1, method=1) 3.0 >>> dcg_at_k(r, 2) 5.0 >>> dcg_at_k(r, 2, method=1) 4.2618595071429155 >>> dcg_at_k(r, 10) 9.6051177391888114 >>> dcg_at_k(r, 11) 9.6051177391888114 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0. def ndcg_at_k(r, k, method=0): """Score is normalized discounted cumulative gain (ndcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> ndcg_at_k(r, 1) 1.0 >>> r = [2, 1, 2, 0] >>> ndcg_at_k(r, 4) 0.9203032077642922 >>> ndcg_at_k(r, 4, method=1) 0.96519546960144276 >>> ndcg_at_k([0], 1) 0.0 >>> ndcg_at_k([1], 2) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Normalized discounted cumulative gain """ dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max if __name__ == "__main__": import doctest doctest.testmod()
0.923842
0.822688
from sentence_transformers import SentenceTransformer, util from typing import Optional, AnyStr, List import numpy as np import torch import torch.nn.functional as F class SimilarityEstimator(object): """ Estimator of information matching score (IMS) between two scientific sentences """ def __init__( self, model_name_or_path: Optional[AnyStr] = 'copenlu/spiced', device: Optional[AnyStr] = None, use_auth_token: Optional[bool] = False, cache_folder: Optional[AnyStr] = None ): """ :param model_name_or_path: If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from Huggingface models repository with that name. Defaults to the best model from Wright et al. 2022. :param device: Device (like ‘cuda’ / ‘cpu’) that should be used for computation. If None, checks if a GPU can be used. :param use_auth_token: HuggingFace authentication token to download private models. :param cache_folder: Path to store models """ self.model_name_or_path = model_name_or_path self.device = device self.use_auth_token = use_auth_token self.cache_folder = cache_folder self.model = SentenceTransformer( model_name_or_path=model_name_or_path, device=device, use_auth_token=use_auth_token, cache_folder=cache_folder ) def estimate_ims( self, a: List[AnyStr], b: List[AnyStr] ) -> np.ndarray: """ Estimate the information matching score between all sentences in 'a' and all sentences in 'b'. Score will a scalar between 1 and 5, where 1 means no information similarity and 5 means the information is exactly the same between the two sentences. :param a: A list of sentences :param b: Second list of sentences :return: A matrix S of size $N$x$M$ where $N$ is the length of list $a$, $M$ is the length of list $b$, and entry $S_{ij}$ is the information matching score between sentence $a_{i}$ and $b_{j}$ """ sentence1_embedding = self.model.encode(a) sentence2_embedding = self.model.encode(b) S = (util.cos_sim(sentence1_embedding, sentence2_embedding).clip(min=0, max=1) * 4) + 1 return S.detach().numpy() def estimate_ims_array( self, a: List[AnyStr], b: List[AnyStr] ) -> List: """ Estimate the information matching score between each sentence in $a$ and its corresponding $b$ (i.e. $a_{i}$ and $b_{i}$). Score will a scalar between 1 and 5, where 1 means no information similarity and 5 means the information is exactly the same between the two sentences. :param a: A list of sentences :param b: Second list of sentences of the same size as $a$ :return: A list $s$ of size $N$ where $N$ is the length of both list $a$ and list $b$ and entry $s_{i}$ is the information matching score between $a_{i}$ and $b_{i}$ """ assert len(a) == len(b), f"len(a) != len(b), lists of sentences must be equal length. len(a) == {len(a)}, len(b) == {len(b)}" sentence1_embedding = self.model.encode(a) sentence2_embedding = self.model.encode(b) scores = F.cosine_similarity(torch.Tensor(sentence1_embedding), torch.Tensor(sentence2_embedding), dim=1).clip( min=0).squeeze().cpu().numpy() # Convert to range [1,5], assume anything below 0 is 0 s = (scores * 4) + 1 return s.tolist()
scientific-information-change
/scientific-information-change-1.0.0.tar.gz/scientific-information-change-1.0.0/scientific_information_change/estimate_similarity.py
estimate_similarity.py
from sentence_transformers import SentenceTransformer, util from typing import Optional, AnyStr, List import numpy as np import torch import torch.nn.functional as F class SimilarityEstimator(object): """ Estimator of information matching score (IMS) between two scientific sentences """ def __init__( self, model_name_or_path: Optional[AnyStr] = 'copenlu/spiced', device: Optional[AnyStr] = None, use_auth_token: Optional[bool] = False, cache_folder: Optional[AnyStr] = None ): """ :param model_name_or_path: If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from Huggingface models repository with that name. Defaults to the best model from Wright et al. 2022. :param device: Device (like ‘cuda’ / ‘cpu’) that should be used for computation. If None, checks if a GPU can be used. :param use_auth_token: HuggingFace authentication token to download private models. :param cache_folder: Path to store models """ self.model_name_or_path = model_name_or_path self.device = device self.use_auth_token = use_auth_token self.cache_folder = cache_folder self.model = SentenceTransformer( model_name_or_path=model_name_or_path, device=device, use_auth_token=use_auth_token, cache_folder=cache_folder ) def estimate_ims( self, a: List[AnyStr], b: List[AnyStr] ) -> np.ndarray: """ Estimate the information matching score between all sentences in 'a' and all sentences in 'b'. Score will a scalar between 1 and 5, where 1 means no information similarity and 5 means the information is exactly the same between the two sentences. :param a: A list of sentences :param b: Second list of sentences :return: A matrix S of size $N$x$M$ where $N$ is the length of list $a$, $M$ is the length of list $b$, and entry $S_{ij}$ is the information matching score between sentence $a_{i}$ and $b_{j}$ """ sentence1_embedding = self.model.encode(a) sentence2_embedding = self.model.encode(b) S = (util.cos_sim(sentence1_embedding, sentence2_embedding).clip(min=0, max=1) * 4) + 1 return S.detach().numpy() def estimate_ims_array( self, a: List[AnyStr], b: List[AnyStr] ) -> List: """ Estimate the information matching score between each sentence in $a$ and its corresponding $b$ (i.e. $a_{i}$ and $b_{i}$). Score will a scalar between 1 and 5, where 1 means no information similarity and 5 means the information is exactly the same between the two sentences. :param a: A list of sentences :param b: Second list of sentences of the same size as $a$ :return: A list $s$ of size $N$ where $N$ is the length of both list $a$ and list $b$ and entry $s_{i}$ is the information matching score between $a_{i}$ and $b_{i}$ """ assert len(a) == len(b), f"len(a) != len(b), lists of sentences must be equal length. len(a) == {len(a)}, len(b) == {len(b)}" sentence1_embedding = self.model.encode(a) sentence2_embedding = self.model.encode(b) scores = F.cosine_similarity(torch.Tensor(sentence1_embedding), torch.Tensor(sentence2_embedding), dim=1).clip( min=0).squeeze().cpu().numpy() # Convert to range [1,5], assume anything below 0 is 0 s = (scores * 4) + 1 return s.tolist()
0.949494
0.651036
# Gaussian-Binomial--Distributions <!--[![Contributors][contributors-shield]][contributors-url] <!--[![Forks][forks-shield]][forks-url] --> <!--[![Issues][issues-shield]][issues-url] <!--[![MIT License][license-shield]][license-url] [![LinkedInKhaled][linkedin-khaled-shield]][linkedin-khaled-url] <!-- TABLE OF CONTENTS --> <details open="open"> <summary>Table of Contents</summary> <ol> <li><a href="#about-the-project">About The Project</a> <li><a href="#installation">Installation</a></li> <li><a href="#Dependencies">Dependencies</a></li> <li><a href="#license">License</a></li> <li><a href="#contact">Contact</a></li> <li><a href="#acknowledgements">Acknowledgements</a></li> </ol> </details> <!-- ABOUT THE PROJECT --> ## About The Project This package is for publishers who wants a ready use plot configuration like label font size, datetime config, figure size and most important details needed in which the plotted figure can be directly included in the paper. ## Dependencies - [Python3.6](https://www.python.org/downloads/) - [matplotlib](https://matplotlib.org/) - [Numpy](https://numpy.org/) - [Pandas](https://pandas.pydata.org/) ## Installation `pip install .` <!-- CONTRIBUTING --> ## Contributing 1. Fork the Project 2. Commit your Changes 3. Push to the Branch 4. Open a Pull Request <!-- LICENSE --> ## License Distributed under the MIT License. See `LICENSE` for more information. <!-- CONTACT --> ## Contact Khaled Alamin - [@LinkedIn](https://www.linkedin.com/in/khaled-alamin/) <!--Project Link: [https://github.com/your_username/repo_name](https://github.com/your_username/repo_name)--> <!-- ACKNOWLEDGEMENTS --> ## Acknowledgements * [Udacity data science nanodegree](https://classroom.udacity.com/nanodegrees/nd025/dashboard/overview) * [GitHub Emoji Cheat Sheet](https://www.webpagefx.com/tools/emoji-cheat-sheet) * [Img Shields](https://shields.io) * [Choose an Open Source License](https://choosealicense.com) * [GitHub Pages](https://pages.github.com) * [Animate.css](https://daneden.github.io/animate.css) * [Loaders.css](https://connoratherton.com/loaders) * [Slick Carousel](https://kenwheeler.github.io/slick) * [Smooth Scroll](https://github.com/cferdinandi/smooth-scroll) * [Sticky Kit](http://leafo.net/sticky-kit) * [JVectorMap](http://jvectormap.com) * [Font Awesome](https://fontawesome.com) <!-- MARKDOWN LINKS & IMAGES --> <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links --> [contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge [contributors-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/graphs/contributors [forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge [forks-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/network/members [stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge [stars-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/stargazers [issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge [issues-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/issues [license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge [license-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/blob/main/LICENSE.txt [linkedin-khaled-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-khaled-url]: https://www.linkedin.com/in/khaled-alamin/ [linkedin-eyas-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-eyas-url]: https://www.linkedin.com/in/EyasAli/
scientific-paper-matplotlib
/scientific_paper_matplotlib-0.0.6.tar.gz/scientific_paper_matplotlib-0.0.6/README.md
README.md
# Gaussian-Binomial--Distributions <!--[![Contributors][contributors-shield]][contributors-url] <!--[![Forks][forks-shield]][forks-url] --> <!--[![Issues][issues-shield]][issues-url] <!--[![MIT License][license-shield]][license-url] [![LinkedInKhaled][linkedin-khaled-shield]][linkedin-khaled-url] <!-- TABLE OF CONTENTS --> <details open="open"> <summary>Table of Contents</summary> <ol> <li><a href="#about-the-project">About The Project</a> <li><a href="#installation">Installation</a></li> <li><a href="#Dependencies">Dependencies</a></li> <li><a href="#license">License</a></li> <li><a href="#contact">Contact</a></li> <li><a href="#acknowledgements">Acknowledgements</a></li> </ol> </details> <!-- ABOUT THE PROJECT --> ## About The Project This package is for publishers who wants a ready use plot configuration like label font size, datetime config, figure size and most important details needed in which the plotted figure can be directly included in the paper. ## Dependencies - [Python3.6](https://www.python.org/downloads/) - [matplotlib](https://matplotlib.org/) - [Numpy](https://numpy.org/) - [Pandas](https://pandas.pydata.org/) ## Installation `pip install .` <!-- CONTRIBUTING --> ## Contributing 1. Fork the Project 2. Commit your Changes 3. Push to the Branch 4. Open a Pull Request <!-- LICENSE --> ## License Distributed under the MIT License. See `LICENSE` for more information. <!-- CONTACT --> ## Contact Khaled Alamin - [@LinkedIn](https://www.linkedin.com/in/khaled-alamin/) <!--Project Link: [https://github.com/your_username/repo_name](https://github.com/your_username/repo_name)--> <!-- ACKNOWLEDGEMENTS --> ## Acknowledgements * [Udacity data science nanodegree](https://classroom.udacity.com/nanodegrees/nd025/dashboard/overview) * [GitHub Emoji Cheat Sheet](https://www.webpagefx.com/tools/emoji-cheat-sheet) * [Img Shields](https://shields.io) * [Choose an Open Source License](https://choosealicense.com) * [GitHub Pages](https://pages.github.com) * [Animate.css](https://daneden.github.io/animate.css) * [Loaders.css](https://connoratherton.com/loaders) * [Slick Carousel](https://kenwheeler.github.io/slick) * [Smooth Scroll](https://github.com/cferdinandi/smooth-scroll) * [Sticky Kit](http://leafo.net/sticky-kit) * [JVectorMap](http://jvectormap.com) * [Font Awesome](https://fontawesome.com) <!-- MARKDOWN LINKS & IMAGES --> <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links --> [contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge [contributors-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/graphs/contributors [forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge [forks-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/network/members [stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge [stars-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/stargazers [issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge [issues-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/issues [license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge [license-url]: https://github.com/KhaledAlamin/Huawei_embedded_dnn/blob/main/LICENSE.txt [linkedin-khaled-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-khaled-url]: https://www.linkedin.com/in/khaled-alamin/ [linkedin-eyas-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-eyas-url]: https://www.linkedin.com/in/EyasAli/
0.565059
0.345147
from __future__ import annotations from pathlib import Path from functools import wraps from typing import TypeVar, List, Tuple, Union, Callable, Optional from warnings import warn, filterwarnings, catch_warnings from textwrap import dedent import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import numpy as np from numpy import amin, amax from .plot_settings import apply_styles, rwth_cycle from .types_ import Vector, Matrix mpl.use("Agg") In = TypeVar("In", List[float], Tuple[float], Vector) In2D = TypeVar("In2D", list[list[float]], list[Vector], tuple[Vector], Matrix) def fix_inputs(input_1: In, input_2: In)\ -> tuple[Vector, Vector]: """ Remove nans and infinities from the input vectors. Parameters --------- input_1, input_2: X/Y-axis data of plot Returns ------ New vectors x and y with nans removed. """ if len(input_1) != len(input_2): raise ValueError( "The sizes of the input vectors are not the same.") nan_count = np.count_nonzero(np.isnan(input_2)) inf_count = np.count_nonzero(np.isinf(input_2)) if nan_count != 0 or inf_count != 0: new_input_1 = np.empty(len(input_1)-nan_count-inf_count) new_input_2 = np.empty(len(new_input_1)) position = 0 for x_input, y_input in zip(input_1, input_2): if not np.isnan(y_input) or np.isinf(y_input): new_input_1[position] = x_input new_input_2[position] = y_input position += 1 return new_input_1, new_input_2 return np.array(input_1), np.array(input_2) def check_inputs(input_1: In, input_2: In, label_1: str, label_2: str)\ -> bool: """ Check the input vectors to see, if they are large enough. Parameters --------- input_1, input_2: X/Y-axis data of plot label_1, label_2: Labels of the X/Y axis Returns ------ True, if the plot can be created. """ if len(input_1) <= 1 or len(input_2) <= 1: warn( "There are not enough points in the following plots:" f"label1: {label_1} label2: {label_2}. It cannot be drawn.") return False if min(input_1) == max(input_1): warn( "The area of the x-axis is not large enough in the following plot:" f"label1: {label_1} label2: {label_2}. It cannot be drawn.") return False if min(input_2) == max(input_2): warn( "The area of the y-axis is not large enough in the following plot:" f"label1: {label_1} label2: {label_2}. It cannot be drawn.") return False infinity = np.isinf(input_1).any() or np.isinf(input_2).any() if infinity: warn(dedent(f"""There are infinities in the data of the following plot: label1: {label_1}, label2: {label_2}. It cannot be drawn."""), RuntimeWarning) return False nan = np.isnan(input_1).any() or np.isnan(input_2).any() if nan: warn(dedent(f"""There are nans in the data of the following plot: label1: {label_1}, label2: {label_2}. It cannot be drawn."""), RuntimeWarning) return False return True @apply_styles def plot_fit(X: In, Y: In, fit_function: Callable[..., float], xlabel: str, ylabel: str, filename: Union[str, Path], *, args: Optional[Tuple[float]] = None, logscale: bool = False) -> None: """Creates a plot of data and a fit and saves it to 'filename'.""" X, Y = fix_inputs(X, Y) # type: ignore if not check_inputs( X, Y, xlabel, ylabel): return n_fit = 1000 _fit_function: Callable[[float], float] if args is not None: @wraps(fit_function) def _fit_function(x: float) -> float: """This is the function, which has been fitted""" return _fit_function(x, *args) else: _fit_function = fit_function plt.plot(X, Y, label="data") X_fit = [min(X) + (max(X) - min(X)) * i / (n_fit - 1) for i in range(n_fit)] Y_fit = [_fit_function(x) for x in X_fit] plt.plot(X_fit, Y_fit, label="fit") if logscale: plt.xscale("log") plt.yscale("log") plt.xlim(min(X), max(X)) if logscale: plt.ylim(min(Y) * 0.97, max(Y) * 1.02) else: plt.ylim( min(Y) - (max(Y) - min(Y)) * 0.02, max(Y) + (max(Y) - min(Y)) * 0.02 ) plt.ylabel(ylabel) plt.xlabel(xlabel) plt.legend() plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles(three_d=True) def plot_surface(X: In2D, Y: In2D, Z: In2D, xlabel: str, ylabel: str, zlabel: str, filename: Union[str, Path], *, log_scale: bool = False, set_z_lim: bool = True, colorscheme: str = "rwth_gradient", figsize: tuple[float, float] = (4.33, 3.5), labelpad: Optional[float] = None, nbins: Optional[int] = None) -> None: """create a 2D surface plot of meshgrid-like valued Xs, Ys and Zs""" if not check_inputs( np.array(X).flatten(), np.array(Z).flatten(), xlabel, zlabel): return fig = plt.figure() ax = fig.add_subplot(projection="3d") fig.subplots_adjust(left=-0.02, right=0.75, bottom=0.15, top=0.98) ax.plot_surface(X, Y, Z, cmap=colorscheme) ax.set_box_aspect(aspect=None, zoom=.8) if labelpad is None: ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel, rotation=90) else: ax.set_xlabel(xlabel, labelpad=labelpad) ax.set_ylabel(ylabel, labelpad=labelpad) ax.set_zlabel(zlabel, rotation=90, labelpad=labelpad) assert ax.zaxis is not None ax.set_xlim(amin(X), amax(X)) # type: ignore ax.set_ylim(amin(Y), amax(Y)) # type: ignore if set_z_lim: if not log_scale: ax.set_zlim( amin(Z) - (amax(Z) - amin(Z)) * 0.02, # type: ignore amax(Z) + (amax(Z) - amin(Z)) * 0.02 # type: ignore ) else: ax.set_zlim( amin(Z) * 0.97, amax(Z) * 1.02) # type: ignore if log_scale: ax.set_yscale("log") ax.set_xscale("log") ax.set_zscale("log") for spine in ax.spines.values(): spine.set_visible(False) ax.xaxis.pane.set_alpha(0.3) ax.yaxis.pane.set_alpha(0.3) ax.zaxis.pane.set_alpha(0.3) if nbins is not None: ax.xaxis.set_major_locator( MaxNLocator(nbins) ) ax.yaxis.set_major_locator( MaxNLocator(nbins) ) fig.set_size_inches(*figsize) with catch_warnings(): filterwarnings("ignore", message=".*Tight layout") plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def plot(X: In, Y: In, xlabel: str, ylabel: str, filename: Union[Path, str], *, logscale: bool = False, ylim: Optional[tuple[float, float]] = None, yticks: bool = True, cycler: int = 0) -> None: """Create a simple 1D plot""" X, Y = fix_inputs(X, Y) # type: ignore if not check_inputs( X, Y, xlabel, ylabel): return if len(X) <= 1 or len(Y) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") if cycler > 0: for _ in range(cycler): plt.plot([], []) plt.plot(X, Y, linestyle="-") plt.xlabel(xlabel) plt.ylabel(ylabel) if logscale: plt.xscale("log") plt.yscale("log") if ylim is None: plt.ylim(min(Y) * 0.97, max(Y) * 1.02) elif ylim is None: plt.ylim( min(Y) - (max(Y) - min(Y)) * 0.02, max(Y) + (max(Y) - min(Y)) * 0.02 ) if ylim is not None: plt.ylim(*ylim) plt.xlim(min(X), max(X)) if not yticks: plt.yticks([]) plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def two_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, xlabel: str, ylabel: str, filename: Union[Path, str], *, logscale: bool = False, cycle: int = 0, color: tuple[int, int] = (0, 1), outer: bool = False) -> None: """Create a simple 1D plot with two different graphs inside of a single plot and a single y-axis. Keyword arguments: cycle -- skip this many colours in the colour-wheel before plotting color -- use these indeces in the colour-wheel when creating a plot outer -- use the outer limits on the x-axis rather than the inner limit """ x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore if not ( check_inputs(x1, y1, xlabel, label1) or check_inputs(x2, y2, xlabel, label2)): return if len(x1) <= 1 or len(y1) <= 1 or len(y2) <= 1 or len(x2) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") if cycle > 0: color = (color[0] + cycle, color[1] + cycle) # access colour prop_cycle = plt.rcParams["axes.prop_cycle"] try: linestyle = prop_cycle.by_key()["linestyle"] except KeyError: linestyle = rwth_cycle.by_key()["linestyle"] colors = prop_cycle.by_key()["color"] if max(color) >= len(colors): colors += colors linestyle += linestyle plt.plot(x1, y1, label=label1, color=colors[color[0]], linestyle=linestyle[0]) plt.plot(x2, y2, label=label2, color=colors[color[1]], linestyle=linestyle[1]) plt.xlabel(xlabel) plt.ylabel(ylabel) min_ = min(min(y1), min(y2)) max_ = max(max(y1), max(y2)) if not logscale: plt.ylim( min_ - (max_ - min_) * 0.02, max_ + (max_ - min_) * 0.02 ) else: plt.xscale("log") plt.yscale("log") plt.ylim( min_ * 0.97, max_ * 1.02) if outer: plt.xlim(min(min(x1), min(x2)), max(max(x1), max(x2))) else: plt.xlim(max(min(x1), min(x2)), min(max(x1), max(x2))) plt.legend() plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def three_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, x3: In, y3: In, label3: str, xlabel: str, ylabel: str, filename: Union[Path, str], *, logscale: bool = False, xmin: Optional[float] = None, xmax: Optional[float] = None) -> None: """Create a simple 1D plot with three different graphs inside of a single plot and a single y-axis.""" x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore x3, y3 = fix_inputs(x3, y3) # type: ignore if not ( check_inputs(x1, y1, xlabel, label1) or check_inputs(x2, y3, xlabel, label1) or check_inputs(x3, y3, xlabel, label3)): return if any(len(x) <= 1 for x in (x1, x2, y1, y2, x3, y3)): raise ValueError( f"The data for plot {filename} contains empty rows!") plt.plot(x1, y1, label=label1) plt.plot(x2, y2, label=label2, linestyle="dashed") plt.plot(x3, y3, label=label3, linestyle="dotted") plt.xlabel(xlabel) plt.ylabel(ylabel) min_ = min(min(y1), min(y2), min(y3)) max_ = max(max(y1), max(y2), max(y3)) if not logscale: plt.ylim( min_ - (max_ - min_) * 0.02, max_ + (max_ - min_) * 0.02 ) else: plt.xscale("log") plt.yscale("log") plt.ylim( min_ * 0.97, max_ * 1.02) if xmin is not None and xmax is not None: plt.xlim(xmin, xmax) else: plt.xlim(min(x1), max(x1)) plt.legend() plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def two_axis_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, xlabel: str, ylabel: str, ylabel2: str, filename: Union[Path, str], *, ticks: Optional[tuple[list[float], list[str]]] = None, xlim: Optional[tuple[float, float]] = None, color: tuple[int, int] = (0, 1))\ -> None: """Create a simple 1D plot with two different graphs inside of a single plot with two y-axis. The variable "ticks" sets costum y-ticks on the second y-axis. The first argument gives the position of the ticks and the second argument gives the values to be shown. Color selects the indeces of the chosen color-wheel, which should be taken for the different plots. The default is (1,2).""" x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore if not check_inputs( y1, y2, label1, label2): return if len(x1) <= 1 or len(y1) <= 1 or len(y2) <= 1 or len(x2) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") fig = plt.figure() ax1 = fig.add_subplot(111) # access colour prop_cycle = plt.rcParams["axes.prop_cycle"] try: linestyle = prop_cycle.by_key()["linestyle"] except KeyError: linestyle = rwth_cycle.by_key()["linestyle"] colors = prop_cycle.by_key()["color"] if max(color) >= len(colors): colors += colors linestyle += linestyle # first plot lines = ax1.plot(x1, y1, label=label1, color=colors[color[0]], linestyle=linestyle[0]) ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) ax1.set_ylim( min(y1) - (max(y1) - min(y1)) * 0.02, max(y1) + (max(y1) - min(y1)) * 0.02 ) # second plot ax2 = ax1.twinx() lines += ax2.plot(x2, y2, label=label2, color=colors[color[1]], linestyle=linestyle[1]) ax2.set_ylabel(ylabel2) ax2.set_ylim( min(y2) - (max(y2) - min(y2)) * 0.02, max(y2) + (max(y2) - min(y2)) * 0.02 ) # general settings if xlim is None: plt.xlim(min(x1), max(x1)) else: plt.xlim(*xlim) labels = [line.get_label() for line in lines] plt.legend(lines, labels) # ticks if ticks is not None: ax2.set_yticks(ticks[0]) ax2.set_yticklabels(ticks[1]) plt.tight_layout() plt.savefig(filename) plt.close() def make_invisible(ax: plt.Axes) -> None: """Make all patch spines invisible.""" ax.set_frame_on(True) ax.patch.set_visible(False) for spine in ax.spines.values(): spine.set_visible(False) @apply_styles def three_axis_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, x3: In, y3: In, label3: str, xlabel: str, ylabel: str, ylabel2: str, ylabel3: str, filename: Union[Path, str], *, ticks: Optional[tuple[list[float], list[str]]] = None, xlim: Optional[tuple[float, float]] = None, color: tuple[int, int, int] = (0, 1, 2), legend: bool = True)\ -> None: """Create a simple 1D plot with two different graphs inside of a single plot with two y-axis. The variable "ticks" sets costum y-ticks on the second y-axis. The first argument gives the position of the ticks and the second argument gives the values to be shown. Color selects the indeces of the chosen color-wheel, which should be taken for the different plots. The default is (1,2).""" # pylint: disable=R0915 x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore x3, y3 = fix_inputs(x3, y3) # type: ignore if not check_inputs( y1, y2, label1, label2): return if not check_inputs( x3, y3, xlabel, label3): return if len(x1) <= 1 or len(y1) <= 1 or len(y2) <= 1 or len(x2) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") assert len(color) == 3 fig, ax1 = plt.subplots() fig.subplots_adjust(right=0.75) # access colour prop_cycle = plt.rcParams["axes.prop_cycle"] try: linestyle = prop_cycle.by_key()["linestyle"] except KeyError: linestyle = rwth_cycle.by_key()["linestyle"] colors = prop_cycle.by_key()["color"] if max(color) >= len(colors): colors += colors linestyle += linestyle # first plot lines = ax1.plot(x1, y1, label=label1, color=colors[color[0]], linestyle=linestyle[0]) ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) ax1.set_ylim( min(y1) - (max(y1) - min(y1)) * 0.02, max(y1) + (max(y1) - min(y1)) * 0.02 ) ax1.yaxis.label.set_color(colors[color[0]]) ax1.tick_params(axis="y", colors=colors[color[0]]) # second plot ax2 = ax1.twinx() lines += ax2.plot(x2, y2, label=label2, color=colors[color[1]], linestyle=linestyle[1]) ax2.set_ylabel(ylabel2) ax2.set_ylim( min(y2) - (max(y2) - min(y2)) * 0.02, max(y2) + (max(y2) - min(y2)) * 0.02 ) ax2.yaxis.label.set_color(colors[color[1]]) ax2.tick_params(axis="y", colors=colors[color[1]]) # third plot ax3 = ax1.twinx() make_invisible(ax3) ax3.spines["right"].set_position(("axes", 1.25)) ax3.spines["right"].set_visible(True) lines += ax3.plot(x3, y3, label=label3, color=colors[color[2]], linestyle=linestyle[2]) ax3.set_ylabel(ylabel3) ax3.set_ylim( min(y3) - (max(y3) - min(y3)) * 0.02, max(y3) + (max(y3) - min(y3)) * 0.02 ) ax3.yaxis.label.set_color(colors[color[2]]) ax3.tick_params(axis="y", colors=colors[color[2]]) # general settings if xlim is None: plt.xlim(min(x1), max(x1)) else: plt.xlim(*xlim) labels = [line.get_label() for line in lines] if legend: plt.legend(lines, labels) # ticks if ticks is not None: ax2.set_yticks(ticks[0]) ax2.set_yticklabels(ticks[1]) plt.tight_layout() plt.savefig(filename) plt.close()
scientific-plots
/scientific_plots-1.7.2-py3-none-any.whl/scientific_plots/default_plots.py
default_plots.py
from __future__ import annotations from pathlib import Path from functools import wraps from typing import TypeVar, List, Tuple, Union, Callable, Optional from warnings import warn, filterwarnings, catch_warnings from textwrap import dedent import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import numpy as np from numpy import amin, amax from .plot_settings import apply_styles, rwth_cycle from .types_ import Vector, Matrix mpl.use("Agg") In = TypeVar("In", List[float], Tuple[float], Vector) In2D = TypeVar("In2D", list[list[float]], list[Vector], tuple[Vector], Matrix) def fix_inputs(input_1: In, input_2: In)\ -> tuple[Vector, Vector]: """ Remove nans and infinities from the input vectors. Parameters --------- input_1, input_2: X/Y-axis data of plot Returns ------ New vectors x and y with nans removed. """ if len(input_1) != len(input_2): raise ValueError( "The sizes of the input vectors are not the same.") nan_count = np.count_nonzero(np.isnan(input_2)) inf_count = np.count_nonzero(np.isinf(input_2)) if nan_count != 0 or inf_count != 0: new_input_1 = np.empty(len(input_1)-nan_count-inf_count) new_input_2 = np.empty(len(new_input_1)) position = 0 for x_input, y_input in zip(input_1, input_2): if not np.isnan(y_input) or np.isinf(y_input): new_input_1[position] = x_input new_input_2[position] = y_input position += 1 return new_input_1, new_input_2 return np.array(input_1), np.array(input_2) def check_inputs(input_1: In, input_2: In, label_1: str, label_2: str)\ -> bool: """ Check the input vectors to see, if they are large enough. Parameters --------- input_1, input_2: X/Y-axis data of plot label_1, label_2: Labels of the X/Y axis Returns ------ True, if the plot can be created. """ if len(input_1) <= 1 or len(input_2) <= 1: warn( "There are not enough points in the following plots:" f"label1: {label_1} label2: {label_2}. It cannot be drawn.") return False if min(input_1) == max(input_1): warn( "The area of the x-axis is not large enough in the following plot:" f"label1: {label_1} label2: {label_2}. It cannot be drawn.") return False if min(input_2) == max(input_2): warn( "The area of the y-axis is not large enough in the following plot:" f"label1: {label_1} label2: {label_2}. It cannot be drawn.") return False infinity = np.isinf(input_1).any() or np.isinf(input_2).any() if infinity: warn(dedent(f"""There are infinities in the data of the following plot: label1: {label_1}, label2: {label_2}. It cannot be drawn."""), RuntimeWarning) return False nan = np.isnan(input_1).any() or np.isnan(input_2).any() if nan: warn(dedent(f"""There are nans in the data of the following plot: label1: {label_1}, label2: {label_2}. It cannot be drawn."""), RuntimeWarning) return False return True @apply_styles def plot_fit(X: In, Y: In, fit_function: Callable[..., float], xlabel: str, ylabel: str, filename: Union[str, Path], *, args: Optional[Tuple[float]] = None, logscale: bool = False) -> None: """Creates a plot of data and a fit and saves it to 'filename'.""" X, Y = fix_inputs(X, Y) # type: ignore if not check_inputs( X, Y, xlabel, ylabel): return n_fit = 1000 _fit_function: Callable[[float], float] if args is not None: @wraps(fit_function) def _fit_function(x: float) -> float: """This is the function, which has been fitted""" return _fit_function(x, *args) else: _fit_function = fit_function plt.plot(X, Y, label="data") X_fit = [min(X) + (max(X) - min(X)) * i / (n_fit - 1) for i in range(n_fit)] Y_fit = [_fit_function(x) for x in X_fit] plt.plot(X_fit, Y_fit, label="fit") if logscale: plt.xscale("log") plt.yscale("log") plt.xlim(min(X), max(X)) if logscale: plt.ylim(min(Y) * 0.97, max(Y) * 1.02) else: plt.ylim( min(Y) - (max(Y) - min(Y)) * 0.02, max(Y) + (max(Y) - min(Y)) * 0.02 ) plt.ylabel(ylabel) plt.xlabel(xlabel) plt.legend() plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles(three_d=True) def plot_surface(X: In2D, Y: In2D, Z: In2D, xlabel: str, ylabel: str, zlabel: str, filename: Union[str, Path], *, log_scale: bool = False, set_z_lim: bool = True, colorscheme: str = "rwth_gradient", figsize: tuple[float, float] = (4.33, 3.5), labelpad: Optional[float] = None, nbins: Optional[int] = None) -> None: """create a 2D surface plot of meshgrid-like valued Xs, Ys and Zs""" if not check_inputs( np.array(X).flatten(), np.array(Z).flatten(), xlabel, zlabel): return fig = plt.figure() ax = fig.add_subplot(projection="3d") fig.subplots_adjust(left=-0.02, right=0.75, bottom=0.15, top=0.98) ax.plot_surface(X, Y, Z, cmap=colorscheme) ax.set_box_aspect(aspect=None, zoom=.8) if labelpad is None: ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel, rotation=90) else: ax.set_xlabel(xlabel, labelpad=labelpad) ax.set_ylabel(ylabel, labelpad=labelpad) ax.set_zlabel(zlabel, rotation=90, labelpad=labelpad) assert ax.zaxis is not None ax.set_xlim(amin(X), amax(X)) # type: ignore ax.set_ylim(amin(Y), amax(Y)) # type: ignore if set_z_lim: if not log_scale: ax.set_zlim( amin(Z) - (amax(Z) - amin(Z)) * 0.02, # type: ignore amax(Z) + (amax(Z) - amin(Z)) * 0.02 # type: ignore ) else: ax.set_zlim( amin(Z) * 0.97, amax(Z) * 1.02) # type: ignore if log_scale: ax.set_yscale("log") ax.set_xscale("log") ax.set_zscale("log") for spine in ax.spines.values(): spine.set_visible(False) ax.xaxis.pane.set_alpha(0.3) ax.yaxis.pane.set_alpha(0.3) ax.zaxis.pane.set_alpha(0.3) if nbins is not None: ax.xaxis.set_major_locator( MaxNLocator(nbins) ) ax.yaxis.set_major_locator( MaxNLocator(nbins) ) fig.set_size_inches(*figsize) with catch_warnings(): filterwarnings("ignore", message=".*Tight layout") plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def plot(X: In, Y: In, xlabel: str, ylabel: str, filename: Union[Path, str], *, logscale: bool = False, ylim: Optional[tuple[float, float]] = None, yticks: bool = True, cycler: int = 0) -> None: """Create a simple 1D plot""" X, Y = fix_inputs(X, Y) # type: ignore if not check_inputs( X, Y, xlabel, ylabel): return if len(X) <= 1 or len(Y) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") if cycler > 0: for _ in range(cycler): plt.plot([], []) plt.plot(X, Y, linestyle="-") plt.xlabel(xlabel) plt.ylabel(ylabel) if logscale: plt.xscale("log") plt.yscale("log") if ylim is None: plt.ylim(min(Y) * 0.97, max(Y) * 1.02) elif ylim is None: plt.ylim( min(Y) - (max(Y) - min(Y)) * 0.02, max(Y) + (max(Y) - min(Y)) * 0.02 ) if ylim is not None: plt.ylim(*ylim) plt.xlim(min(X), max(X)) if not yticks: plt.yticks([]) plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def two_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, xlabel: str, ylabel: str, filename: Union[Path, str], *, logscale: bool = False, cycle: int = 0, color: tuple[int, int] = (0, 1), outer: bool = False) -> None: """Create a simple 1D plot with two different graphs inside of a single plot and a single y-axis. Keyword arguments: cycle -- skip this many colours in the colour-wheel before plotting color -- use these indeces in the colour-wheel when creating a plot outer -- use the outer limits on the x-axis rather than the inner limit """ x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore if not ( check_inputs(x1, y1, xlabel, label1) or check_inputs(x2, y2, xlabel, label2)): return if len(x1) <= 1 or len(y1) <= 1 or len(y2) <= 1 or len(x2) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") if cycle > 0: color = (color[0] + cycle, color[1] + cycle) # access colour prop_cycle = plt.rcParams["axes.prop_cycle"] try: linestyle = prop_cycle.by_key()["linestyle"] except KeyError: linestyle = rwth_cycle.by_key()["linestyle"] colors = prop_cycle.by_key()["color"] if max(color) >= len(colors): colors += colors linestyle += linestyle plt.plot(x1, y1, label=label1, color=colors[color[0]], linestyle=linestyle[0]) plt.plot(x2, y2, label=label2, color=colors[color[1]], linestyle=linestyle[1]) plt.xlabel(xlabel) plt.ylabel(ylabel) min_ = min(min(y1), min(y2)) max_ = max(max(y1), max(y2)) if not logscale: plt.ylim( min_ - (max_ - min_) * 0.02, max_ + (max_ - min_) * 0.02 ) else: plt.xscale("log") plt.yscale("log") plt.ylim( min_ * 0.97, max_ * 1.02) if outer: plt.xlim(min(min(x1), min(x2)), max(max(x1), max(x2))) else: plt.xlim(max(min(x1), min(x2)), min(max(x1), max(x2))) plt.legend() plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def three_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, x3: In, y3: In, label3: str, xlabel: str, ylabel: str, filename: Union[Path, str], *, logscale: bool = False, xmin: Optional[float] = None, xmax: Optional[float] = None) -> None: """Create a simple 1D plot with three different graphs inside of a single plot and a single y-axis.""" x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore x3, y3 = fix_inputs(x3, y3) # type: ignore if not ( check_inputs(x1, y1, xlabel, label1) or check_inputs(x2, y3, xlabel, label1) or check_inputs(x3, y3, xlabel, label3)): return if any(len(x) <= 1 for x in (x1, x2, y1, y2, x3, y3)): raise ValueError( f"The data for plot {filename} contains empty rows!") plt.plot(x1, y1, label=label1) plt.plot(x2, y2, label=label2, linestyle="dashed") plt.plot(x3, y3, label=label3, linestyle="dotted") plt.xlabel(xlabel) plt.ylabel(ylabel) min_ = min(min(y1), min(y2), min(y3)) max_ = max(max(y1), max(y2), max(y3)) if not logscale: plt.ylim( min_ - (max_ - min_) * 0.02, max_ + (max_ - min_) * 0.02 ) else: plt.xscale("log") plt.yscale("log") plt.ylim( min_ * 0.97, max_ * 1.02) if xmin is not None and xmax is not None: plt.xlim(xmin, xmax) else: plt.xlim(min(x1), max(x1)) plt.legend() plt.tight_layout() plt.savefig(filename) plt.close() @apply_styles def two_axis_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, xlabel: str, ylabel: str, ylabel2: str, filename: Union[Path, str], *, ticks: Optional[tuple[list[float], list[str]]] = None, xlim: Optional[tuple[float, float]] = None, color: tuple[int, int] = (0, 1))\ -> None: """Create a simple 1D plot with two different graphs inside of a single plot with two y-axis. The variable "ticks" sets costum y-ticks on the second y-axis. The first argument gives the position of the ticks and the second argument gives the values to be shown. Color selects the indeces of the chosen color-wheel, which should be taken for the different plots. The default is (1,2).""" x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore if not check_inputs( y1, y2, label1, label2): return if len(x1) <= 1 or len(y1) <= 1 or len(y2) <= 1 or len(x2) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") fig = plt.figure() ax1 = fig.add_subplot(111) # access colour prop_cycle = plt.rcParams["axes.prop_cycle"] try: linestyle = prop_cycle.by_key()["linestyle"] except KeyError: linestyle = rwth_cycle.by_key()["linestyle"] colors = prop_cycle.by_key()["color"] if max(color) >= len(colors): colors += colors linestyle += linestyle # first plot lines = ax1.plot(x1, y1, label=label1, color=colors[color[0]], linestyle=linestyle[0]) ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) ax1.set_ylim( min(y1) - (max(y1) - min(y1)) * 0.02, max(y1) + (max(y1) - min(y1)) * 0.02 ) # second plot ax2 = ax1.twinx() lines += ax2.plot(x2, y2, label=label2, color=colors[color[1]], linestyle=linestyle[1]) ax2.set_ylabel(ylabel2) ax2.set_ylim( min(y2) - (max(y2) - min(y2)) * 0.02, max(y2) + (max(y2) - min(y2)) * 0.02 ) # general settings if xlim is None: plt.xlim(min(x1), max(x1)) else: plt.xlim(*xlim) labels = [line.get_label() for line in lines] plt.legend(lines, labels) # ticks if ticks is not None: ax2.set_yticks(ticks[0]) ax2.set_yticklabels(ticks[1]) plt.tight_layout() plt.savefig(filename) plt.close() def make_invisible(ax: plt.Axes) -> None: """Make all patch spines invisible.""" ax.set_frame_on(True) ax.patch.set_visible(False) for spine in ax.spines.values(): spine.set_visible(False) @apply_styles def three_axis_plots(x1: In, y1: In, label1: str, x2: In, y2: In, label2: str, x3: In, y3: In, label3: str, xlabel: str, ylabel: str, ylabel2: str, ylabel3: str, filename: Union[Path, str], *, ticks: Optional[tuple[list[float], list[str]]] = None, xlim: Optional[tuple[float, float]] = None, color: tuple[int, int, int] = (0, 1, 2), legend: bool = True)\ -> None: """Create a simple 1D plot with two different graphs inside of a single plot with two y-axis. The variable "ticks" sets costum y-ticks on the second y-axis. The first argument gives the position of the ticks and the second argument gives the values to be shown. Color selects the indeces of the chosen color-wheel, which should be taken for the different plots. The default is (1,2).""" # pylint: disable=R0915 x1, y1 = fix_inputs(x1, y1) # type: ignore x2, y2 = fix_inputs(x2, y2) # type: ignore x3, y3 = fix_inputs(x3, y3) # type: ignore if not check_inputs( y1, y2, label1, label2): return if not check_inputs( x3, y3, xlabel, label3): return if len(x1) <= 1 or len(y1) <= 1 or len(y2) <= 1 or len(x2) <= 1: raise ValueError( f"The data for plot {filename} contains empty rows!") assert len(color) == 3 fig, ax1 = plt.subplots() fig.subplots_adjust(right=0.75) # access colour prop_cycle = plt.rcParams["axes.prop_cycle"] try: linestyle = prop_cycle.by_key()["linestyle"] except KeyError: linestyle = rwth_cycle.by_key()["linestyle"] colors = prop_cycle.by_key()["color"] if max(color) >= len(colors): colors += colors linestyle += linestyle # first plot lines = ax1.plot(x1, y1, label=label1, color=colors[color[0]], linestyle=linestyle[0]) ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) ax1.set_ylim( min(y1) - (max(y1) - min(y1)) * 0.02, max(y1) + (max(y1) - min(y1)) * 0.02 ) ax1.yaxis.label.set_color(colors[color[0]]) ax1.tick_params(axis="y", colors=colors[color[0]]) # second plot ax2 = ax1.twinx() lines += ax2.plot(x2, y2, label=label2, color=colors[color[1]], linestyle=linestyle[1]) ax2.set_ylabel(ylabel2) ax2.set_ylim( min(y2) - (max(y2) - min(y2)) * 0.02, max(y2) + (max(y2) - min(y2)) * 0.02 ) ax2.yaxis.label.set_color(colors[color[1]]) ax2.tick_params(axis="y", colors=colors[color[1]]) # third plot ax3 = ax1.twinx() make_invisible(ax3) ax3.spines["right"].set_position(("axes", 1.25)) ax3.spines["right"].set_visible(True) lines += ax3.plot(x3, y3, label=label3, color=colors[color[2]], linestyle=linestyle[2]) ax3.set_ylabel(ylabel3) ax3.set_ylim( min(y3) - (max(y3) - min(y3)) * 0.02, max(y3) + (max(y3) - min(y3)) * 0.02 ) ax3.yaxis.label.set_color(colors[color[2]]) ax3.tick_params(axis="y", colors=colors[color[2]]) # general settings if xlim is None: plt.xlim(min(x1), max(x1)) else: plt.xlim(*xlim) labels = [line.get_label() for line in lines] if legend: plt.legend(lines, labels) # ticks if ticks is not None: ax2.set_yticks(ticks[0]) ax2.set_yticklabels(ticks[1]) plt.tight_layout() plt.savefig(filename) plt.close()
0.945951
0.587795
from __future__ import annotations import csv import locale from contextlib import contextmanager from copy import copy, deepcopy from functools import wraps from typing import ( Generator, Optional, Union, Callable, Any, overload) from pathlib import Path from warnings import warn, catch_warnings, simplefilter from textwrap import dedent import mpl_toolkits import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.pyplot import Axes from matplotlib import colors from cycler import cycler import numpy as np from .utilities import translate from .types_ import Vector mpl.use("Agg") plt.rcParams["axes.unicode_minus"] = False SPINE_COLOR = "black" FIGSIZE = (3.15, 2.35) FIGSIZE_SLIM = (3.15, 2.1) FIGSIZE_SMALL = (2.2, 2.1) _savefig = copy(plt.savefig) # backup the old save-function def linestyles() -> Generator[str, None, None]: """get the line-stiles as an iterator""" yield "-" yield "dotted" yield "--" yield "-." rwth_colorlist: list[tuple[int, int, int]] = [(0, 84, 159), (246, 168, 0), (161, 16, 53), (0, 97, 101)] rwth_cmap = colors.ListedColormap(rwth_colorlist, name="rwth_list") mpl.colormaps.register(rwth_cmap) rwth_hex_colors = ["#00549F", "#F6A800", "#A11035", "#006165", "#57AB27", "#E30066"] rwth_cycle = ( cycler(color=rwth_hex_colors) + cycler(linestyle=["-", "--", "-.", "dotted", (0, (3, 1, 1, 1, 1, 1)), (0, (3, 5, 1, 5))])) rwth_gradient: dict[str, tuple[tuple[float, float, float], tuple[float, float, float]]] = { "red": ((0.0, 0.0, 0.0), (1.0, 142 / 255, 142 / 255)), "green": ((0.0, 84 / 255.0, 84 / 255), (1.0, 186 / 255, 186 / 255)), "blue": ((0.0, 159 / 255, 159 / 255), (1.0, 229 / 255, 229 / 255)), } def make_colormap(seq: list[tuple[tuple[Optional[float], ...], float, tuple[Optional[float], ...]]], name: str = "rwth_gradient")\ -> colors.LinearSegmentedColormap: """Return a LinearSegmentedColormap seq: a sequence of floats and RGB-tuples. The floats should be increasing and in the interval (0,1). """ cdict: dict[str, list[tuple[float, Optional[float], Optional[float] ] ]] =\ {"red": [], "green": [], "blue": []} for item in seq: red_1, green_1, blue_1 = item[0] red_2, green_2, blue_2 = item[2] cdict["red"].append((item[1], red_1, red_2)) cdict["green"].append((item[1], green_1, green_2)) cdict["blue"].append((item[1], blue_1, blue_2)) return colors.LinearSegmentedColormap(name, cdict) def partial_rgb(*x: float) -> tuple[float, ...]: """return the rgb value as a fraction of 1""" return tuple(v / 255.0 for v in x) hks_44 = partial_rgb(0.0, 84.0, 159.0) hks_44_75 = partial_rgb(64.0, 127.0, 183.0) rwth_orange = partial_rgb(246.0, 168.0, 0.0) rwth_orange_75 = partial_rgb(250.0, 190.0, 80.0) rwth_gelb = partial_rgb(255.0, 237.0, 0.0) rwth_magenta = partial_rgb(227.0, 0.0, 102.0) rwth_bordeux = partial_rgb(161.0, 16.0, 53.0) rwth_gradient_map = make_colormap( [ ((None, None, None), 0., hks_44), (hks_44_75, 0.33, hks_44_75), (rwth_orange_75, 0.66, rwth_orange), (rwth_bordeux, 1., (None, None, None)) ] ) mpl.colormaps.register(rwth_gradient_map) def _germanify(ax: Axes, reverse: bool = False) -> None: """ translate a figure from english to german. The direction can be reversed, if reverse it set to True Use the decorator instead """ for axi in ax.figure.axes: try: axi.ticklabel_format( useLocale=True) except AttributeError: pass items = [ axi.xaxis.label, axi.yaxis.label, *axi.get_xticklabels(), *axi.get_yticklabels(), ] try: if axi.zaxis is not None: items.append(axi.zaxis.label) items += [*axi.get_zticklabels()] except AttributeError: pass if axi.get_legend(): items += [*axi.get_legend().texts] for item in items: item.set_text(translate(item.get_text(), reverse=reverse)) try: plt.tight_layout() except IndexError: pass @contextmanager def germanify(ax: Axes, reverse: bool = False) -> Generator[None, None, None]: """ Translate the plot to german and reverse the translation in the other direction. If reverse is set to false, no reversal of the translation will be applied. """ old_locale = locale.getlocale(locale.LC_NUMERIC) try: try: locale.setlocale(locale.LC_ALL, "de_DE") locale.setlocale(locale.LC_NUMERIC, "de_DE") except locale.Error: # locale not available pass plt.rcParams["axes.formatter.use_locale"] = True _germanify(ax) yield except Exception as e: print("Translation of the plot has failed") print(e) raise finally: try: locale.setlocale(locale.LC_ALL, old_locale) locale.setlocale(locale.LC_ALL, old_locale) except locale.Error: pass plt.rcParams["axes.formatter.use_locale"] = False if reverse: _germanify(ax, reverse=True) def data_plot(filename: Union[str, Path]) -> None: """ Write the data, which is to be plotted, into a txt-file in csv-format. """ # pylint: disable=W0613 if isinstance(filename, str): file_ = Path(filename) else: file_ = filename file_ = file_.parent / (file_.stem + ".csv") ax = plt.gca() try: with open(file_, "w", encoding="utf-8", newline="") as data_file: writer = csv.writer(data_file) for line in ax.get_lines(): writer.writerow( [line.get_label(), ax.get_ylabel(), ax.get_xlabel()]) writer.writerow(line.get_xdata()) writer.writerow(line.get_ydata()) except PermissionError as e: print(f"Data-file could not be written for {filename}.") print(e) def read_data_plot(filename: Union[str, Path])\ -> dict[str, tuple[Vector, Vector]]: """Read and parse the csv-data-files, which have been generated by the 'data_plot'-function.""" data: dict[str, tuple[Vector, Vector]] = {} with open(filename, "r", newline="", encoding="utf-8") as file_: reader = csv.reader(file_) title: str x_data: Vector for i, row in enumerate(reader): if i % 3 == 0: title = row[0] elif i % 3 == 1: x_data = np.array(row, dtype=float) else: y_data: Vector y_data = np.array(row, dtype=float) data[title] = (x_data, y_data) return data @contextmanager def presentation_figure(figsize: tuple[float, float] = (4, 3)) ->\ Generator[Axes, None, None]: """context manager to open an close the file. default seaborn-like plot""" fig, ax = plt.subplots(figsize=figsize) mpl.rcParams["text.latex.preamble"] = [ r"\usepackage{helvet}", # set the normal font here r"\usepackage{sansmath}", # load up the sansmath so that math # -> helvet r"\sansmath", # <- tricky! -- gotta actually tell tex to use! ] mpl.rc("font", family="sans-serif") mpl.rc("text", usetex=False) font = {"size": 30} mpl.rc("font", **font) plt.set_cmap("rwth_list") try: yield ax except Exception as e: print("creation of plot failed") print(e) raise finally: plt.close(fig) plt.close("all") mpl.rcParams.update(mpl.rcParamsDefault) plt.style.use("default") old_save = plt.savefig def alternative_save( filename: Path, dpi: Optional[int] = None, bbox_inches: Optional[Union[str, tuple[float, float]]] = None, figsize: tuple[float, float] = FIGSIZE, subfolder: str = "small") -> None: """ Create additional saves of the given figsize and save these new figures into subfolder of given names. This function can be used to create additional plots of different sizes without a large overhead. """ fig = deepcopy(plt.gcf()) fig.set_size_inches(*figsize) with catch_warnings(record=True) as warning: simplefilter("always") fig.tight_layout() if warning: if issubclass(warning[-1].category, UserWarning): plt.close(fig) return folder = filename.parent / subfolder folder.mkdir(exist_ok=True) try: fig.savefig( folder / filename.name, dpi=dpi, bbox_inches=bbox_inches) except PermissionError: fig.savefig( folder / (filename.stem + "_" + filename.suffix), dpi=dpi, bbox_inches=bbox_inches) plt.close(fig) def try_save(filename: Path, dpi: Optional[int] = None, bbox_inches: Optional[Union[str, tuple[float, float]]] = None, *, small: bool = False, slim: bool = False) -> None: """Try to save the current figure to the given path, if it is not possible, try to save it under a different name. If small is set to true, also create a smaller version of the given plot. If slim is set to true, a slightly slimmer version of the plot is created.""" def alternative_save( figsize: tuple[float, float] = FIGSIZE, subfolder: str = "small") -> None: """ Create additional saves of the given figsize and save these new figures into subfolder of given names. This function can be used to create additional plots of different sizes without a large overhead. """ fig = deepcopy(plt.gcf()) fig.set_size_inches(*figsize) with catch_warnings(record=True) as warning: simplefilter("always") fig.tight_layout() if warning: if issubclass(warning[-1].category, UserWarning): plt.close(fig) return folder = filename.parent / subfolder folder.mkdir(exist_ok=True) try: fig.savefig( folder / filename.name, dpi=dpi, bbox_inches=bbox_inches) except PermissionError: fig.savefig( folder / (filename.stem + "_" + filename.suffix), dpi=dpi, bbox_inches=bbox_inches) plt.close(fig) try: old_save(filename, dpi=dpi, bbox_inches=bbox_inches) except PermissionError: old_save(filename.parent / (filename.stem + "_" + filename.suffix), dpi=dpi, bbox_inches=bbox_inches) if small: alternative_save( figsize=FIGSIZE_SMALL, subfolder="small") if slim: alternative_save( figsize=FIGSIZE_SLIM, subfolder="slim") def new_save_simple(subfolder: Union[str, Path] = "", suffix: str = "", *, german: bool = False, png: bool = True, pdf: bool = True, small: bool = False, slim: bool = False)\ -> Callable[..., None]: """ Return a new save function, which saves the file to a new given name in pdf format, and also creates a png version. If the argument "german" is set to true, also create German language version of the plots. """ @wraps(old_save) def savefig_(filename: Union[Path, str], dpi: Optional[int] = None, bbox_inches: Optional[ Union[tuple[float, float], str]] = None) -> None: """Save the plot to this location as pdf and png.""" if isinstance(filename, str): filename = Path(filename) if filename.parent == Path("."): warn( f"The filename {filename} in 'savefig' does " f"not contain a subfolder (i.e. 'subfolder/{filename})! " "Many files might be created onto the top level.") if subfolder: (filename.parent / subfolder).mkdir(exist_ok=True) new_path_pdf = filename.parent / subfolder / ( filename.stem + suffix + ".pdf") new_path_png = filename.parent / subfolder / ( filename.stem + suffix + ".png") else: new_path_pdf = filename.parent / ( filename.stem + suffix + ".pdf") new_path_png = filename.parent / ( filename.stem + suffix + ".png") # save the data data_path = filename.parent / ( filename.stem + ".dat") if not data_path.exists(): data_plot(data_path) try: plt.tight_layout() except IndexError: pass # save the figure if pdf: try_save(new_path_pdf, bbox_inches=bbox_inches, small=small, slim=slim) if png: try_save(new_path_png, bbox_inches=bbox_inches, dpi=dpi, small=small, slim=slim) if german: with germanify(plt.gca()): if pdf: try_save( new_path_pdf.parent / (new_path_pdf.stem + "_german.pdf"), bbox_inches=bbox_inches, small=small, slim=slim) if png: try_save( new_path_png.parent / (new_path_png.stem + "_german.png"), bbox_inches=bbox_inches, dpi=dpi, small=small, slim=slim) return savefig_ def presentation_settings() -> None: """Change the settings of rcParams for presentations.""" # increase size fig = plt.gcf() fig.set_size_inches(8, 6) mpl.rcParams["font.size"] = 24 mpl.rcParams["axes.titlesize"] = 24 mpl.rcParams["axes.labelsize"] = 24 # mpl.rcParams["axes.location"] = "left" mpl.rcParams["lines.linewidth"] = 3 mpl.rcParams["lines.markersize"] = 10 mpl.rcParams["xtick.labelsize"] = 18 mpl.rcParams["ytick.labelsize"] = 18 mpl.rcParams["figure.figsize"] = (10, 6) mpl.rcParams["figure.titlesize"] = 24 mpl.rcParams["font.family"] = "sans-serif" def set_rwth_colors(three_d: bool = False) -> None: """Apply the RWTH CD colors to matplotlib.""" mpl.rcParams["text.usetex"] = False mpl.rcParams["axes.prop_cycle"] = rwth_cycle if three_d: plt.set_cmap("rwth_gradient") else: plt.set_cmap("rwth_list") def set_serif() -> None: """Set the plot to use a style with serifs.""" mpl.rcParams["font.family"] = "serif" mpl.rcParams["font.serif"] = [ "cmr10", "stix", "Times New Roman"] mpl.rcParams["mathtext.fontset"] = "cm" def set_sans_serif() -> None: """Set matplotlib to use a sans-serif font.""" mpl.rcParams["font.family"] = "sans-serif" mpl.rcParams["font.sans-serif"] = [ "Arial", "Helvetica", "DejaVu Sans"] class ThreeDPlotException(Exception): """This exception is called when a 3D plot is drawn. This is used to exit the plotting function with the science-style.""" class FallBackException(Exception): """This is excaption is thrown when the fallback-style is selected. Only for debug purposes.""" def check_3d(three_d: bool) -> None: """This function checks if the current plot is a 3d plot. In that case, an exception is thrown, which can be used to stop the creation of the default plot.""" if three_d: raise ThreeDPlotException if isinstance(plt.gca(), mpl_toolkits.mplot3d.axes3d.Axes3D): raise ThreeDPlotException PlotFunction = Callable[..., None] @overload def apply_styles(plot_function: PlotFunction, *, three_d: bool = False, _fallback: bool = False) -> PlotFunction: ... @overload def apply_styles(plot_function: None, *, three_d: bool = False, _fallback: bool = False)\ -> Callable[[PlotFunction], PlotFunction]: ... @overload def apply_styles(*, three_d: bool = False, _fallback: bool = False)\ -> Callable[[PlotFunction], PlotFunction]: ... def apply_styles(plot_function: Optional[PlotFunction] = None, *, three_d: bool = False, _fallback: bool = False)\ -> Union[Callable[[PlotFunction], PlotFunction], PlotFunction]: """ Apply the newly defined styles to a function, which creates a plot. The new plots are saved into different subdirectories and multiple variants of every plot will be created. Arguments -------- three_d: Create a use this option for 3D-plots fallback: switch directly to the fallback-style (for debug) """ # pylint: disable=too-many-statements def _decorator(_plot_function: PlotFunction) -> PlotFunction: """This is the actual decorator. Thus, the outer function 'apply_styles' is actually a decorator-factory.""" @wraps(_plot_function) def new_plot_function(*args: Any, **kwargs: Any) -> None: """ New plotting function, with applied styles. """ # default plot plt.set_cmap("rwth_list") plt.savefig = new_save_simple(png=False) _plot_function(*args, **kwargs) errors = (OSError, FileNotFoundError, ThreeDPlotException, FallBackException) def journal() -> None: """Create a plot for journals.""" set_rwth_colors(three_d) set_serif() plt.savefig = new_save_simple("journal", png=False, small=not three_d) _plot_function(*args, **kwargs) plt.close("all") def sans_serif() -> None: """ Create a plot for journals with sans-serif-fonts. """ set_rwth_colors(three_d) set_sans_serif() plt.savefig = new_save_simple("sans_serif", german=True, small=not three_d) _plot_function(*args, **kwargs) plt.close("all") def grayscale() -> None: """ Create a plot in grayscales for disserations. """ mpl.rcParams["text.usetex"] = False set_serif() if three_d: plt.set_cmap("Greys") new_kwargs = copy(kwargs) new_kwargs["colorscheme"] = "Greys" else: new_kwargs = kwargs plt.savefig = new_save_simple("grayscale", png=False, small=not three_d, slim=not three_d) _plot_function(*args, **new_kwargs) plt.close("all") def presentation() -> None: """ Create a plot for presentations. """ if three_d: new_kwargs = copy(kwargs) new_kwargs["figsize"] = (9, 7) new_kwargs["labelpad"] = 20 new_kwargs["nbins"] = 5 else: new_kwargs = kwargs set_rwth_colors(three_d) presentation_settings() set_sans_serif() plt.savefig = new_save_simple("presentation", german=True, pdf=False) _plot_function(*args, **new_kwargs) plt.close("all") try: plt.close("all") check_3d(three_d) if _fallback: raise FallBackException plt.close("all") # journal with plt.style.context(["science", "ieee"]): journal() # sans-serif with plt.style.context(["science", "ieee", "nature"]): sans_serif() # grayscale with plt.style.context(["science", "ieee", "grayscale"]): grayscale() # presentation with plt.style.context(["science", "ieee"]): presentation() except errors: if not three_d: warn(dedent(""""Could not found style 'science'. The package was probably installed incorrectly. Using a fallback-style."""), ImportWarning) plt.close("all") # journal with plt.style.context("fast"): if not three_d: mpl.rcParams["figure.figsize"] = FIGSIZE mpl.rcParams["font.size"] = 8 journal() # sans-serif with plt.style.context("fast"): if not three_d: mpl.rcParams["figure.figsize"] = FIGSIZE mpl.rcParams["font.size"] = 8 sans_serif() # grayscale with plt.style.context("grayscale"): if not three_d: mpl.rcParams["figure.figsize"] = FIGSIZE mpl.rcParams["font.size"] = 8 grayscale() # presentation with plt.style.context("fast"): presentation() plt.savefig = old_save return new_plot_function if plot_function is not None: return _decorator(plot_function) return _decorator
scientific-plots
/scientific_plots-1.7.2-py3-none-any.whl/scientific_plots/plot_settings.py
plot_settings.py
from __future__ import annotations import csv import locale from contextlib import contextmanager from copy import copy, deepcopy from functools import wraps from typing import ( Generator, Optional, Union, Callable, Any, overload) from pathlib import Path from warnings import warn, catch_warnings, simplefilter from textwrap import dedent import mpl_toolkits import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.pyplot import Axes from matplotlib import colors from cycler import cycler import numpy as np from .utilities import translate from .types_ import Vector mpl.use("Agg") plt.rcParams["axes.unicode_minus"] = False SPINE_COLOR = "black" FIGSIZE = (3.15, 2.35) FIGSIZE_SLIM = (3.15, 2.1) FIGSIZE_SMALL = (2.2, 2.1) _savefig = copy(plt.savefig) # backup the old save-function def linestyles() -> Generator[str, None, None]: """get the line-stiles as an iterator""" yield "-" yield "dotted" yield "--" yield "-." rwth_colorlist: list[tuple[int, int, int]] = [(0, 84, 159), (246, 168, 0), (161, 16, 53), (0, 97, 101)] rwth_cmap = colors.ListedColormap(rwth_colorlist, name="rwth_list") mpl.colormaps.register(rwth_cmap) rwth_hex_colors = ["#00549F", "#F6A800", "#A11035", "#006165", "#57AB27", "#E30066"] rwth_cycle = ( cycler(color=rwth_hex_colors) + cycler(linestyle=["-", "--", "-.", "dotted", (0, (3, 1, 1, 1, 1, 1)), (0, (3, 5, 1, 5))])) rwth_gradient: dict[str, tuple[tuple[float, float, float], tuple[float, float, float]]] = { "red": ((0.0, 0.0, 0.0), (1.0, 142 / 255, 142 / 255)), "green": ((0.0, 84 / 255.0, 84 / 255), (1.0, 186 / 255, 186 / 255)), "blue": ((0.0, 159 / 255, 159 / 255), (1.0, 229 / 255, 229 / 255)), } def make_colormap(seq: list[tuple[tuple[Optional[float], ...], float, tuple[Optional[float], ...]]], name: str = "rwth_gradient")\ -> colors.LinearSegmentedColormap: """Return a LinearSegmentedColormap seq: a sequence of floats and RGB-tuples. The floats should be increasing and in the interval (0,1). """ cdict: dict[str, list[tuple[float, Optional[float], Optional[float] ] ]] =\ {"red": [], "green": [], "blue": []} for item in seq: red_1, green_1, blue_1 = item[0] red_2, green_2, blue_2 = item[2] cdict["red"].append((item[1], red_1, red_2)) cdict["green"].append((item[1], green_1, green_2)) cdict["blue"].append((item[1], blue_1, blue_2)) return colors.LinearSegmentedColormap(name, cdict) def partial_rgb(*x: float) -> tuple[float, ...]: """return the rgb value as a fraction of 1""" return tuple(v / 255.0 for v in x) hks_44 = partial_rgb(0.0, 84.0, 159.0) hks_44_75 = partial_rgb(64.0, 127.0, 183.0) rwth_orange = partial_rgb(246.0, 168.0, 0.0) rwth_orange_75 = partial_rgb(250.0, 190.0, 80.0) rwth_gelb = partial_rgb(255.0, 237.0, 0.0) rwth_magenta = partial_rgb(227.0, 0.0, 102.0) rwth_bordeux = partial_rgb(161.0, 16.0, 53.0) rwth_gradient_map = make_colormap( [ ((None, None, None), 0., hks_44), (hks_44_75, 0.33, hks_44_75), (rwth_orange_75, 0.66, rwth_orange), (rwth_bordeux, 1., (None, None, None)) ] ) mpl.colormaps.register(rwth_gradient_map) def _germanify(ax: Axes, reverse: bool = False) -> None: """ translate a figure from english to german. The direction can be reversed, if reverse it set to True Use the decorator instead """ for axi in ax.figure.axes: try: axi.ticklabel_format( useLocale=True) except AttributeError: pass items = [ axi.xaxis.label, axi.yaxis.label, *axi.get_xticklabels(), *axi.get_yticklabels(), ] try: if axi.zaxis is not None: items.append(axi.zaxis.label) items += [*axi.get_zticklabels()] except AttributeError: pass if axi.get_legend(): items += [*axi.get_legend().texts] for item in items: item.set_text(translate(item.get_text(), reverse=reverse)) try: plt.tight_layout() except IndexError: pass @contextmanager def germanify(ax: Axes, reverse: bool = False) -> Generator[None, None, None]: """ Translate the plot to german and reverse the translation in the other direction. If reverse is set to false, no reversal of the translation will be applied. """ old_locale = locale.getlocale(locale.LC_NUMERIC) try: try: locale.setlocale(locale.LC_ALL, "de_DE") locale.setlocale(locale.LC_NUMERIC, "de_DE") except locale.Error: # locale not available pass plt.rcParams["axes.formatter.use_locale"] = True _germanify(ax) yield except Exception as e: print("Translation of the plot has failed") print(e) raise finally: try: locale.setlocale(locale.LC_ALL, old_locale) locale.setlocale(locale.LC_ALL, old_locale) except locale.Error: pass plt.rcParams["axes.formatter.use_locale"] = False if reverse: _germanify(ax, reverse=True) def data_plot(filename: Union[str, Path]) -> None: """ Write the data, which is to be plotted, into a txt-file in csv-format. """ # pylint: disable=W0613 if isinstance(filename, str): file_ = Path(filename) else: file_ = filename file_ = file_.parent / (file_.stem + ".csv") ax = plt.gca() try: with open(file_, "w", encoding="utf-8", newline="") as data_file: writer = csv.writer(data_file) for line in ax.get_lines(): writer.writerow( [line.get_label(), ax.get_ylabel(), ax.get_xlabel()]) writer.writerow(line.get_xdata()) writer.writerow(line.get_ydata()) except PermissionError as e: print(f"Data-file could not be written for {filename}.") print(e) def read_data_plot(filename: Union[str, Path])\ -> dict[str, tuple[Vector, Vector]]: """Read and parse the csv-data-files, which have been generated by the 'data_plot'-function.""" data: dict[str, tuple[Vector, Vector]] = {} with open(filename, "r", newline="", encoding="utf-8") as file_: reader = csv.reader(file_) title: str x_data: Vector for i, row in enumerate(reader): if i % 3 == 0: title = row[0] elif i % 3 == 1: x_data = np.array(row, dtype=float) else: y_data: Vector y_data = np.array(row, dtype=float) data[title] = (x_data, y_data) return data @contextmanager def presentation_figure(figsize: tuple[float, float] = (4, 3)) ->\ Generator[Axes, None, None]: """context manager to open an close the file. default seaborn-like plot""" fig, ax = plt.subplots(figsize=figsize) mpl.rcParams["text.latex.preamble"] = [ r"\usepackage{helvet}", # set the normal font here r"\usepackage{sansmath}", # load up the sansmath so that math # -> helvet r"\sansmath", # <- tricky! -- gotta actually tell tex to use! ] mpl.rc("font", family="sans-serif") mpl.rc("text", usetex=False) font = {"size": 30} mpl.rc("font", **font) plt.set_cmap("rwth_list") try: yield ax except Exception as e: print("creation of plot failed") print(e) raise finally: plt.close(fig) plt.close("all") mpl.rcParams.update(mpl.rcParamsDefault) plt.style.use("default") old_save = plt.savefig def alternative_save( filename: Path, dpi: Optional[int] = None, bbox_inches: Optional[Union[str, tuple[float, float]]] = None, figsize: tuple[float, float] = FIGSIZE, subfolder: str = "small") -> None: """ Create additional saves of the given figsize and save these new figures into subfolder of given names. This function can be used to create additional plots of different sizes without a large overhead. """ fig = deepcopy(plt.gcf()) fig.set_size_inches(*figsize) with catch_warnings(record=True) as warning: simplefilter("always") fig.tight_layout() if warning: if issubclass(warning[-1].category, UserWarning): plt.close(fig) return folder = filename.parent / subfolder folder.mkdir(exist_ok=True) try: fig.savefig( folder / filename.name, dpi=dpi, bbox_inches=bbox_inches) except PermissionError: fig.savefig( folder / (filename.stem + "_" + filename.suffix), dpi=dpi, bbox_inches=bbox_inches) plt.close(fig) def try_save(filename: Path, dpi: Optional[int] = None, bbox_inches: Optional[Union[str, tuple[float, float]]] = None, *, small: bool = False, slim: bool = False) -> None: """Try to save the current figure to the given path, if it is not possible, try to save it under a different name. If small is set to true, also create a smaller version of the given plot. If slim is set to true, a slightly slimmer version of the plot is created.""" def alternative_save( figsize: tuple[float, float] = FIGSIZE, subfolder: str = "small") -> None: """ Create additional saves of the given figsize and save these new figures into subfolder of given names. This function can be used to create additional plots of different sizes without a large overhead. """ fig = deepcopy(plt.gcf()) fig.set_size_inches(*figsize) with catch_warnings(record=True) as warning: simplefilter("always") fig.tight_layout() if warning: if issubclass(warning[-1].category, UserWarning): plt.close(fig) return folder = filename.parent / subfolder folder.mkdir(exist_ok=True) try: fig.savefig( folder / filename.name, dpi=dpi, bbox_inches=bbox_inches) except PermissionError: fig.savefig( folder / (filename.stem + "_" + filename.suffix), dpi=dpi, bbox_inches=bbox_inches) plt.close(fig) try: old_save(filename, dpi=dpi, bbox_inches=bbox_inches) except PermissionError: old_save(filename.parent / (filename.stem + "_" + filename.suffix), dpi=dpi, bbox_inches=bbox_inches) if small: alternative_save( figsize=FIGSIZE_SMALL, subfolder="small") if slim: alternative_save( figsize=FIGSIZE_SLIM, subfolder="slim") def new_save_simple(subfolder: Union[str, Path] = "", suffix: str = "", *, german: bool = False, png: bool = True, pdf: bool = True, small: bool = False, slim: bool = False)\ -> Callable[..., None]: """ Return a new save function, which saves the file to a new given name in pdf format, and also creates a png version. If the argument "german" is set to true, also create German language version of the plots. """ @wraps(old_save) def savefig_(filename: Union[Path, str], dpi: Optional[int] = None, bbox_inches: Optional[ Union[tuple[float, float], str]] = None) -> None: """Save the plot to this location as pdf and png.""" if isinstance(filename, str): filename = Path(filename) if filename.parent == Path("."): warn( f"The filename {filename} in 'savefig' does " f"not contain a subfolder (i.e. 'subfolder/{filename})! " "Many files might be created onto the top level.") if subfolder: (filename.parent / subfolder).mkdir(exist_ok=True) new_path_pdf = filename.parent / subfolder / ( filename.stem + suffix + ".pdf") new_path_png = filename.parent / subfolder / ( filename.stem + suffix + ".png") else: new_path_pdf = filename.parent / ( filename.stem + suffix + ".pdf") new_path_png = filename.parent / ( filename.stem + suffix + ".png") # save the data data_path = filename.parent / ( filename.stem + ".dat") if not data_path.exists(): data_plot(data_path) try: plt.tight_layout() except IndexError: pass # save the figure if pdf: try_save(new_path_pdf, bbox_inches=bbox_inches, small=small, slim=slim) if png: try_save(new_path_png, bbox_inches=bbox_inches, dpi=dpi, small=small, slim=slim) if german: with germanify(plt.gca()): if pdf: try_save( new_path_pdf.parent / (new_path_pdf.stem + "_german.pdf"), bbox_inches=bbox_inches, small=small, slim=slim) if png: try_save( new_path_png.parent / (new_path_png.stem + "_german.png"), bbox_inches=bbox_inches, dpi=dpi, small=small, slim=slim) return savefig_ def presentation_settings() -> None: """Change the settings of rcParams for presentations.""" # increase size fig = plt.gcf() fig.set_size_inches(8, 6) mpl.rcParams["font.size"] = 24 mpl.rcParams["axes.titlesize"] = 24 mpl.rcParams["axes.labelsize"] = 24 # mpl.rcParams["axes.location"] = "left" mpl.rcParams["lines.linewidth"] = 3 mpl.rcParams["lines.markersize"] = 10 mpl.rcParams["xtick.labelsize"] = 18 mpl.rcParams["ytick.labelsize"] = 18 mpl.rcParams["figure.figsize"] = (10, 6) mpl.rcParams["figure.titlesize"] = 24 mpl.rcParams["font.family"] = "sans-serif" def set_rwth_colors(three_d: bool = False) -> None: """Apply the RWTH CD colors to matplotlib.""" mpl.rcParams["text.usetex"] = False mpl.rcParams["axes.prop_cycle"] = rwth_cycle if three_d: plt.set_cmap("rwth_gradient") else: plt.set_cmap("rwth_list") def set_serif() -> None: """Set the plot to use a style with serifs.""" mpl.rcParams["font.family"] = "serif" mpl.rcParams["font.serif"] = [ "cmr10", "stix", "Times New Roman"] mpl.rcParams["mathtext.fontset"] = "cm" def set_sans_serif() -> None: """Set matplotlib to use a sans-serif font.""" mpl.rcParams["font.family"] = "sans-serif" mpl.rcParams["font.sans-serif"] = [ "Arial", "Helvetica", "DejaVu Sans"] class ThreeDPlotException(Exception): """This exception is called when a 3D plot is drawn. This is used to exit the plotting function with the science-style.""" class FallBackException(Exception): """This is excaption is thrown when the fallback-style is selected. Only for debug purposes.""" def check_3d(three_d: bool) -> None: """This function checks if the current plot is a 3d plot. In that case, an exception is thrown, which can be used to stop the creation of the default plot.""" if three_d: raise ThreeDPlotException if isinstance(plt.gca(), mpl_toolkits.mplot3d.axes3d.Axes3D): raise ThreeDPlotException PlotFunction = Callable[..., None] @overload def apply_styles(plot_function: PlotFunction, *, three_d: bool = False, _fallback: bool = False) -> PlotFunction: ... @overload def apply_styles(plot_function: None, *, three_d: bool = False, _fallback: bool = False)\ -> Callable[[PlotFunction], PlotFunction]: ... @overload def apply_styles(*, three_d: bool = False, _fallback: bool = False)\ -> Callable[[PlotFunction], PlotFunction]: ... def apply_styles(plot_function: Optional[PlotFunction] = None, *, three_d: bool = False, _fallback: bool = False)\ -> Union[Callable[[PlotFunction], PlotFunction], PlotFunction]: """ Apply the newly defined styles to a function, which creates a plot. The new plots are saved into different subdirectories and multiple variants of every plot will be created. Arguments -------- three_d: Create a use this option for 3D-plots fallback: switch directly to the fallback-style (for debug) """ # pylint: disable=too-many-statements def _decorator(_plot_function: PlotFunction) -> PlotFunction: """This is the actual decorator. Thus, the outer function 'apply_styles' is actually a decorator-factory.""" @wraps(_plot_function) def new_plot_function(*args: Any, **kwargs: Any) -> None: """ New plotting function, with applied styles. """ # default plot plt.set_cmap("rwth_list") plt.savefig = new_save_simple(png=False) _plot_function(*args, **kwargs) errors = (OSError, FileNotFoundError, ThreeDPlotException, FallBackException) def journal() -> None: """Create a plot for journals.""" set_rwth_colors(three_d) set_serif() plt.savefig = new_save_simple("journal", png=False, small=not three_d) _plot_function(*args, **kwargs) plt.close("all") def sans_serif() -> None: """ Create a plot for journals with sans-serif-fonts. """ set_rwth_colors(three_d) set_sans_serif() plt.savefig = new_save_simple("sans_serif", german=True, small=not three_d) _plot_function(*args, **kwargs) plt.close("all") def grayscale() -> None: """ Create a plot in grayscales for disserations. """ mpl.rcParams["text.usetex"] = False set_serif() if three_d: plt.set_cmap("Greys") new_kwargs = copy(kwargs) new_kwargs["colorscheme"] = "Greys" else: new_kwargs = kwargs plt.savefig = new_save_simple("grayscale", png=False, small=not three_d, slim=not three_d) _plot_function(*args, **new_kwargs) plt.close("all") def presentation() -> None: """ Create a plot for presentations. """ if three_d: new_kwargs = copy(kwargs) new_kwargs["figsize"] = (9, 7) new_kwargs["labelpad"] = 20 new_kwargs["nbins"] = 5 else: new_kwargs = kwargs set_rwth_colors(three_d) presentation_settings() set_sans_serif() plt.savefig = new_save_simple("presentation", german=True, pdf=False) _plot_function(*args, **new_kwargs) plt.close("all") try: plt.close("all") check_3d(three_d) if _fallback: raise FallBackException plt.close("all") # journal with plt.style.context(["science", "ieee"]): journal() # sans-serif with plt.style.context(["science", "ieee", "nature"]): sans_serif() # grayscale with plt.style.context(["science", "ieee", "grayscale"]): grayscale() # presentation with plt.style.context(["science", "ieee"]): presentation() except errors: if not three_d: warn(dedent(""""Could not found style 'science'. The package was probably installed incorrectly. Using a fallback-style."""), ImportWarning) plt.close("all") # journal with plt.style.context("fast"): if not three_d: mpl.rcParams["figure.figsize"] = FIGSIZE mpl.rcParams["font.size"] = 8 journal() # sans-serif with plt.style.context("fast"): if not three_d: mpl.rcParams["figure.figsize"] = FIGSIZE mpl.rcParams["font.size"] = 8 sans_serif() # grayscale with plt.style.context("grayscale"): if not three_d: mpl.rcParams["figure.figsize"] = FIGSIZE mpl.rcParams["font.size"] = 8 grayscale() # presentation with plt.style.context("fast"): presentation() plt.savefig = old_save return new_plot_function if plot_function is not None: return _decorator(plot_function) return _decorator
0.744656
0.243817
from __future__ import print_function import re from functools import wraps from subprocess import Popen, PIPE from sys import __stdout__ from os import mkdir from os.path import dirname, exists from typing import Iterable, Optional, List, Callable, TypeVar, Union, Any from pathlib import Path from collections import OrderedDict from urllib3.exceptions import MaxRetryError from python_translator import Translator def running_average(X: List[float], n: int) -> List[float]: """creates a running average of X with n entries in both dircetions""" X_new = [] for i in range(n): X_new += [sum(X[0: i + 1]) / (i + 1)] for i in range(n, len(X) - n): X_new += [sum(X[i - n: i + n + 1]) / (2 * n + 1)] for i in range(len(X) - n, len(X)): X_new += [sum(X[2 * i - len(X) + 1:]) / ((len(X) - (i + 1)) * 2 + 1)] return X_new def quality_of_fit(X: List[float], Y: List[float]) -> float: """calculates the quality of a fit 'bestimmtheitsmass'""" mean_x = sum(X) / len(X) return sum(x ** 2 - mean_x ** 2 for x in X)\ / sum(x ** 2 - mean_x ** 2 for x in Y) Return = TypeVar("Return") def print_redirect(f: Callable[..., Return]) -> Callable[..., Return]: """ wraps print to print to both stdout and __stdout__ the reason for doing that is that abaqus replaces stdout and prints everything to abaqus this way everything can be seen both in the command line and in abaqus """ @wraps(f) def inner_function(*args: Any, **argv: Any) -> Return: f(*args, **argv) for i, arg in enumerate(args): if isinstance(type, arg): del arg[i] for _, val in argv.items(): if isinstance(type, val): del val argv["file"] = __stdout__ f(*args, **argv) try: return f(*args, **argv) except TypeError: print("The argument 'file' is twice in a print statement") raise return inner_function def filter_function(x: str) -> bool: """filter function in order to remove unused arguments from this script before parsing""" if ":" in x or "rwth" in x: return False analysed_item = x.replace("--", ".") analysed_item = analysed_item.replace("-", "!") if len(analysed_item) > 2\ and "." not in analysed_item\ and "!" in analysed_item: return False return True def filter_argv(X: list[str]) -> list[str]: """removes unessecery entries from argv which have been generated by abaqus""" Y: list[str] = list(X) for i, x in enumerate(X): if not filter_function(x): del Y[i] if i < len(Y): del Y[i + 1] return Y def dumb_plot(X: list[float], Y: list[float], title: str = "title", log: bool = False) -> None: """plot X and Y using dumb gnuplot""" try: with Popen(["gnuplot"], stdin=PIPE) as gnuplot: assert gnuplot, """Gnuplot could not be started.""" assert gnuplot.stdin, """Input to Gnuplot could not be found.""" gnuplot.stdin.write(bytes("set term dumb 79 25\n", "utf-8")) if log: gnuplot.stdin.write(bytes("set logscale xy\n", "utf-8")) gnuplot.stdin.write( bytes( f"""plot '-' using 1:2 title '{title}' with linespoints \n""", "utf-8" ) ) for x, y in zip(X, Y): gnuplot.stdin.write(bytes(f"{x} {y}\n", "utf-8")) gnuplot.stdin.write(bytes("e\n", "utf-8")) gnuplot.stdin.flush() except FileNotFoundError: print("There is no installed instance of gnuplot") return def read_file(filename: Union[str, Path], header: int = 0, type_: type = float) -> tuple[list[float], ...]: """read a file with given filename into a python-tuple. Skip n='header' lines in the beginning of the document""" # reads a given file and returns lists lists: list[list[float]] = [] with open(filename, "r", encoding="utf-8") as input_file: for i, line in enumerate(input_file): if i < header: continue lists += [[type_(v) for v in line.split()]] return tuple(list(v) for v in zip(*lists)) def write_file(filename: Union[Path, str], *args: Iterable[float], title: Optional[str] = None) -> None: """write the rows given in 'arga' to a file""" # write data to a file if not any(args[0]): raise Exception("Tried to write an empty row to a file") if isinstance(filename, str): filename = Path(filename) with open(filename, "w", encoding="utf-8") as output_file: if title is not None: output_file.write(title + "\n") for row in zip(*args): output_file.write(" ".join(str(r) for r in row) + "\n") def mkdir_p(foldername: str) -> None: """creates a new folder if the folder does not exist""" try: if exists(foldername): return mkdir(foldername) except IOError as e: # recursive creation of needed folders if e.errno != 2: raise mkdir_p(dirname(foldername)) mkdir_p(foldername) def trash_remover(func: Callable[..., tuple[Return, ...]])\ -> Callable[..., Return]: """only keeps the first output of a given function""" @wraps(func) def inner_function(*args: Any, **kwargs: Any) -> Return: result = func(*args, **kwargs) return result[0] return inner_function def use_translator(string: str, lang1: str, lang2: str) -> str: """ Translate the given input string from lang2 to lang1 using google translate. """ # one letter strings if len(string) <= 1: return string if r"\times" in string: return string try: translator = Translator() result: str result = translator.translate(string, lang1, lang2) except (OSError, MaxRetryError): return string return result def translate(string: str, reverse: bool = False) -> str: """translates a string from english to german @input string any string wich contains specific english words @input reverse translate ger->en if set to true @return the german translation of the same string""" if reverse: string = re.sub(r'(\d+),(\d+)', r'\1\.\2', string) else: string = re.sub(r'(\d+)\.(\d+)', r'\1,\2', string) _dict: dict[str, str] = OrderedDict({ "leakage": "Leckage", "contact pressure": "Kontaktdruck", "fluid pressure": "Fluiddruck", "pressure": "Druck", "density": "Dichte", "roundness": "Rundheit", "eccentricity": r"Exzentrizit\"at", "contact area": r"Kontaktoberfl\"ache", "area": r"Fl\"ache", "maximal": "Maximale", "time": "Zeit", "normal-force": "Normalkraft", "normal force": "Normalkraft", "total force": "Gesamtkraft", "force": "Kraft", "distance": "Abstand", "position": "Position", "contact broadness": "Kontaktbreite", "broadness": "Breite", "contact": "Kontakt-", "seat": "Sitz", "ball": "Kugel", "high": "hoch", "low": "tief", "elastic": "elastisch", "plastic": "plastisch", "angle": "Winkel", "degree": "Grad", "deg": "Grad", "hard": "hart", "soft": "weich", "fit": "Fit", "data": "Messwerte", "velocity": "Geschwindigkeit", "measurement": "Messung", "experiment": "Experiment", "simulation": "Simulation", "analytical": "analytisch", "signal": "Signal", "valve control": "Ventilansteuerung", "off": "zu", "on": "auf", "status": "Zustand", "valve": "Ventil", "relative pressure": "Relativdruck", "absolute pressure": "Absolutdruck", "relative": "relativ", "absolute": "absolut", "plot": "Graph" }) if not reverse and r"\times" not in string: for key, value in _dict.items(): if key in string.lower(): string = re.sub(key, value, string, flags=re.IGNORECASE) break else: string = use_translator(string, "german", "english") else: for key, value in _dict.items(): if value.lower() in string.lower(): string = string.lower().replace(value.lower(), key.lower()) break else: string = use_translator(string, "english", "german") return string
scientific-plots
/scientific_plots-1.7.2-py3-none-any.whl/scientific_plots/utilities.py
utilities.py
from __future__ import print_function import re from functools import wraps from subprocess import Popen, PIPE from sys import __stdout__ from os import mkdir from os.path import dirname, exists from typing import Iterable, Optional, List, Callable, TypeVar, Union, Any from pathlib import Path from collections import OrderedDict from urllib3.exceptions import MaxRetryError from python_translator import Translator def running_average(X: List[float], n: int) -> List[float]: """creates a running average of X with n entries in both dircetions""" X_new = [] for i in range(n): X_new += [sum(X[0: i + 1]) / (i + 1)] for i in range(n, len(X) - n): X_new += [sum(X[i - n: i + n + 1]) / (2 * n + 1)] for i in range(len(X) - n, len(X)): X_new += [sum(X[2 * i - len(X) + 1:]) / ((len(X) - (i + 1)) * 2 + 1)] return X_new def quality_of_fit(X: List[float], Y: List[float]) -> float: """calculates the quality of a fit 'bestimmtheitsmass'""" mean_x = sum(X) / len(X) return sum(x ** 2 - mean_x ** 2 for x in X)\ / sum(x ** 2 - mean_x ** 2 for x in Y) Return = TypeVar("Return") def print_redirect(f: Callable[..., Return]) -> Callable[..., Return]: """ wraps print to print to both stdout and __stdout__ the reason for doing that is that abaqus replaces stdout and prints everything to abaqus this way everything can be seen both in the command line and in abaqus """ @wraps(f) def inner_function(*args: Any, **argv: Any) -> Return: f(*args, **argv) for i, arg in enumerate(args): if isinstance(type, arg): del arg[i] for _, val in argv.items(): if isinstance(type, val): del val argv["file"] = __stdout__ f(*args, **argv) try: return f(*args, **argv) except TypeError: print("The argument 'file' is twice in a print statement") raise return inner_function def filter_function(x: str) -> bool: """filter function in order to remove unused arguments from this script before parsing""" if ":" in x or "rwth" in x: return False analysed_item = x.replace("--", ".") analysed_item = analysed_item.replace("-", "!") if len(analysed_item) > 2\ and "." not in analysed_item\ and "!" in analysed_item: return False return True def filter_argv(X: list[str]) -> list[str]: """removes unessecery entries from argv which have been generated by abaqus""" Y: list[str] = list(X) for i, x in enumerate(X): if not filter_function(x): del Y[i] if i < len(Y): del Y[i + 1] return Y def dumb_plot(X: list[float], Y: list[float], title: str = "title", log: bool = False) -> None: """plot X and Y using dumb gnuplot""" try: with Popen(["gnuplot"], stdin=PIPE) as gnuplot: assert gnuplot, """Gnuplot could not be started.""" assert gnuplot.stdin, """Input to Gnuplot could not be found.""" gnuplot.stdin.write(bytes("set term dumb 79 25\n", "utf-8")) if log: gnuplot.stdin.write(bytes("set logscale xy\n", "utf-8")) gnuplot.stdin.write( bytes( f"""plot '-' using 1:2 title '{title}' with linespoints \n""", "utf-8" ) ) for x, y in zip(X, Y): gnuplot.stdin.write(bytes(f"{x} {y}\n", "utf-8")) gnuplot.stdin.write(bytes("e\n", "utf-8")) gnuplot.stdin.flush() except FileNotFoundError: print("There is no installed instance of gnuplot") return def read_file(filename: Union[str, Path], header: int = 0, type_: type = float) -> tuple[list[float], ...]: """read a file with given filename into a python-tuple. Skip n='header' lines in the beginning of the document""" # reads a given file and returns lists lists: list[list[float]] = [] with open(filename, "r", encoding="utf-8") as input_file: for i, line in enumerate(input_file): if i < header: continue lists += [[type_(v) for v in line.split()]] return tuple(list(v) for v in zip(*lists)) def write_file(filename: Union[Path, str], *args: Iterable[float], title: Optional[str] = None) -> None: """write the rows given in 'arga' to a file""" # write data to a file if not any(args[0]): raise Exception("Tried to write an empty row to a file") if isinstance(filename, str): filename = Path(filename) with open(filename, "w", encoding="utf-8") as output_file: if title is not None: output_file.write(title + "\n") for row in zip(*args): output_file.write(" ".join(str(r) for r in row) + "\n") def mkdir_p(foldername: str) -> None: """creates a new folder if the folder does not exist""" try: if exists(foldername): return mkdir(foldername) except IOError as e: # recursive creation of needed folders if e.errno != 2: raise mkdir_p(dirname(foldername)) mkdir_p(foldername) def trash_remover(func: Callable[..., tuple[Return, ...]])\ -> Callable[..., Return]: """only keeps the first output of a given function""" @wraps(func) def inner_function(*args: Any, **kwargs: Any) -> Return: result = func(*args, **kwargs) return result[0] return inner_function def use_translator(string: str, lang1: str, lang2: str) -> str: """ Translate the given input string from lang2 to lang1 using google translate. """ # one letter strings if len(string) <= 1: return string if r"\times" in string: return string try: translator = Translator() result: str result = translator.translate(string, lang1, lang2) except (OSError, MaxRetryError): return string return result def translate(string: str, reverse: bool = False) -> str: """translates a string from english to german @input string any string wich contains specific english words @input reverse translate ger->en if set to true @return the german translation of the same string""" if reverse: string = re.sub(r'(\d+),(\d+)', r'\1\.\2', string) else: string = re.sub(r'(\d+)\.(\d+)', r'\1,\2', string) _dict: dict[str, str] = OrderedDict({ "leakage": "Leckage", "contact pressure": "Kontaktdruck", "fluid pressure": "Fluiddruck", "pressure": "Druck", "density": "Dichte", "roundness": "Rundheit", "eccentricity": r"Exzentrizit\"at", "contact area": r"Kontaktoberfl\"ache", "area": r"Fl\"ache", "maximal": "Maximale", "time": "Zeit", "normal-force": "Normalkraft", "normal force": "Normalkraft", "total force": "Gesamtkraft", "force": "Kraft", "distance": "Abstand", "position": "Position", "contact broadness": "Kontaktbreite", "broadness": "Breite", "contact": "Kontakt-", "seat": "Sitz", "ball": "Kugel", "high": "hoch", "low": "tief", "elastic": "elastisch", "plastic": "plastisch", "angle": "Winkel", "degree": "Grad", "deg": "Grad", "hard": "hart", "soft": "weich", "fit": "Fit", "data": "Messwerte", "velocity": "Geschwindigkeit", "measurement": "Messung", "experiment": "Experiment", "simulation": "Simulation", "analytical": "analytisch", "signal": "Signal", "valve control": "Ventilansteuerung", "off": "zu", "on": "auf", "status": "Zustand", "valve": "Ventil", "relative pressure": "Relativdruck", "absolute pressure": "Absolutdruck", "relative": "relativ", "absolute": "absolut", "plot": "Graph" }) if not reverse and r"\times" not in string: for key, value in _dict.items(): if key in string.lower(): string = re.sub(key, value, string, flags=re.IGNORECASE) break else: string = use_translator(string, "german", "english") else: for key, value in _dict.items(): if value.lower() in string.lower(): string = string.lower().replace(value.lower(), key.lower()) break else: string = use_translator(string, "english", "german") return string
0.551815
0.288379
from __future__ import annotations from os.path import join from math import pi from queue import Queue from threading import Thread from subprocess import check_output from typing import ( List, Tuple, TypeVar, Union, Iterable, Any, Optional) from pathlib import Path import matplotlib as mpl import matplotlib.pyplot as plt from numpy import array from .plot_settings import apply_styles, rwth_gradient_map from .types_ import Vector mpl.use("Agg") SURFACEFOLDER = join("simulation", "surface_data") In = TypeVar("In", List[float], Tuple[float], Vector) @apply_styles def create_two_d_scatter_plot( X: In, Y: In, Z: In, folder: Union[str, Path], plot_title: str, xlabel: Optional[str], ylabel: Optional[str], zlabel: str)\ -> None: """create two_d_plots""" # rearrange x, y, z to fit the shape needed for the plot fig = plt.figure() plt.set_cmap("jet") ax = fig.add_subplot(projection="3d") ax.scatter(Y, X, Z, cmap=rwth_gradient_map) if xlabel: ax.set_ylabel(xlabel) if ylabel: ax.set_xlabel(ylabel) ax.set_zlabel(zlabel) plt.tight_layout() plt.savefig(join(folder, plot_title.replace(" ", "_") + ".pdf")) @apply_styles def create_two_d_surface_plot( X: In, Y: In, Z: In, folder: Union[str, Path], plot_title: str, xlabel: Optional[str], ylabel: Optional[str], zlabel: str)\ -> None: """create two_d_plots""" # rearrange x, y, z to fit the shape needed for the plot fig = plt.figure() plt.set_cmap("jet") Z_flat: Vector = array(Z) # X_two_d, Y_two_d=meshgrid(X_flat, Y_flat) ax = fig.add_subplot(projection="3d") # ax.plot_surface(X_two_d, Y_two_d, Z_flat, cmap=rwth_gradient_map) ax.plot_trisurf(Y, X, Z, cmap=rwth_gradient_map) if ylabel: ax.set_ylabel(ylabel) if xlabel: ax.set_xlabel(xlabel) ax.set_zlabel(zlabel) ax.set_zlim(min(Z_flat) * 0.98, max(Z_flat) * 1.05) ax.set_xlim(min(Y), max(Y)) ax.set_ylim(min(X), max(X)) plt.tight_layout() plt.savefig(join(folder, plot_title.replace(" ", "_") + ".pdf")) def get_leakage(data: Iterable[Any], var: str = "density", surface_file: Optional[str] = None) -> list[float]: """calculate the leakage for a given set of data @param data enumerable set of valve-objects which allow the determination of the leakage @return list of the same dimension for the leakage""" if surface_file is None: surface_path = join(SURFACEFOLDER, "c_q.dat") leakage_bin = join(".", "subroutines", "bin", "test_leakage") Y: list[float] = [] X: list[float] = [] q: Queue[Any] = Queue() # run every call of the fortran-code in parallel for d in data: # put the data into the # queue to access them later as needed q.put(d) def work_of_queue() -> None: nonlocal X nonlocal Y while True: d = q.get() if d is None: return # last data-point pressure = max(d.short.p) print(pressure) print(d.angle, d.wobble) C = float(check_output([leakage_bin, "-i", surface_path, "-P", f"{pressure}"])) # A=d.short.unroundness2 A = d.short.sigma R = d.valve.seat.radius delta_p = d.dictionary["fluid-pressure"]["value"] Y += [delta_p * 2.0 * pi * R / A * C] X += [getattr(d, var)] threads = [Thread(target=work_of_queue) for i in range(16)] for thread in threads: # start all threads thread.start() q.put(None) for thread in threads: # wait for all threads to finish thread.join() return Y def plot_2d_surface( data: Iterable[Any], folder: str = "simulation", var1: str = "angle", var2: str = "wobble", xlabel1: Optional[str] = None, xlabel2: Optional[str] = None, surface_file: Optional[str] = None, ) -> None: """create the two d surface plots of two given variables""" X = [getattr(d, var1) for d in data] Y = [getattr(d, var2) for d in data] pressure = [max(d.short.p) for d in data] A = [d.short.unroundness for d in data] leakage = get_leakage(data, surface_file=surface_file) create_two_d_scatter_plot( X, Y, pressure, folder, "two d pressure", xlabel1, xlabel2, "maximal pressure [MPa]" ) create_two_d_scatter_plot( X, Y, A, folder, "two d area", xlabel1, xlabel2, "contact area [mm]" ) create_two_d_scatter_plot( X, Y, leakage, folder, "two d leakage", xlabel2, xlabel2, "leakage [ml/s]" ) create_two_d_surface_plot( X, Y, pressure, folder, "two d pressure surface", xlabel1, xlabel2, "maximal pressure [MPa]", ) create_two_d_surface_plot( X, Y, A, folder, "two d area surface", xlabel1, xlabel2, "contact area [mm]" ) create_two_d_surface_plot( X, Y, pressure, folder, "two d pressure surface", xlabel1, xlabel2, "maximal pressure [MPa]", ) create_two_d_surface_plot( X, Y, leakage, folder, "two d leakage surface", xlabel2, xlabel2, "leakage [ml/s]" )
scientific-plots
/scientific_plots-1.7.2-py3-none-any.whl/scientific_plots/two_d_plot.py
two_d_plot.py
from __future__ import annotations from os.path import join from math import pi from queue import Queue from threading import Thread from subprocess import check_output from typing import ( List, Tuple, TypeVar, Union, Iterable, Any, Optional) from pathlib import Path import matplotlib as mpl import matplotlib.pyplot as plt from numpy import array from .plot_settings import apply_styles, rwth_gradient_map from .types_ import Vector mpl.use("Agg") SURFACEFOLDER = join("simulation", "surface_data") In = TypeVar("In", List[float], Tuple[float], Vector) @apply_styles def create_two_d_scatter_plot( X: In, Y: In, Z: In, folder: Union[str, Path], plot_title: str, xlabel: Optional[str], ylabel: Optional[str], zlabel: str)\ -> None: """create two_d_plots""" # rearrange x, y, z to fit the shape needed for the plot fig = plt.figure() plt.set_cmap("jet") ax = fig.add_subplot(projection="3d") ax.scatter(Y, X, Z, cmap=rwth_gradient_map) if xlabel: ax.set_ylabel(xlabel) if ylabel: ax.set_xlabel(ylabel) ax.set_zlabel(zlabel) plt.tight_layout() plt.savefig(join(folder, plot_title.replace(" ", "_") + ".pdf")) @apply_styles def create_two_d_surface_plot( X: In, Y: In, Z: In, folder: Union[str, Path], plot_title: str, xlabel: Optional[str], ylabel: Optional[str], zlabel: str)\ -> None: """create two_d_plots""" # rearrange x, y, z to fit the shape needed for the plot fig = plt.figure() plt.set_cmap("jet") Z_flat: Vector = array(Z) # X_two_d, Y_two_d=meshgrid(X_flat, Y_flat) ax = fig.add_subplot(projection="3d") # ax.plot_surface(X_two_d, Y_two_d, Z_flat, cmap=rwth_gradient_map) ax.plot_trisurf(Y, X, Z, cmap=rwth_gradient_map) if ylabel: ax.set_ylabel(ylabel) if xlabel: ax.set_xlabel(xlabel) ax.set_zlabel(zlabel) ax.set_zlim(min(Z_flat) * 0.98, max(Z_flat) * 1.05) ax.set_xlim(min(Y), max(Y)) ax.set_ylim(min(X), max(X)) plt.tight_layout() plt.savefig(join(folder, plot_title.replace(" ", "_") + ".pdf")) def get_leakage(data: Iterable[Any], var: str = "density", surface_file: Optional[str] = None) -> list[float]: """calculate the leakage for a given set of data @param data enumerable set of valve-objects which allow the determination of the leakage @return list of the same dimension for the leakage""" if surface_file is None: surface_path = join(SURFACEFOLDER, "c_q.dat") leakage_bin = join(".", "subroutines", "bin", "test_leakage") Y: list[float] = [] X: list[float] = [] q: Queue[Any] = Queue() # run every call of the fortran-code in parallel for d in data: # put the data into the # queue to access them later as needed q.put(d) def work_of_queue() -> None: nonlocal X nonlocal Y while True: d = q.get() if d is None: return # last data-point pressure = max(d.short.p) print(pressure) print(d.angle, d.wobble) C = float(check_output([leakage_bin, "-i", surface_path, "-P", f"{pressure}"])) # A=d.short.unroundness2 A = d.short.sigma R = d.valve.seat.radius delta_p = d.dictionary["fluid-pressure"]["value"] Y += [delta_p * 2.0 * pi * R / A * C] X += [getattr(d, var)] threads = [Thread(target=work_of_queue) for i in range(16)] for thread in threads: # start all threads thread.start() q.put(None) for thread in threads: # wait for all threads to finish thread.join() return Y def plot_2d_surface( data: Iterable[Any], folder: str = "simulation", var1: str = "angle", var2: str = "wobble", xlabel1: Optional[str] = None, xlabel2: Optional[str] = None, surface_file: Optional[str] = None, ) -> None: """create the two d surface plots of two given variables""" X = [getattr(d, var1) for d in data] Y = [getattr(d, var2) for d in data] pressure = [max(d.short.p) for d in data] A = [d.short.unroundness for d in data] leakage = get_leakage(data, surface_file=surface_file) create_two_d_scatter_plot( X, Y, pressure, folder, "two d pressure", xlabel1, xlabel2, "maximal pressure [MPa]" ) create_two_d_scatter_plot( X, Y, A, folder, "two d area", xlabel1, xlabel2, "contact area [mm]" ) create_two_d_scatter_plot( X, Y, leakage, folder, "two d leakage", xlabel2, xlabel2, "leakage [ml/s]" ) create_two_d_surface_plot( X, Y, pressure, folder, "two d pressure surface", xlabel1, xlabel2, "maximal pressure [MPa]", ) create_two_d_surface_plot( X, Y, A, folder, "two d area surface", xlabel1, xlabel2, "contact area [mm]" ) create_two_d_surface_plot( X, Y, pressure, folder, "two d pressure surface", xlabel1, xlabel2, "maximal pressure [MPa]", ) create_two_d_surface_plot( X, Y, leakage, folder, "two d leakage surface", xlabel2, xlabel2, "leakage [ml/s]" )
0.901004
0.486392
import re from typing import Any, Callable, Iterable, List, Optional # ========================================= What can be exported? ========================================= __all__ = ['strings_to_', 'strings_to_integers', 'strings_to_floats', 'string_to_float', 'match_one_string', 'match_one_pattern', 'all_strings'] def strings_to_(strings: Iterable[str], f: Callable) -> Iterable[Any]: """ Convert a list of strings to a list of certain form, specified by *f*. :param strings: a list of string :param f: a function that converts your string :return: type undefined, but specified by `to_type` .. doctest:: >>> strings_to_(['0.333', '0.667', '0.250'], float) [0.333, 0.667, 0.25] """ if not all_strings(strings): raise TypeError('All have to be strings!') # ``type(strs)`` is the container of *strs*. return type(strings)(map(f, strings)) def strings_to_integers(strings: Iterable[str]) -> Iterable[int]: """ Convert a list of strings to a list of integers. :param strings: a list of string :return: a list of converted integers .. doctest:: >>> strings_to_integers(['1', '1.0', '-0.2']) [1, 1, ValueError('-0.2 cannot be converted to an integer')] >>> strings_to_integers(['1', '1.0', '-0.']) [1, 1, 0] """ return strings_to_(strings, lambda x: int(float(x)) if float(x).is_integer() else ValueError( "{} cannot be converted to an integer".format(x))) def strings_to_floats(strings: Iterable[str]) -> Iterable[float]: """ Convert a list of strings to a list of floats. :param strings: a list of string :return: a list of converted floats .. doctest:: >>> strings_to_floats(['1', '1.0', '-0.2']) [1.0, 1.0, -0.2] """ return strings_to_(strings, string_to_float) def string_to_float(s: str) -> float: """ Double precision float in Fortran file will have form 'x.ydz' or 'x.yDz', this cannot be convert directly to float by Python ``float`` function, so I wrote this function to help conversion. For example, :param s: a string denoting a double precision number :return: a Python floating point number .. doctest:: >>> string_to_float('1d-82') 1e-82 >>> string_to_float('-1.0D-82') -1e-82 >>> string_to_float('+0.8D234') 8e+233 >>> string_to_float('.8d234') 8e+233 >>> string_to_float('+1.0D-5') 1e-05 >>> string_to_float('-0.00001') -1e-05 >>> string_to_float('.8e234') 8e+233 >>> string_to_float('.1') 0.1 """ return float(re.sub('d', 'e', s, flags=re.IGNORECASE)) def match_one_string(pattern: str, s: str, *args): """ Make sure you know only none or one string will be matched! If you are not sure, use `match_one_pattern` instead. :param pattern: :param s: :param args: :return: .. doctest:: >>> p = "\d+" >>> s = "abc 123 def" >>> match_one_string(p, s, int) 123 >>> print(match_one_string(p, "abc")) Pattern "\d+" not found, or more than one found in string abc! None >>> print(match_one_string(p, "abc 123 def 456")) Pattern "\d+" not found, or more than one found in string abc 123 def 456! None """ try: # `match` is either an empty list or a list of string. match, = re.findall(pattern, s) if len(args) == 0: # If no wrapper argument is given, return directly the matched string return match elif len(args) == 1: # If wrapper argument is given, i.e., not empty, then apply wrapper to the match wrapper, = args return wrapper(match) else: raise TypeError( 'Multiple wrappers are given! Only one should be given!') except ValueError: print("Pattern \"{0}\" not found, or more than one found in string {1}!".format( pattern, s)) def match_one_pattern(pattern: str, s: str, *args: Callable, **flags): """ Find a pattern in a certain string. If found and a wrapper is given, then return the wrapped matched-string; if no wrapper is given, return the pure matched string. If no match is found, return None. :param pattern: a pattern, can be a string or a regular expression :param s: a string :param args: at most 1 argument can be given :param flags: the same flags as ``re.findall``'s :return: .. doctest:: >>> p = "\d+" >>> s = "abc 123 def 456" >>> match_one_pattern(p, s) ['123', '456'] >>> match_one_pattern(p, s, int) [123, 456] >>> match_one_pattern(p, "abc 123 def") ['123'] >>> print(match_one_pattern('s', 'abc')) Pattern "s" not found in string abc! None >>> match_one_pattern('s', 'Ssa', flags=re.IGNORECASE) ['S', 's'] """ match: Optional[List[str]] = re.findall(pattern, s, **flags) # `match` is either an empty list or a list of strings. if match: if len(args) == 0: # If no wrapper argument is given, return directly the matched string return match elif len(args) == 1: # If wrapper argument is given, i.e., not empty, then apply wrapper to the match wrapper, = args return [wrapper(m) for m in match] else: raise TypeError( 'Multiple wrappers are given! Only one should be given!') else: # If no match is found print("Pattern \"{0}\" not found in string {1}!".format(pattern, s)) return None def all_strings(iterable: Iterable[object]) -> bool: """ If any element of an iterable is not a string, return `True`. :param iterable: Can be a set, a tuple, a list, etc. :return: Whether any element of an iterable is not a string. .. doctest:: >>> all_strings(['a', 'b', 'c', 3]) False >>> all_strings(('a', 'b', 'c', 'd')) True """ return all(isinstance(_, str) for _ in iterable)
scientific-string
/scientific_string-0.1.0-py3-none-any.whl/scientific_string/__init__.py
__init__.py
import re from typing import Any, Callable, Iterable, List, Optional # ========================================= What can be exported? ========================================= __all__ = ['strings_to_', 'strings_to_integers', 'strings_to_floats', 'string_to_float', 'match_one_string', 'match_one_pattern', 'all_strings'] def strings_to_(strings: Iterable[str], f: Callable) -> Iterable[Any]: """ Convert a list of strings to a list of certain form, specified by *f*. :param strings: a list of string :param f: a function that converts your string :return: type undefined, but specified by `to_type` .. doctest:: >>> strings_to_(['0.333', '0.667', '0.250'], float) [0.333, 0.667, 0.25] """ if not all_strings(strings): raise TypeError('All have to be strings!') # ``type(strs)`` is the container of *strs*. return type(strings)(map(f, strings)) def strings_to_integers(strings: Iterable[str]) -> Iterable[int]: """ Convert a list of strings to a list of integers. :param strings: a list of string :return: a list of converted integers .. doctest:: >>> strings_to_integers(['1', '1.0', '-0.2']) [1, 1, ValueError('-0.2 cannot be converted to an integer')] >>> strings_to_integers(['1', '1.0', '-0.']) [1, 1, 0] """ return strings_to_(strings, lambda x: int(float(x)) if float(x).is_integer() else ValueError( "{} cannot be converted to an integer".format(x))) def strings_to_floats(strings: Iterable[str]) -> Iterable[float]: """ Convert a list of strings to a list of floats. :param strings: a list of string :return: a list of converted floats .. doctest:: >>> strings_to_floats(['1', '1.0', '-0.2']) [1.0, 1.0, -0.2] """ return strings_to_(strings, string_to_float) def string_to_float(s: str) -> float: """ Double precision float in Fortran file will have form 'x.ydz' or 'x.yDz', this cannot be convert directly to float by Python ``float`` function, so I wrote this function to help conversion. For example, :param s: a string denoting a double precision number :return: a Python floating point number .. doctest:: >>> string_to_float('1d-82') 1e-82 >>> string_to_float('-1.0D-82') -1e-82 >>> string_to_float('+0.8D234') 8e+233 >>> string_to_float('.8d234') 8e+233 >>> string_to_float('+1.0D-5') 1e-05 >>> string_to_float('-0.00001') -1e-05 >>> string_to_float('.8e234') 8e+233 >>> string_to_float('.1') 0.1 """ return float(re.sub('d', 'e', s, flags=re.IGNORECASE)) def match_one_string(pattern: str, s: str, *args): """ Make sure you know only none or one string will be matched! If you are not sure, use `match_one_pattern` instead. :param pattern: :param s: :param args: :return: .. doctest:: >>> p = "\d+" >>> s = "abc 123 def" >>> match_one_string(p, s, int) 123 >>> print(match_one_string(p, "abc")) Pattern "\d+" not found, or more than one found in string abc! None >>> print(match_one_string(p, "abc 123 def 456")) Pattern "\d+" not found, or more than one found in string abc 123 def 456! None """ try: # `match` is either an empty list or a list of string. match, = re.findall(pattern, s) if len(args) == 0: # If no wrapper argument is given, return directly the matched string return match elif len(args) == 1: # If wrapper argument is given, i.e., not empty, then apply wrapper to the match wrapper, = args return wrapper(match) else: raise TypeError( 'Multiple wrappers are given! Only one should be given!') except ValueError: print("Pattern \"{0}\" not found, or more than one found in string {1}!".format( pattern, s)) def match_one_pattern(pattern: str, s: str, *args: Callable, **flags): """ Find a pattern in a certain string. If found and a wrapper is given, then return the wrapped matched-string; if no wrapper is given, return the pure matched string. If no match is found, return None. :param pattern: a pattern, can be a string or a regular expression :param s: a string :param args: at most 1 argument can be given :param flags: the same flags as ``re.findall``'s :return: .. doctest:: >>> p = "\d+" >>> s = "abc 123 def 456" >>> match_one_pattern(p, s) ['123', '456'] >>> match_one_pattern(p, s, int) [123, 456] >>> match_one_pattern(p, "abc 123 def") ['123'] >>> print(match_one_pattern('s', 'abc')) Pattern "s" not found in string abc! None >>> match_one_pattern('s', 'Ssa', flags=re.IGNORECASE) ['S', 's'] """ match: Optional[List[str]] = re.findall(pattern, s, **flags) # `match` is either an empty list or a list of strings. if match: if len(args) == 0: # If no wrapper argument is given, return directly the matched string return match elif len(args) == 1: # If wrapper argument is given, i.e., not empty, then apply wrapper to the match wrapper, = args return [wrapper(m) for m in match] else: raise TypeError( 'Multiple wrappers are given! Only one should be given!') else: # If no match is found print("Pattern \"{0}\" not found in string {1}!".format(pattern, s)) return None def all_strings(iterable: Iterable[object]) -> bool: """ If any element of an iterable is not a string, return `True`. :param iterable: Can be a set, a tuple, a list, etc. :return: Whether any element of an iterable is not a string. .. doctest:: >>> all_strings(['a', 'b', 'c', 3]) False >>> all_strings(('a', 'b', 'c', 'd')) True """ return all(isinstance(_, str) for _ in iterable)
0.86852
0.540621
import matplotlib.pyplot as plt import numpy as np from scientific_tools.graphics.function_graphs import plot_2Dfunction import scientific_tools.physics.uncertainty as uncertainty def plot_uncertainty_function(f, u_f, min_x, max_x, values_number, args_before_x=[], args_after_x=[], title="", xlabel="", ylabel="", function_label="f(x)", uncertainty_label="f(x)±u(f(x))", function_color='red', uncertainty_color='blue', function_linestyle="-", uncertainty_linestyle="-", **kwargs) : """Draw a graph with f, f + u_f and f - u_f Draw an uncertainty graph with the function f, the function plus its uncertainty (f + u_f) and the fonction minus its uncertainty (f - u_f). f is a function that take at least one argument x that varies from min_x to max_x by taking values_number values. u_f calculate the uncertainty of f. It take at least one argument : x. (To add other arguments, see plot_2Dfunction documentation. N.B. f and u_f must have the same arguments) title is the graph title xlabel and ylabel are texts to put on the axes function_label is the text display in the legend about function curve uncertainty_label is the text display in the legend about curves that represent f ± u_f function_color is color of function curve uncertainty_color is the color of curves that represent f ± u_f function_linestyle & uncertainty_linestyle are the line style of each curve (cf Matplotlib docs for futher information) """ f_plus_u = lambda *args, **kwargs : f(*args, **kwargs) + u_f(*args, **kwargs) plot_2Dfunction(f_plus_u, min_x, max_x, values_number, args_before_x, args_after_x, color=uncertainty_color, linestyle =uncertainty_linestyle, function_label=uncertainty_label, **kwargs)#draw f+u_f f_minus_u = lambda *args, **kwargs : f(*args, **kwargs) - u_f(*args, **kwargs) plot_2Dfunction(f_minus_u, min_x, max_x, values_number, args_before_x, args_after_x, color=uncertainty_color, linestyle =uncertainty_linestyle, **kwargs)#draw f-u_f plot_2Dfunction(f, min_x, max_x, values_number, args_before_x, args_after_x, title=title, xlabel=xlabel, ylabel=ylabel, function_label=function_label, color=function_color, linestyle =function_linestyle, **kwargs)#draw f (this is the last function drawing else title and axes labels haven't been displayed) plt.legend()#show function & uncertainty labels def plot_uncertainty_points(x, y, u_x, u_y, title="Experimental values with error bar", xlabel="", ylabel="") : """Draw experimental values with error bar x is the list of x coordinates, y is the list of y coordinates u_x is the list of x uncertainties, u_y is the list of y uncertainties xlabel is the text to display with the x ax ylabel is the text to display with the y ax """ plt.errorbar(x, y, xerr=u_x, yerr=u_y, fmt='bo', label='Mesures') plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def null_function(*args, **kwargs) : """Return 0 for all value of 'value'. It's can use as an uncertainty calculator when the function is a reference function. (see the documentation of plot_z_score_graph). """ return 0 def plot_z_score_graph(f1, u_f1, f2, u_f2, min_x, max_x, values_nb, args_f1_before_x=[], args_f1_after_x=[], kwargs_f1={}, args_f2_before_x=[], args_f2_after_x=[], kwargs_f2={}, z_score_limit=2, title="", xlabel="", ylabel="", limit_label="Limits of z-score validity", z_score_label="Z-score", limit_color='red', z_score_color='blue', limit_linestyle="-", z_score_linestyle="-",) : """Trace the z-score between two functions f1 is the first function & f2 is the second one. u_f1 is the function that calculate the f1 uncertainty & u_f2 calculate f2 uncertainty. Those four functions takes at least one argument x that varies from min_x to max_x by taking values_nb values. f1 and u_f1 take same args and kwargs. args_f1_before_x is the list of f1 positional arguments before the x position args_f1_after_x is the list of f1 positional arguments after the x position kwargs_f1 is a dictionary with f1 kwargs (Idem for f2) If a function is a function reference, u_f must be null_function (define in this module). z_score_limit is the validity limit for the z-score (usually, it's 2) limit_color is color of lines that represents limits of z_score validity title is the graph title xlabel and ylabel are texts to put on the axes limit_label is the text display in the legend about lines that represents limits of z_score validity z_score_label is the text display in the legend about the z-score curve z_score_color is the color of the z_score curve limit_linestyle & z_score_linestyle are the line style of each curve (cf Matplotlib docs for futher information) """ x_values = np.linspace(min_x, max_x, values_nb) #calculate values for f1 & f2 f1_values = [] u_f1_values = [] f2_values = [] u_f2_values = [] for x in x_values : f1_values.append(f1(*args_f1_before_x, x, *args_f1_after_x, **kwargs_f1)) if u_f1 is not null_function : u_f1_values.append(u_f1(*args_f1_before_x, x, *args_f1_after_x, **kwargs_f1)) f2_values.append(f2(*args_f2_before_x, x, *args_f2_after_x, **kwargs_f2)) if u_f2 is not null_function : u_f2_values.append(u_f2(*args_f2_before_x, x, *args_f2_after_x, **kwargs_f2)) z_score_values = [] #calculate z_score if u_f1 is null_function : for i in range(values_nb) : z_score_values.append(uncertainty.z_score_ref(f2_values[i], f1_values[i], u_f2_values[i])) elif u_f2 is null_function : for i in range(values_nb) : z_score_values.append(uncertainty.z_score_ref(f1_values[i], f2_values[i], u_f1_values[i])) else : for i in range(values_nb) : z_score_values.append(uncertainty.z_score(f1_values[i], u_f1_values[i], f2_values[i], u_f2_values[i])) #displaying plt.plot(x_values, z_score_values, color=z_score_color, linestyle=z_score_linestyle, label=z_score_label) plt.plot([np.min(x_values), np.max(x_values)], [z_score_limit, z_score_limit], color=limit_color,linestyle=limit_linestyle, label=limit_label) plt.plot([np.min(x_values), np.max(x_values)], [-z_score_limit, -z_score_limit], color=limit_color,linestyle=limit_linestyle) plt.legend() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def plot_z_score_points_graph(x, y1, u_y1, y2, u_y2, z_score_limit=2, title="", xlabel="", ylabel="", limit_label="Limits of z-score validity", z_score_label="Z-score", limit_color='red', z_score_color='blue', limit_linestyle="-", z_score_linestyle="-") : """Trace the z-score between two lists of points x is the list of point abscissa y1 is the first list of values & f2 is the second one. u_y1 is the list of uncertainties of y1 points & u_y2 is the list for y2 points uncertainties. If a list of points is a reference, u_y be a list of zero title is the graph title xlabel and ylabel are texts to put on the axes limit_label is the text display in the legend about lines that represents limits of z_score validity z_score_label is the text display in the legend about the z-score curve z_score_limit is the validity limit for the z-score (usually, it's 2) limit_color is color of lines that represents limits of z_score validity z_score_color is the color of the z_score curve limit_linestyle & z_score_linestyle are the line style of each curve (cf Matplotlib docs for futher information) """ z_score_values = [] #calculate z_score for i in range(len(x)) : z_score_values.append(uncertainty.z_score(y1[i], u_y1[i], y2[i], u_y2[i])) #displaying plt.plot(x, z_score_values, color=z_score_color, linestyle=z_score_linestyle, label=z_score_label) plt.plot([np.min(x), np.max(x)], [z_score_limit, z_score_limit], color=limit_color,linestyle=limit_linestyle, label=limit_label) plt.plot([np.min(x), np.max(x)], [-z_score_limit, -z_score_limit], color=limit_color,linestyle=limit_linestyle) plt.legend() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel)
scientific-tools
/scientific_tools-0.0.0a17-py3-none-any.whl/scientific_tools/graphics/uncertainty_graphs.py
uncertainty_graphs.py
import matplotlib.pyplot as plt import numpy as np from scientific_tools.graphics.function_graphs import plot_2Dfunction import scientific_tools.physics.uncertainty as uncertainty def plot_uncertainty_function(f, u_f, min_x, max_x, values_number, args_before_x=[], args_after_x=[], title="", xlabel="", ylabel="", function_label="f(x)", uncertainty_label="f(x)±u(f(x))", function_color='red', uncertainty_color='blue', function_linestyle="-", uncertainty_linestyle="-", **kwargs) : """Draw a graph with f, f + u_f and f - u_f Draw an uncertainty graph with the function f, the function plus its uncertainty (f + u_f) and the fonction minus its uncertainty (f - u_f). f is a function that take at least one argument x that varies from min_x to max_x by taking values_number values. u_f calculate the uncertainty of f. It take at least one argument : x. (To add other arguments, see plot_2Dfunction documentation. N.B. f and u_f must have the same arguments) title is the graph title xlabel and ylabel are texts to put on the axes function_label is the text display in the legend about function curve uncertainty_label is the text display in the legend about curves that represent f ± u_f function_color is color of function curve uncertainty_color is the color of curves that represent f ± u_f function_linestyle & uncertainty_linestyle are the line style of each curve (cf Matplotlib docs for futher information) """ f_plus_u = lambda *args, **kwargs : f(*args, **kwargs) + u_f(*args, **kwargs) plot_2Dfunction(f_plus_u, min_x, max_x, values_number, args_before_x, args_after_x, color=uncertainty_color, linestyle =uncertainty_linestyle, function_label=uncertainty_label, **kwargs)#draw f+u_f f_minus_u = lambda *args, **kwargs : f(*args, **kwargs) - u_f(*args, **kwargs) plot_2Dfunction(f_minus_u, min_x, max_x, values_number, args_before_x, args_after_x, color=uncertainty_color, linestyle =uncertainty_linestyle, **kwargs)#draw f-u_f plot_2Dfunction(f, min_x, max_x, values_number, args_before_x, args_after_x, title=title, xlabel=xlabel, ylabel=ylabel, function_label=function_label, color=function_color, linestyle =function_linestyle, **kwargs)#draw f (this is the last function drawing else title and axes labels haven't been displayed) plt.legend()#show function & uncertainty labels def plot_uncertainty_points(x, y, u_x, u_y, title="Experimental values with error bar", xlabel="", ylabel="") : """Draw experimental values with error bar x is the list of x coordinates, y is the list of y coordinates u_x is the list of x uncertainties, u_y is the list of y uncertainties xlabel is the text to display with the x ax ylabel is the text to display with the y ax """ plt.errorbar(x, y, xerr=u_x, yerr=u_y, fmt='bo', label='Mesures') plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def null_function(*args, **kwargs) : """Return 0 for all value of 'value'. It's can use as an uncertainty calculator when the function is a reference function. (see the documentation of plot_z_score_graph). """ return 0 def plot_z_score_graph(f1, u_f1, f2, u_f2, min_x, max_x, values_nb, args_f1_before_x=[], args_f1_after_x=[], kwargs_f1={}, args_f2_before_x=[], args_f2_after_x=[], kwargs_f2={}, z_score_limit=2, title="", xlabel="", ylabel="", limit_label="Limits of z-score validity", z_score_label="Z-score", limit_color='red', z_score_color='blue', limit_linestyle="-", z_score_linestyle="-",) : """Trace the z-score between two functions f1 is the first function & f2 is the second one. u_f1 is the function that calculate the f1 uncertainty & u_f2 calculate f2 uncertainty. Those four functions takes at least one argument x that varies from min_x to max_x by taking values_nb values. f1 and u_f1 take same args and kwargs. args_f1_before_x is the list of f1 positional arguments before the x position args_f1_after_x is the list of f1 positional arguments after the x position kwargs_f1 is a dictionary with f1 kwargs (Idem for f2) If a function is a function reference, u_f must be null_function (define in this module). z_score_limit is the validity limit for the z-score (usually, it's 2) limit_color is color of lines that represents limits of z_score validity title is the graph title xlabel and ylabel are texts to put on the axes limit_label is the text display in the legend about lines that represents limits of z_score validity z_score_label is the text display in the legend about the z-score curve z_score_color is the color of the z_score curve limit_linestyle & z_score_linestyle are the line style of each curve (cf Matplotlib docs for futher information) """ x_values = np.linspace(min_x, max_x, values_nb) #calculate values for f1 & f2 f1_values = [] u_f1_values = [] f2_values = [] u_f2_values = [] for x in x_values : f1_values.append(f1(*args_f1_before_x, x, *args_f1_after_x, **kwargs_f1)) if u_f1 is not null_function : u_f1_values.append(u_f1(*args_f1_before_x, x, *args_f1_after_x, **kwargs_f1)) f2_values.append(f2(*args_f2_before_x, x, *args_f2_after_x, **kwargs_f2)) if u_f2 is not null_function : u_f2_values.append(u_f2(*args_f2_before_x, x, *args_f2_after_x, **kwargs_f2)) z_score_values = [] #calculate z_score if u_f1 is null_function : for i in range(values_nb) : z_score_values.append(uncertainty.z_score_ref(f2_values[i], f1_values[i], u_f2_values[i])) elif u_f2 is null_function : for i in range(values_nb) : z_score_values.append(uncertainty.z_score_ref(f1_values[i], f2_values[i], u_f1_values[i])) else : for i in range(values_nb) : z_score_values.append(uncertainty.z_score(f1_values[i], u_f1_values[i], f2_values[i], u_f2_values[i])) #displaying plt.plot(x_values, z_score_values, color=z_score_color, linestyle=z_score_linestyle, label=z_score_label) plt.plot([np.min(x_values), np.max(x_values)], [z_score_limit, z_score_limit], color=limit_color,linestyle=limit_linestyle, label=limit_label) plt.plot([np.min(x_values), np.max(x_values)], [-z_score_limit, -z_score_limit], color=limit_color,linestyle=limit_linestyle) plt.legend() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def plot_z_score_points_graph(x, y1, u_y1, y2, u_y2, z_score_limit=2, title="", xlabel="", ylabel="", limit_label="Limits of z-score validity", z_score_label="Z-score", limit_color='red', z_score_color='blue', limit_linestyle="-", z_score_linestyle="-") : """Trace the z-score between two lists of points x is the list of point abscissa y1 is the first list of values & f2 is the second one. u_y1 is the list of uncertainties of y1 points & u_y2 is the list for y2 points uncertainties. If a list of points is a reference, u_y be a list of zero title is the graph title xlabel and ylabel are texts to put on the axes limit_label is the text display in the legend about lines that represents limits of z_score validity z_score_label is the text display in the legend about the z-score curve z_score_limit is the validity limit for the z-score (usually, it's 2) limit_color is color of lines that represents limits of z_score validity z_score_color is the color of the z_score curve limit_linestyle & z_score_linestyle are the line style of each curve (cf Matplotlib docs for futher information) """ z_score_values = [] #calculate z_score for i in range(len(x)) : z_score_values.append(uncertainty.z_score(y1[i], u_y1[i], y2[i], u_y2[i])) #displaying plt.plot(x, z_score_values, color=z_score_color, linestyle=z_score_linestyle, label=z_score_label) plt.plot([np.min(x), np.max(x)], [z_score_limit, z_score_limit], color=limit_color,linestyle=limit_linestyle, label=limit_label) plt.plot([np.min(x), np.max(x)], [-z_score_limit, -z_score_limit], color=limit_color,linestyle=limit_linestyle) plt.legend() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel)
0.777469
0.784484
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm def plot_2Dfunction(function, min_x, max_x, values_number, args_before_x=[], args_after_x=[], title="", xlabel="", ylabel="", function_label="", color="blue", linestyle ="-", **kwargs) : """Trace the 2D graphic of the function "function" function is a function with at least one argument x args_before_x is the list of positional arguments before the variable argument's position args_after_x is the list of positional arguments after the variable argument's position The value of the variable argument x varies from min_x to max_variable by taking values_number values title is the graph title xlabel and ylabel are texts to put on the axes function_label is the label of the function. (Doesn't show it if you doesn't call plt.legend() after this plot_2Dfunction.) color is the line color linestyle is the line style (cf Matplotlib docs for futher information) You can add after keywords arguments for the function "function" """ variable_list = np.linspace(min_x, max_x, values_number) results_list = [] for variable in variable_list : results_list.append(function(*args_before_x, variable, *args_after_x, **kwargs)) #displaying plt.plot(variable_list, results_list, color=color, linestyle=linestyle, label=function_label) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def plot_3Dfunction(function, min_x, max_x, values_x, min_y, max_y, values_y, args_before_variables=[], args_between_variables=[], args_after_variables=[], x_before_y = True, title="", xlabel ="", ylabel="", zlabel="", colormap=cm.RdYlGn, **kwargs) : """Trace the 3D graphic of the function "function" function is a function with at least two arguments args_before_variable is the list of positional arguments before the first variable argument's position args_between_variables is the list of positional arguments between positions of the first and the second variable args_after_variables is the list of positional arguments after the second variable argument's position x_before_x is true if x variable is the first variable (in the function arguments order) The value of the "x" variable varies from min_x to max_x by taking values_x values Idem for "y" variable title is the graph title xlabel, ylabel and zlabel are texts to put on the axes colormap is the colormap used for displaying You can add after keywords arguments for the function "function" """ line = np.linspace(min_x, max_x, values_x) array_x = np.array([line for i in range(values_y) ], dtype=float) #create an array with x values column = np.linspace(min_y, max_y, values_y) array_y = np.array([[column[j]]*values_x for j in range(values_y)], dtype=float) #create an array with y values results = []#a array like object with values of function for i in range(values_y) : results_line = [] for j in range(values_x) : variable1 = array_x[i][j] variable2 = array_y[i][j] if x_before_y is False : variable1, variable2 = variable2, variable1 results_line.append(function(*args_before_variables, variable1, *args_between_variables, variable2, *args_after_variables, **kwargs)) results.append(results_line) array_z = np.array(results, dtype=float) linewidth = (max_x - min_x+ max_y - min_y)/20#to trace around 10 lines #displaying ax = plt.axes(projection='3d')#3D diplaying ax.plot_surface(array_x, array_y, array_z, cmap=colormap, linewidth=linewidth)#linewidth : distance between two lines ax.set_title(title) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel)
scientific-tools
/scientific_tools-0.0.0a17-py3-none-any.whl/scientific_tools/graphics/function_graphs.py
function_graphs.py
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm def plot_2Dfunction(function, min_x, max_x, values_number, args_before_x=[], args_after_x=[], title="", xlabel="", ylabel="", function_label="", color="blue", linestyle ="-", **kwargs) : """Trace the 2D graphic of the function "function" function is a function with at least one argument x args_before_x is the list of positional arguments before the variable argument's position args_after_x is the list of positional arguments after the variable argument's position The value of the variable argument x varies from min_x to max_variable by taking values_number values title is the graph title xlabel and ylabel are texts to put on the axes function_label is the label of the function. (Doesn't show it if you doesn't call plt.legend() after this plot_2Dfunction.) color is the line color linestyle is the line style (cf Matplotlib docs for futher information) You can add after keywords arguments for the function "function" """ variable_list = np.linspace(min_x, max_x, values_number) results_list = [] for variable in variable_list : results_list.append(function(*args_before_x, variable, *args_after_x, **kwargs)) #displaying plt.plot(variable_list, results_list, color=color, linestyle=linestyle, label=function_label) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def plot_3Dfunction(function, min_x, max_x, values_x, min_y, max_y, values_y, args_before_variables=[], args_between_variables=[], args_after_variables=[], x_before_y = True, title="", xlabel ="", ylabel="", zlabel="", colormap=cm.RdYlGn, **kwargs) : """Trace the 3D graphic of the function "function" function is a function with at least two arguments args_before_variable is the list of positional arguments before the first variable argument's position args_between_variables is the list of positional arguments between positions of the first and the second variable args_after_variables is the list of positional arguments after the second variable argument's position x_before_x is true if x variable is the first variable (in the function arguments order) The value of the "x" variable varies from min_x to max_x by taking values_x values Idem for "y" variable title is the graph title xlabel, ylabel and zlabel are texts to put on the axes colormap is the colormap used for displaying You can add after keywords arguments for the function "function" """ line = np.linspace(min_x, max_x, values_x) array_x = np.array([line for i in range(values_y) ], dtype=float) #create an array with x values column = np.linspace(min_y, max_y, values_y) array_y = np.array([[column[j]]*values_x for j in range(values_y)], dtype=float) #create an array with y values results = []#a array like object with values of function for i in range(values_y) : results_line = [] for j in range(values_x) : variable1 = array_x[i][j] variable2 = array_y[i][j] if x_before_y is False : variable1, variable2 = variable2, variable1 results_line.append(function(*args_before_variables, variable1, *args_between_variables, variable2, *args_after_variables, **kwargs)) results.append(results_line) array_z = np.array(results, dtype=float) linewidth = (max_x - min_x+ max_y - min_y)/20#to trace around 10 lines #displaying ax = plt.axes(projection='3d')#3D diplaying ax.plot_surface(array_x, array_y, array_z, cmap=colormap, linewidth=linewidth)#linewidth : distance between two lines ax.set_title(title) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_zlabel(zlabel)
0.562537
0.73053
"""Calculate standard uncertainty (standart uncertainty mainly)""" from warnings import WarningMessage import numpy as np def standard_uncertainty(u_x, u_y, dz_dx, dz_dy) : """Calculate the standard uncertainty of z with the general formule.""" return np.sqrt((u_x*dz_dx)**2+(u_y*dz_dy)**2) def standard_uncertainty_addition(u_x, u_y, a=1, b=1) : """Calculate the standard uncertainty of z = ax + by (a & b const). a and b are constants define with no uncertainty """ return np.sqrt((a**2)*(u_x**2)+(b**2)*(u_y)**2) def relative_uncertainty_multiplication(ur_x, ur_y, a=1, b=1, c=1) : """Calculate the relative uncertainty of z= c*x^a*y^b (a, b, c const) a, b and c are constants define with no uncertainty c have no influance on the result ur(x) = u(x)/x. Idem for y. """ return np.sqrt((a*ur_x)**2+(b*ur_y)**2) def relative_uncertainty_multiplications(k=1, *args) : """Calculate the relative uncertainty of z = k*Π(xi^ni) (ni & k are const) ni & k are constants define with no uncertainty Arguments are tuples (or lists) of with those elements (in this order) : relative uncertainty and power (optionnal, default is 1) k have no influance on the result """ u_r2 = 0#relative uncertainty**2 for arg in args : if not isinstance(arg, (list, tuple)) : raise TypeError("args must be tuples or lists") if len(arg) < 1 : raise ValueError("args must have at least one element : relative uncertainty and power (optionnal, default is 1)") if len(arg) > 2 : raise WarningMessage("args must have at most two elements : relative uncertainty and power (optionnal, default is 1)") u_r2 += (arg[1]*arg[0])**2 return np.sqrt(u_r2) def standard_uncertainty_multiplication(x, u_x, y, u_y, a=1, b=1, c=1) : """Calculate the standard uncertainty of z= c*x^a*y^b (a, b, c const) a, b and c are constants define with no uncertainty """ z = c*(x**a)*(y**b) return relative_uncertainty_multiplication(u_x/x, u_y/y, a, b, c)*abs(z) def standard_uncertainty_multiplications(k=1, *args) : """Calculate the standard uncertainty of z = k*Π(xi^ni) (ni & k are const) ni & k are constants define with no uncertainty Arguments are tuples (or lists) of with those elements (in this order) : value, standard uncertainty and power (optionnal, default is 1) """ z=k u_r2 = 0#relative uncertainty**2 for arg in args : if not isinstance(arg, (list, tuple)) : raise TypeError("args must be tuples or lists") if len(arg) < 2 : raise ValueError("args must have at least two elements : value, standard uncertainty and power (optionnal, default is 1)") if len(arg) >3 : raise WarningMessage("args must have at most three elements : value, standard uncertainty and power (optionnal, default is 1)") z *= arg[0]**arg[2] u_r2 += (arg[2]*arg[1]/arg[0])**2 return abs(z)*np.sqrt(u_r2) def z_score_ref(x, x_ref, u_x): """Calculate the z-score between a measured value and a reference value. x is the measured value, x_ref the reference value and u_x the uncertainty """ #this function is similar to z_score(x, u_x, x_ref, 0) #but avoid to calculate square and square root return abs((x-x_ref)/u_x) def z_score(x1, u_x1, x2, u_x2) : """Calculate the z-score between two measured values x1 is the first value, x2 the second u_x1 is the uncertainty for x1, u_x2 for x2 """ return abs(x1-x2)/np.sqrt(u_x1**2 + u_x2**2)
scientific-tools
/scientific_tools-0.0.0a17-py3-none-any.whl/scientific_tools/physics/uncertainty.py
uncertainty.py
"""Calculate standard uncertainty (standart uncertainty mainly)""" from warnings import WarningMessage import numpy as np def standard_uncertainty(u_x, u_y, dz_dx, dz_dy) : """Calculate the standard uncertainty of z with the general formule.""" return np.sqrt((u_x*dz_dx)**2+(u_y*dz_dy)**2) def standard_uncertainty_addition(u_x, u_y, a=1, b=1) : """Calculate the standard uncertainty of z = ax + by (a & b const). a and b are constants define with no uncertainty """ return np.sqrt((a**2)*(u_x**2)+(b**2)*(u_y)**2) def relative_uncertainty_multiplication(ur_x, ur_y, a=1, b=1, c=1) : """Calculate the relative uncertainty of z= c*x^a*y^b (a, b, c const) a, b and c are constants define with no uncertainty c have no influance on the result ur(x) = u(x)/x. Idem for y. """ return np.sqrt((a*ur_x)**2+(b*ur_y)**2) def relative_uncertainty_multiplications(k=1, *args) : """Calculate the relative uncertainty of z = k*Π(xi^ni) (ni & k are const) ni & k are constants define with no uncertainty Arguments are tuples (or lists) of with those elements (in this order) : relative uncertainty and power (optionnal, default is 1) k have no influance on the result """ u_r2 = 0#relative uncertainty**2 for arg in args : if not isinstance(arg, (list, tuple)) : raise TypeError("args must be tuples or lists") if len(arg) < 1 : raise ValueError("args must have at least one element : relative uncertainty and power (optionnal, default is 1)") if len(arg) > 2 : raise WarningMessage("args must have at most two elements : relative uncertainty and power (optionnal, default is 1)") u_r2 += (arg[1]*arg[0])**2 return np.sqrt(u_r2) def standard_uncertainty_multiplication(x, u_x, y, u_y, a=1, b=1, c=1) : """Calculate the standard uncertainty of z= c*x^a*y^b (a, b, c const) a, b and c are constants define with no uncertainty """ z = c*(x**a)*(y**b) return relative_uncertainty_multiplication(u_x/x, u_y/y, a, b, c)*abs(z) def standard_uncertainty_multiplications(k=1, *args) : """Calculate the standard uncertainty of z = k*Π(xi^ni) (ni & k are const) ni & k are constants define with no uncertainty Arguments are tuples (or lists) of with those elements (in this order) : value, standard uncertainty and power (optionnal, default is 1) """ z=k u_r2 = 0#relative uncertainty**2 for arg in args : if not isinstance(arg, (list, tuple)) : raise TypeError("args must be tuples or lists") if len(arg) < 2 : raise ValueError("args must have at least two elements : value, standard uncertainty and power (optionnal, default is 1)") if len(arg) >3 : raise WarningMessage("args must have at most three elements : value, standard uncertainty and power (optionnal, default is 1)") z *= arg[0]**arg[2] u_r2 += (arg[2]*arg[1]/arg[0])**2 return abs(z)*np.sqrt(u_r2) def z_score_ref(x, x_ref, u_x): """Calculate the z-score between a measured value and a reference value. x is the measured value, x_ref the reference value and u_x the uncertainty """ #this function is similar to z_score(x, u_x, x_ref, 0) #but avoid to calculate square and square root return abs((x-x_ref)/u_x) def z_score(x1, u_x1, x2, u_x2) : """Calculate the z-score between two measured values x1 is the first value, x2 the second u_x1 is the uncertainty for x1, u_x2 for x2 """ return abs(x1-x2)/np.sqrt(u_x1**2 + u_x2**2)
0.888414
0.783947
# Roboy ScientIO ## About Roboy ScientIO (from Lat. scientia - knowledge and Input/Output) - a Knowledge Graph Engine to organise and query complex data. ## Dependencies To use ScientIO, you will need to have one of it's supported back-ends installed. Currently, the only supported back-end is Neo4j, which may be run in a number of ways (if you don't have a remote instance available). We recommend simply running it through docker - like this: ```bash docker run \ --publish=7474:7474 --publish=7687:7687 \ --volume=$HOME/neo4j/data:/data \ --volume=$HOME/neo4j/logs:/logs \ neo4j:3.0 ``` ## Installation ### Via PIP The easiest way to install ScientIO is through pip: `` pip install scientio `` ### For developers First, install dependencies: ```bash pip install -r requirements.txt ``` Then, you may open the repository in any IDE, and mark the `src` folder as a sources root. ## Basic ScientIO use-cases ### Supplying an ontology description The ontology description is a collection of named entity types, where each type may declare a specific set of properties and relationships like this: ```yaml # my_ontology.yml !OType entity: Alien # The name of the ontology type --- !OType entity: Vulcan # Declare a more specific Alien type meta: [Alien] properties: # Allowed properties for every Vulcan - name - homeworld - ear_pointiness --- !OType entity: Human # Declare a more specific Alien type meta: [Alien] properties: # Allowed properties for every Human - name - homeworld relationships: [captain_of] # Allowed relationships for every Human ``` ### Creating some nodes ```python from scientio.ontology.ontology import Ontology from scientio.session import Session from scientio.ontology.node import Node # Load the ontology from a yaml file onto = Ontology(path_to_yaml="my_ontology.yml") # Create a session (with default Neo4j backend) sess = Session( ontology=onto, neo4j_address="bolt://localhost:7687", neo4j_username="neo4j", neo4j_password="test") # Get human/vulcan types from ontology human_type = onto.get_type("Human") vulcan_type = onto.get_type("Vulcan") # Create a transient human named "Kirk" kirk = Node(metatype=human_type) kirk.set_name("Kirk") # Create a transient vulcan named "Spock" spock = Node(metatype=vulcan_type) spock.set_name("Spock") # Persist kirk and spock sess.create(kirk) sess.create(spock) ``` ### Add a relationship between your nodes ```python from scientio.ontology.ontology import Ontology from scientio.session import Session from scientio.ontology.node import Node # Load the ontology from a yaml file onto = Ontology(path_to_yaml="my_ontology.yml") # Create a session (with default Neo4j backend) sess = Session( ontology=onto, neo4j_address="bolt://localhost:7687", neo4j_username="neo4j", neo4j_password="test") # Get human/vulcan types from ontology human_type = onto.get_type("Human") vulcan_type = onto.get_type("Vulcan") # Create query templates to get the actual kirk/spock kirk = Node(metatype=human_type) spock = Node(metatype=vulcan_type) # Query Kirk and Spock from the database, using # the query nodes we created previously. We're just # gonna assume that the first human is Kirk, and the first # vulcan is Spock. kirk = sess.retrieve(request=kirk)[0] spock = sess.retrieve(request=spock)[0] # Add a relationship between Kirk and Spock kirk.add_relationships({"captain_of": {spock.get_id()}}) # Make sure that the new relationship is persisted sess.update(kirk) ```
scientio
/scientio-0.9.1rc2.tar.gz/scientio-0.9.1rc2/README.md
README.md
docker run \ --publish=7474:7474 --publish=7687:7687 \ --volume=$HOME/neo4j/data:/data \ --volume=$HOME/neo4j/logs:/logs \ neo4j:3.0 pip install -r requirements.txt # my_ontology.yml !OType entity: Alien # The name of the ontology type --- !OType entity: Vulcan # Declare a more specific Alien type meta: [Alien] properties: # Allowed properties for every Vulcan - name - homeworld - ear_pointiness --- !OType entity: Human # Declare a more specific Alien type meta: [Alien] properties: # Allowed properties for every Human - name - homeworld relationships: [captain_of] # Allowed relationships for every Human from scientio.ontology.ontology import Ontology from scientio.session import Session from scientio.ontology.node import Node # Load the ontology from a yaml file onto = Ontology(path_to_yaml="my_ontology.yml") # Create a session (with default Neo4j backend) sess = Session( ontology=onto, neo4j_address="bolt://localhost:7687", neo4j_username="neo4j", neo4j_password="test") # Get human/vulcan types from ontology human_type = onto.get_type("Human") vulcan_type = onto.get_type("Vulcan") # Create a transient human named "Kirk" kirk = Node(metatype=human_type) kirk.set_name("Kirk") # Create a transient vulcan named "Spock" spock = Node(metatype=vulcan_type) spock.set_name("Spock") # Persist kirk and spock sess.create(kirk) sess.create(spock) from scientio.ontology.ontology import Ontology from scientio.session import Session from scientio.ontology.node import Node # Load the ontology from a yaml file onto = Ontology(path_to_yaml="my_ontology.yml") # Create a session (with default Neo4j backend) sess = Session( ontology=onto, neo4j_address="bolt://localhost:7687", neo4j_username="neo4j", neo4j_password="test") # Get human/vulcan types from ontology human_type = onto.get_type("Human") vulcan_type = onto.get_type("Vulcan") # Create query templates to get the actual kirk/spock kirk = Node(metatype=human_type) spock = Node(metatype=vulcan_type) # Query Kirk and Spock from the database, using # the query nodes we created previously. We're just # gonna assume that the first human is Kirk, and the first # vulcan is Spock. kirk = sess.retrieve(request=kirk)[0] spock = sess.retrieve(request=spock)[0] # Add a relationship between Kirk and Spock kirk.add_relationships({"captain_of": {spock.get_id()}}) # Make sure that the new relationship is persisted sess.update(kirk)
0.545528
0.854156
import sys from scientisst import * from scientisst import __version__ from threading import Timer from threading import Event from sense_src.arg_parser import ArgParser from sense_src.custom_script import get_custom_script, CustomScript from sense_src.device_picker import DevicePicker from sense_src.file_writer import * def run_scheduled_task(duration, stop_event): def stop(stop_event): stop_event.set() timer = Timer(duration, stop, [stop_event]) timer.start() return timer def main(): arg_parser = ArgParser() args = arg_parser.args if args.version: sys.stdout.write("sense.py version {}\n".format(__version__)) sys.exit(0) if args.address: address = args.address else: if args.mode == COM_MODE_BT: address = DevicePicker().select_device() if not address: arg_parser.error("No paired device found") else: arg_parser.error("No address provided") args.channels = sorted(map(int, args.channels.split(","))) scientisst = ScientISST(address, com_mode=args.mode, log=args.log) try: if args.output: firmware_version = scientisst.version_and_adc_chars(print=False) file_writer = FileWriter( args.output, address, args.fs, args.channels, args.convert, __version__, firmware_version, ) if args.stream: from sense_src.stream_lsl import StreamLSL lsl = StreamLSL( args.channels, args.fs, address, ) if args.script: script = get_custom_script(args.script) stop_event = Event() scientisst.start(args.fs, args.channels) sys.stdout.write("Start acquisition\n") if args.output: file_writer.start() if args.stream: lsl.start() if args.script: script.start() timer = None if args.duration > 0: timer = run_scheduled_task(args.duration, stop_event) try: if args.verbose: header = "\t".join(get_header(args.channels, args.convert)) + "\n" sys.stdout.write(header) while not stop_event.is_set(): frames = scientisst.read(convert=args.convert) if args.output: file_writer.put(frames) if args.stream: lsl.put(frames) if args.script: script.put(frames) if args.verbose: sys.stdout.write("{}\n".format(frames[0])) except KeyboardInterrupt: if args.duration and timer: timer.cancel() pass scientisst.stop() # let the acquisition stop before stoping other threads time.sleep(0.25) sys.stdout.write("Stop acquisition\n") if args.output: file_writer.stop() if args.stream: lsl.stop() if args.script: script.stop() finally: scientisst.disconnect() sys.exit(0) if __name__ == "__main__": main()
scientisst-sense
/scientisst_sense-1.1.0-py3-none-any.whl/sense.py
sense.py
import sys from scientisst import * from scientisst import __version__ from threading import Timer from threading import Event from sense_src.arg_parser import ArgParser from sense_src.custom_script import get_custom_script, CustomScript from sense_src.device_picker import DevicePicker from sense_src.file_writer import * def run_scheduled_task(duration, stop_event): def stop(stop_event): stop_event.set() timer = Timer(duration, stop, [stop_event]) timer.start() return timer def main(): arg_parser = ArgParser() args = arg_parser.args if args.version: sys.stdout.write("sense.py version {}\n".format(__version__)) sys.exit(0) if args.address: address = args.address else: if args.mode == COM_MODE_BT: address = DevicePicker().select_device() if not address: arg_parser.error("No paired device found") else: arg_parser.error("No address provided") args.channels = sorted(map(int, args.channels.split(","))) scientisst = ScientISST(address, com_mode=args.mode, log=args.log) try: if args.output: firmware_version = scientisst.version_and_adc_chars(print=False) file_writer = FileWriter( args.output, address, args.fs, args.channels, args.convert, __version__, firmware_version, ) if args.stream: from sense_src.stream_lsl import StreamLSL lsl = StreamLSL( args.channels, args.fs, address, ) if args.script: script = get_custom_script(args.script) stop_event = Event() scientisst.start(args.fs, args.channels) sys.stdout.write("Start acquisition\n") if args.output: file_writer.start() if args.stream: lsl.start() if args.script: script.start() timer = None if args.duration > 0: timer = run_scheduled_task(args.duration, stop_event) try: if args.verbose: header = "\t".join(get_header(args.channels, args.convert)) + "\n" sys.stdout.write(header) while not stop_event.is_set(): frames = scientisst.read(convert=args.convert) if args.output: file_writer.put(frames) if args.stream: lsl.put(frames) if args.script: script.put(frames) if args.verbose: sys.stdout.write("{}\n".format(frames[0])) except KeyboardInterrupt: if args.duration and timer: timer.cancel() pass scientisst.stop() # let the acquisition stop before stoping other threads time.sleep(0.25) sys.stdout.write("Stop acquisition\n") if args.output: file_writer.stop() if args.stream: lsl.stop() if args.script: script.stop() finally: scientisst.disconnect() sys.exit(0) if __name__ == "__main__": main()
0.290377
0.08438
import sys from argparse import ArgumentParser, RawTextHelpFormatter from scientisst.constants import * class ArgParser: class MyParser(ArgumentParser): def error(self, message): sys.stderr.write("error: %s\n\n" % message) self.print_help() sys.exit(2) def __init__(self): usage = "%(prog)s [args] address" description = "description: The program connects to the ScientISST Sense device and starts an acquisition, providing the option to store the received data in a .csv file." self.parser = self.MyParser( usage=usage, description=description, formatter_class=RawTextHelpFormatter ) self.parser.add_argument( "address", nargs="?", type=str, help="For BTH communication:\n\tLinux: BTH MAC address\n\tMac: serial port address\n\tWindows: BTH serial COM port\nFor TCP/UDP communication:\n\tAll plataforms: server port.", ) self.parser.add_argument( "-f", "--frequency", dest="fs", help="sampling frequency, default: 1000", type=int, default=1000, ) self.parser.add_argument( "-c", "--channels", dest="channels", type=str, help="analog channels, default: 1,2,3,4,5,6", default="1,2,3,4,5,6", ) self.parser.add_argument( "-d", "--duration", dest="duration", help="duration in seconds, default: unlimited", type=int, default=0, ) self.parser.add_argument( "-o", "--output", dest="output", help="write report to output file, default: None", type=str, default=None, ) self.parser.add_argument( "-r", "--raw", action="store_false", dest="convert", default=True, help="do not convert from raw to mV", ) self.parser.add_argument( "-s", "--lsl", dest="stream", action="store_true", default=False, help="stream data using Lab Streaming Layer protocol. Use `python -m pylsl.examples.ReceiveAndPlot` to view stream", ) self.parser.add_argument( "--script", dest="script", help="send the received frames to a script that inherits the CustomScript class", type=str, default=None, ) self.parser.add_argument( "-q", "--quiet", action="store_false", dest="verbose", default=True, help="don't print ScientISST frames", ) self.parser.add_argument( "-v", "--version", dest="version", action="store_true", default=False, help="show sense.py version", ) self.parser.add_argument( "--verbose", dest="log", action="store_true", default=False, help="log sent/received bytes", ) self.parser.add_argument( "-m", "--mode", dest="mode", type=str, default=COM_MODE_BT, help="The communication mode. Currently supported modes: " + ", ".join(COM_MODE_LIST) + ". Default: " + COM_MODE_BT, ) self.args = self.parser.parse_args() def error(self, value): self.parser.error(value)
scientisst-sense
/scientisst_sense-1.1.0-py3-none-any.whl/sense_src/arg_parser.py
arg_parser.py
import sys from argparse import ArgumentParser, RawTextHelpFormatter from scientisst.constants import * class ArgParser: class MyParser(ArgumentParser): def error(self, message): sys.stderr.write("error: %s\n\n" % message) self.print_help() sys.exit(2) def __init__(self): usage = "%(prog)s [args] address" description = "description: The program connects to the ScientISST Sense device and starts an acquisition, providing the option to store the received data in a .csv file." self.parser = self.MyParser( usage=usage, description=description, formatter_class=RawTextHelpFormatter ) self.parser.add_argument( "address", nargs="?", type=str, help="For BTH communication:\n\tLinux: BTH MAC address\n\tMac: serial port address\n\tWindows: BTH serial COM port\nFor TCP/UDP communication:\n\tAll plataforms: server port.", ) self.parser.add_argument( "-f", "--frequency", dest="fs", help="sampling frequency, default: 1000", type=int, default=1000, ) self.parser.add_argument( "-c", "--channels", dest="channels", type=str, help="analog channels, default: 1,2,3,4,5,6", default="1,2,3,4,5,6", ) self.parser.add_argument( "-d", "--duration", dest="duration", help="duration in seconds, default: unlimited", type=int, default=0, ) self.parser.add_argument( "-o", "--output", dest="output", help="write report to output file, default: None", type=str, default=None, ) self.parser.add_argument( "-r", "--raw", action="store_false", dest="convert", default=True, help="do not convert from raw to mV", ) self.parser.add_argument( "-s", "--lsl", dest="stream", action="store_true", default=False, help="stream data using Lab Streaming Layer protocol. Use `python -m pylsl.examples.ReceiveAndPlot` to view stream", ) self.parser.add_argument( "--script", dest="script", help="send the received frames to a script that inherits the CustomScript class", type=str, default=None, ) self.parser.add_argument( "-q", "--quiet", action="store_false", dest="verbose", default=True, help="don't print ScientISST frames", ) self.parser.add_argument( "-v", "--version", dest="version", action="store_true", default=False, help="show sense.py version", ) self.parser.add_argument( "--verbose", dest="log", action="store_true", default=False, help="log sent/received bytes", ) self.parser.add_argument( "-m", "--mode", dest="mode", type=str, default=COM_MODE_BT, help="The communication mode. Currently supported modes: " + ", ".join(COM_MODE_LIST) + ". Default: " + COM_MODE_BT, ) self.args = self.parser.parse_args() def error(self, value): self.parser.error(value)
0.463444
0.206834
import sys from scientisst.scientisst import AX1, AX2 from sense_src.thread_builder import ThreadBuilder from datetime import datetime class FileWriter(ThreadBuilder): def __init__( self, filename, address, fs, channels, mv, api_version, firmware_version ): super().__init__() self.filename = filename self.mv = mv self.channels = channels self.metadata = self.__get_metadata( address, fs, channels, api_version, firmware_version ) def start(self): self.__init_file() super().start() def stop(self): super().stop() if self.f: self.f.close() def thread_method(self, frames): self.f.write("\n".join(map(str, frames)) + "\n") def __init_file( self, ): self.f = open(self.filename, "w") sys.stdout.write("Saving data to {}\n".format(self.filename)) header = "\t".join(self.metadata["Header"]) self.f.write("#{}\n".format(self.metadata)) self.f.write("#{}\n".format(header)) def __get_metadata(self, address, fs, channels, api_version, firmware_version): timestamp = datetime.now() metadata = { "API version": api_version, "Channels": channels, "Channels labels": get_channel_labels(channels, self.mv), "Device": address, "Firmware version": firmware_version, "Header": get_header(channels, self.mv), "Resolution (bits)": [4, 1, 1, 1, 1] + self.__get_channel_resolutions(), "Sampling rate (Hz)": fs, "Timestamp": timestamp.timestamp(), "ISO 8601": timestamp.isoformat(), } if self.mv: metadata["Channels indexes raw"] = list( map(lambda x: (x - 1) * 2 + 5, channels) ) metadata["Channels indexes mV"] = list( map(lambda x: (x - 1) * 2 + 6, channels) ) else: metadata["Channels indexes"] = list(map(lambda x: x + 5, channels)) sorted_metadata = {} for key in sorted(metadata): sorted_metadata[key] = metadata[key] return sorted_metadata def __get_channel_resolutions(self): channel_resolutions = [] for ch in self.channels: if ch == AX1 or ch == AX2: channel_resolutions += [24] else: channel_resolutions += [12] return channel_resolutions def __get_channel_resolutions_mv(self): channel_resolutions = [] for ch in self.channels: if ch == AX1 or ch == AX2: channel_resolutions += [0.4] else: channel_resolutions += [0.8] return channel_resolutions def get_channel_labels(channels, mv): channel_labels = [] for ch in channels: if not mv: if ch == AX1 or ch == AX2: channel_labels += ["AX{}".format(ch)] else: channel_labels += ["AI{}".format(ch)] else: if ch == AX1 or ch == AX2: channel_labels += ["AX{}_raw".format(ch)] channel_labels += ["AX{}_mv".format(ch)] else: channel_labels += ["AI{}_raw".format(ch)] channel_labels += ["AI{}_mv".format(ch)] return channel_labels def get_header(channels, mv): header = ["NSeq", "I1", "I2", "O1", "O2"] header += get_channel_labels(channels, mv) return header
scientisst-sense
/scientisst_sense-1.1.0-py3-none-any.whl/sense_src/file_writer.py
file_writer.py
import sys from scientisst.scientisst import AX1, AX2 from sense_src.thread_builder import ThreadBuilder from datetime import datetime class FileWriter(ThreadBuilder): def __init__( self, filename, address, fs, channels, mv, api_version, firmware_version ): super().__init__() self.filename = filename self.mv = mv self.channels = channels self.metadata = self.__get_metadata( address, fs, channels, api_version, firmware_version ) def start(self): self.__init_file() super().start() def stop(self): super().stop() if self.f: self.f.close() def thread_method(self, frames): self.f.write("\n".join(map(str, frames)) + "\n") def __init_file( self, ): self.f = open(self.filename, "w") sys.stdout.write("Saving data to {}\n".format(self.filename)) header = "\t".join(self.metadata["Header"]) self.f.write("#{}\n".format(self.metadata)) self.f.write("#{}\n".format(header)) def __get_metadata(self, address, fs, channels, api_version, firmware_version): timestamp = datetime.now() metadata = { "API version": api_version, "Channels": channels, "Channels labels": get_channel_labels(channels, self.mv), "Device": address, "Firmware version": firmware_version, "Header": get_header(channels, self.mv), "Resolution (bits)": [4, 1, 1, 1, 1] + self.__get_channel_resolutions(), "Sampling rate (Hz)": fs, "Timestamp": timestamp.timestamp(), "ISO 8601": timestamp.isoformat(), } if self.mv: metadata["Channels indexes raw"] = list( map(lambda x: (x - 1) * 2 + 5, channels) ) metadata["Channels indexes mV"] = list( map(lambda x: (x - 1) * 2 + 6, channels) ) else: metadata["Channels indexes"] = list(map(lambda x: x + 5, channels)) sorted_metadata = {} for key in sorted(metadata): sorted_metadata[key] = metadata[key] return sorted_metadata def __get_channel_resolutions(self): channel_resolutions = [] for ch in self.channels: if ch == AX1 or ch == AX2: channel_resolutions += [24] else: channel_resolutions += [12] return channel_resolutions def __get_channel_resolutions_mv(self): channel_resolutions = [] for ch in self.channels: if ch == AX1 or ch == AX2: channel_resolutions += [0.4] else: channel_resolutions += [0.8] return channel_resolutions def get_channel_labels(channels, mv): channel_labels = [] for ch in channels: if not mv: if ch == AX1 or ch == AX2: channel_labels += ["AX{}".format(ch)] else: channel_labels += ["AI{}".format(ch)] else: if ch == AX1 or ch == AX2: channel_labels += ["AX{}_raw".format(ch)] channel_labels += ["AX{}_mv".format(ch)] else: channel_labels += ["AI{}_raw".format(ch)] channel_labels += ["AI{}_mv".format(ch)] return channel_labels def get_header(channels, mv): header = ["NSeq", "I1", "I2", "O1", "O2"] header += get_channel_labels(channels, mv) return header
0.345105
0.201892
import sys class DevicePicker: def select_device(self): options, labels = self.__get_device_options() if len(options) > 0: sys.stdout.write("ScientISST devices:\n") label_index = 1 for label in labels: sys.stdout.write("[{}] {}\n".format(label_index, label)) label_index += 1 selected_index = 0 while selected_index == 0: user_input = input("Connect to: ") try: selected_index = int(user_input) if selected_index > len(options): selected_index = 0 raise ValueError() except ValueError: sys.stderr.write('"{}" is not a valid index\n'.format(user_input)) return options[selected_index - 1] def __get_device_options(self): if sys.platform == "linux": options = self.__get_linux_bth_devices() return list(map(lambda option: option["addr"], options)), list( map( lambda option: "{} - {}".format( option["name"] if "name" in option else "unnamed", option["addr"], ), options, ) ) else: import serial.tools.list_ports ports = serial.tools.list_ports.comports() options = [] labels = [] for port, desc, hwid in sorted(ports): if "scientisst" in port.lower(): options += [port] label = "" if desc != "n/a": label += "{} - ".format(desc) labels += [label + port] return options, labels def __get_linux_bth_devices(self): import pydbus bt_devices = {} bus = pydbus.SystemBus() mngr = bus.get("org.bluez", "/") mngd_objs = mngr.GetManagedObjects() for path in mngd_objs: addr = mngd_objs[path].get("org.bluez.Device1", {}).get("Address") name = mngd_objs[path].get("org.bluez.Device1", {}).get("Name") if name and "scientisst" in name.lower() and addr not in bt_devices: bt_devices[addr] = { "name": name, "addr": addr, } return bt_devices.values()
scientisst-sense
/scientisst_sense-1.1.0-py3-none-any.whl/sense_src/device_picker.py
device_picker.py
import sys class DevicePicker: def select_device(self): options, labels = self.__get_device_options() if len(options) > 0: sys.stdout.write("ScientISST devices:\n") label_index = 1 for label in labels: sys.stdout.write("[{}] {}\n".format(label_index, label)) label_index += 1 selected_index = 0 while selected_index == 0: user_input = input("Connect to: ") try: selected_index = int(user_input) if selected_index > len(options): selected_index = 0 raise ValueError() except ValueError: sys.stderr.write('"{}" is not a valid index\n'.format(user_input)) return options[selected_index - 1] def __get_device_options(self): if sys.platform == "linux": options = self.__get_linux_bth_devices() return list(map(lambda option: option["addr"], options)), list( map( lambda option: "{} - {}".format( option["name"] if "name" in option else "unnamed", option["addr"], ), options, ) ) else: import serial.tools.list_ports ports = serial.tools.list_ports.comports() options = [] labels = [] for port, desc, hwid in sorted(ports): if "scientisst" in port.lower(): options += [port] label = "" if desc != "n/a": label += "{} - ".format(desc) labels += [label + port] return options, labels def __get_linux_bth_devices(self): import pydbus bt_devices = {} bus = pydbus.SystemBus() mngr = bus.get("org.bluez", "/") mngd_objs = mngr.GetManagedObjects() for path in mngd_objs: addr = mngd_objs[path].get("org.bluez.Device1", {}).get("Address") name = mngd_objs[path].get("org.bluez.Device1", {}).get("Name") if name and "scientisst" in name.lower() and addr not in bt_devices: bt_devices[addr] = { "name": name, "addr": addr, } return bt_devices.values()
0.258139
0.279196
class InvalidAddressError(Exception): """ The specified address is invalid. """ def __init__(self): super().__init__("The specified address is invalid.") class BTAdapterNotFoundError(Exception): """ No Bluetooth adapter was found. """ def __init__(self): super().__init__("No Bluetooth adapter was found.") class DeviceNotFoundError(Exception): """ The device could not be found. """ def __init__(self): super().__init__("The device could not be found.") class ContactingDeviceError(Exception): """ The computer lost communication with the device. """ def __init__(self): super().__init__("The computer lost communication with the device.") class PortCouldNotBeOpenedError(Exception): """ The communication port does not exist or it is already being used. """ def __init__(self): super().__init__( "The communication port does not exist or it is already being used." ) class PortInitializationError(Exception): """ The communication port could not be initialized. """ def __init__(self): super().__init__("The communication port could not be initialized.") class DeviceNotIdleError(Exception): """ The device is not idle. """ def __init__(self): super().__init__("The device is not idle.") class DeviceNotInAcquisitionError(Exception): """ The device is not in acquisition mode. """ def __init__(self): super().__init__("The device is not in acquisition mode.") class InvalidParameterError(Exception): """ Invalid parameter. """ def __init__(self): super().__init__("Invalid parameter.") class NotSupportedError(Exception): """ Operation not supported by the device. """ def __init__(self): super().__init__("Operation not supported by the device.") class UnknownError(Exception): """ Unknown error: `message`. """ def __init__(self, message=""): super().__init__("Unknown error: {}".format(message))
scientisst-sense
/scientisst_sense-1.1.0-py3-none-any.whl/scientisst/exceptions.py
exceptions.py
class InvalidAddressError(Exception): """ The specified address is invalid. """ def __init__(self): super().__init__("The specified address is invalid.") class BTAdapterNotFoundError(Exception): """ No Bluetooth adapter was found. """ def __init__(self): super().__init__("No Bluetooth adapter was found.") class DeviceNotFoundError(Exception): """ The device could not be found. """ def __init__(self): super().__init__("The device could not be found.") class ContactingDeviceError(Exception): """ The computer lost communication with the device. """ def __init__(self): super().__init__("The computer lost communication with the device.") class PortCouldNotBeOpenedError(Exception): """ The communication port does not exist or it is already being used. """ def __init__(self): super().__init__( "The communication port does not exist or it is already being used." ) class PortInitializationError(Exception): """ The communication port could not be initialized. """ def __init__(self): super().__init__("The communication port could not be initialized.") class DeviceNotIdleError(Exception): """ The device is not idle. """ def __init__(self): super().__init__("The device is not idle.") class DeviceNotInAcquisitionError(Exception): """ The device is not in acquisition mode. """ def __init__(self): super().__init__("The device is not in acquisition mode.") class InvalidParameterError(Exception): """ Invalid parameter. """ def __init__(self): super().__init__("Invalid parameter.") class NotSupportedError(Exception): """ Operation not supported by the device. """ def __init__(self): super().__init__("Operation not supported by the device.") class UnknownError(Exception): """ Unknown error: `message`. """ def __init__(self, message=""): super().__init__("Unknown error: {}".format(message))
0.793346
0.191933
# scientistmetrics ## About scientistmetrics **scientistmetrics** is a `Python` package for calculating correlation amongst categorical variables. ## Why scientistmetrics? The function provides the option for computing one of six measures of association between two nominal variables from the data given in a 2d contingency table: * Pearson's chi-squared test : https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test * Phi coefficient : https://en.wikipedia.org/wiki/Phi_coefficient * G-test: https://en.wikipedia.org/wiki/G-test * Cramer's V : https://en.wikipedia.org/wiki/Cramer's_V * Tschuprow's T : https://en.wikipedia.org/wiki/Tschuprow's_T * Pearson contingency coefficient : https://www.statisticshowto.com/contingency-coefficient/ Notebook is availabled. ## Installation ### Dependencies scientistmetrics requires : ``` Python >=3.10 Numpy >=1.23.5 Pandas >=1.5.3 Plotnine >=0.10.1 Scipy >=1.10.1 ``` ## User installation You can install scientistmetrics using `pip` : ``` pip install scientistmetrics ``` ## Author Duvérier DJIFACK ZEBAZE
scientistmetrics
/scientistmetrics-0.0.2.tar.gz/scientistmetrics-0.0.2/README.md
README.md
Python >=3.10 Numpy >=1.23.5 Pandas >=1.5.3 Plotnine >=0.10.1 Scipy >=1.10.1 pip install scientistmetrics
0.575469
0.942612
# Powerset model [linear regression dataset](https://www.telusinternational.com/insights/ai-data/article/10-open-datasets-for-linear-regression) [logistic regression dataset](https://sushtend.com/machine-learning/datasets-for-practicing-logistic-regression/) [Machine learning with R datasets](https://github.com/stedy/Machine-Learning-with-R-datasets) ## Linear regression ``` # Set repository import os os.chdir("D:/Bureau/PythonProject/packages/scientistmetrics/data/") # warnings message import warnings warnings.filterwarnings("ignore") # Load dataset import pandas as pd import numpy as np insurance = pd.read_csv("insurance.csv",sep=",") insurance.head() insurance.info() # Powerset from scientistmetrics.model import powersetmodel ``` ## [Insurance dataset](https://www.kaggle.com/datasets/mirichoi0218/insurance) ``` # Powerset model ols_res = powersetmodel(DTrain=insurance,target="charges") ols_model = ols_res[0] ols_metrics = ols_res[1] print(ols_metrics) ``` ## Logistic regression ## [Diabetes]() ``` # Load datasets diabetes = pd.read_csv("diabetes.csv",sep=",") diabetes.info() glm_res = powersetmodel(DTrain=diabetes,split_data=False,target="Outcome",model_type = "logistic",num_from=2,num_to=3) glm_model = glm_res[0] glm_metrics = glm_res[1] print(glm_metrics) ```
scientistmetrics
/scientistmetrics-0.0.2.tar.gz/scientistmetrics-0.0.2/model.ipynb
model.ipynb
# Set repository import os os.chdir("D:/Bureau/PythonProject/packages/scientistmetrics/data/") # warnings message import warnings warnings.filterwarnings("ignore") # Load dataset import pandas as pd import numpy as np insurance = pd.read_csv("insurance.csv",sep=",") insurance.head() insurance.info() # Powerset from scientistmetrics.model import powersetmodel # Powerset model ols_res = powersetmodel(DTrain=insurance,target="charges") ols_model = ols_res[0] ols_metrics = ols_res[1] print(ols_metrics) # Load datasets diabetes = pd.read_csv("diabetes.csv",sep=",") diabetes.info() glm_res = powersetmodel(DTrain=diabetes,split_data=False,target="Outcome",model_type = "logistic",num_from=2,num_to=3) glm_model = glm_res[0] glm_metrics = glm_res[1] print(glm_metrics)
0.395835
0.884937
# scientisttools : Python library for multidimensional analysis ## About scientisttools **scientisttools** is a `Python` package dedicated to multivariate Exploratory Data Analysis. ## Why use scientisttools? * It performs **classical principal component methods** : * Principal Components Analysis (PCA) * Principal Components Analysis with partial correlation matrix (PPCA) * Weighted Principal Components Analysis (WPCA) * Expectation-Maximization Principal Components Analysis (EMPCA) * Exploratory Factor Analysis (EFA) * Classical Multidimensional Scaling (CMDSCALE) * Metric and Non - Metric Multidimensional Scaling (MDS) * Correspondence Analysis (CA) * Multiple Correspondence Analysis (MCA) * Factor Analysis of Mixed Data (FAMD) * Multiple Factor Analysis (MFA) * In some methods, it allowed to **add supplementary informations** such as supplementary individuals and/or variables. * It provides a geometrical point of view, a lot of graphical outputs. * It provides efficient implementations, using a scikit-learn API. Those statistical methods can be used in two ways : * as descriptive methods ("datamining approach") * as reduction methods in scikit-learn pipelines ("machine learning approach") `scientisttools` also performs some algorithms such as `clustering analysis` and `discriminant analysis`. * **Clustering analysis**: * Hierarchical Clustering on Principal Components (HCPC) * Variables Hierarchical Clustering Analysis (VARHCA) * Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC) * Categorical Variables Hierarchical Clustering Analysis (CATVARHCA) * **Discriminant Analysis** * Canonical Discriminant Analysis (CANDISC) * Linear Discriminant Analysis (LDA) * Discriminant with qualitatives variables (DISQUAL) * Discriminant Correspondence Analysis (DISCA) * Discriminant with mixed data (DISMIX) * Stepwise Discriminant Analysis (STEPDISC) (only `backward` elimination is available). Notebooks are availabled. ## Installation ### Dependencies scientisttools requires ``` Python >=3.10 Numpy >= 1.23.5 Matplotlib >= 3.5.3 Scikit-learn >= 1.2.2 Pandas >= 1.5.3 mapply >= 0.1.21 Plotnine >= 0.10.1 Plydata >= 0.4.3 ``` ### User installation You can install scientisttools using `pip` : ``` pip install scientisttools ``` Tutorial are available ```` https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb ```` ## Author Duvérier DJIFACK ZEBAZE ([[email protected]]([email protected]))
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/README.md
README.md
Python >=3.10 Numpy >= 1.23.5 Matplotlib >= 3.5.3 Scikit-learn >= 1.2.2 Pandas >= 1.5.3 mapply >= 0.1.21 Plotnine >= 0.10.1 Plydata >= 0.4.3 pip install scientisttools https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb
0.693161
0.990102
# Linear Discriminant Analysis (LDA) ``` # Chargement de la base import numpy as np import pandas as pd import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") DTrain = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DATA_2_TRAIN",header=0) DTrain.info() from scientisttools.discriminant_analysis import LDA lda = LDA(features_labels=list(DTrain.columns[1:]), target=["TYPE"], row_labels=DTrain.index, parallelize=False) # Instanciation lda.fit(DTrain) # Prabilité à priori lda.priors_ # Matrice de covariance totale lda.tcov_ # Matrice de covariance conditionnelle lda.gcov_ # Between covariance matrix lda.bcov_ # Within covariance matrix lda.wcov_ # Moyenne conditionnelle lda.gmean_ # Coeffcients des fonctions de score lda.coef_ # Constance des fonctions de score lda.intercept_ # Evaluation statistique se = lda.statistical_evaluation_ se DTest = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DATA_2_TEST",header=0) DTest.head() XTest = DTest[DTest.columns[1:]] yTest = DTest[DTest.columns[0]] XTest.head() #Scores des individus lda.decision_function(XTest).head() pred = lda.predict(XTest) pred.head() yTest.head() # Accurary score lda.score(XTest,yTest) lda.predict_proba(XTest).head() lda.squared_mdist_ ``` ## Procédure Backward ``` from scientisttools.discriminant_analysis import STEPDISC stepdisc = STEPDISC(method="backward", alpha=0.01, model_train=True, verbose=True, parallelize=False) stepdisc.fit(lda) # Model Final lda_reduit = stepdisc.train_model_ # Statistical evaluation lda_reduit.statistical_evaluation_ lda_reduit.coef_ lda_reduit.intercept_ ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/lda_example.ipynb
lda_example.ipynb
# Chargement de la base import numpy as np import pandas as pd import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") DTrain = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DATA_2_TRAIN",header=0) DTrain.info() from scientisttools.discriminant_analysis import LDA lda = LDA(features_labels=list(DTrain.columns[1:]), target=["TYPE"], row_labels=DTrain.index, parallelize=False) # Instanciation lda.fit(DTrain) # Prabilité à priori lda.priors_ # Matrice de covariance totale lda.tcov_ # Matrice de covariance conditionnelle lda.gcov_ # Between covariance matrix lda.bcov_ # Within covariance matrix lda.wcov_ # Moyenne conditionnelle lda.gmean_ # Coeffcients des fonctions de score lda.coef_ # Constance des fonctions de score lda.intercept_ # Evaluation statistique se = lda.statistical_evaluation_ se DTest = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DATA_2_TEST",header=0) DTest.head() XTest = DTest[DTest.columns[1:]] yTest = DTest[DTest.columns[0]] XTest.head() #Scores des individus lda.decision_function(XTest).head() pred = lda.predict(XTest) pred.head() yTest.head() # Accurary score lda.score(XTest,yTest) lda.predict_proba(XTest).head() lda.squared_mdist_ from scientisttools.discriminant_analysis import STEPDISC stepdisc = STEPDISC(method="backward", alpha=0.01, model_train=True, verbose=True, parallelize=False) stepdisc.fit(lda) # Model Final lda_reduit = stepdisc.train_model_ # Statistical evaluation lda_reduit.statistical_evaluation_ lda_reduit.coef_ lda_reduit.intercept_
0.323487
0.599866
# HCPC with MCA ``` # Set environment import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") # load datasets import pandas as pd tea = pd.read_excel("tea.xlsx") tea.info() ``` ## MCA on tea ``` # MCA from scientisttools.decomposition import MCA mca = MCA(n_components=20, matrix_type="completed", row_labels=tea.index, var_labels=list(tea.columns[:18]), quanti_sup_labels=["age"], quali_sup_labels=tea.columns[19:], parallelize=True) mca.fit(tea) ``` ## HCPC ``` from scientisttools.clustering import HCPC hcpc = HCPC(n_clusters=3, metric="euclidean", method="ward", parallelize=True) hcpc.fit(mca) hcpc.cluster_infos_ from scientisttools.pyplot import plot_dendrogram import matplotlib.pyplot as plt plot_dendrogram(hcpc) hcpc.cluster_centers_ from scientisttools.pyplot import plotHCPC fig, axe = plt.subplots(figsize=(10,10)) #plotHCPC(hcpc,ax=axe) #plt.show() hcpc.desc_axes_correlation_ratio_ hcpc.desc_axes_infos_ hcpc.desc_var_quali_["chi2"] hcpc.desc_var_quali_sup_ hcpc.var_quali_infos_ hcpc.desc_var_category_.loc["cluster_1",] hcpc.desc_var_quanti_sup_ ``` ## Caractérisation par les individus ### Individus proches ``` hcpc.disto_near_ # Individus loin hcpc.disto_far_ # Parangons hcpc.parangons_ ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/hcpc_mca_example.ipynb
hcpc_mca_example.ipynb
# Set environment import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") # load datasets import pandas as pd tea = pd.read_excel("tea.xlsx") tea.info() # MCA from scientisttools.decomposition import MCA mca = MCA(n_components=20, matrix_type="completed", row_labels=tea.index, var_labels=list(tea.columns[:18]), quanti_sup_labels=["age"], quali_sup_labels=tea.columns[19:], parallelize=True) mca.fit(tea) from scientisttools.clustering import HCPC hcpc = HCPC(n_clusters=3, metric="euclidean", method="ward", parallelize=True) hcpc.fit(mca) hcpc.cluster_infos_ from scientisttools.pyplot import plot_dendrogram import matplotlib.pyplot as plt plot_dendrogram(hcpc) hcpc.cluster_centers_ from scientisttools.pyplot import plotHCPC fig, axe = plt.subplots(figsize=(10,10)) #plotHCPC(hcpc,ax=axe) #plt.show() hcpc.desc_axes_correlation_ratio_ hcpc.desc_axes_infos_ hcpc.desc_var_quali_["chi2"] hcpc.desc_var_quali_sup_ hcpc.var_quali_infos_ hcpc.desc_var_category_.loc["cluster_1",] hcpc.desc_var_quanti_sup_ hcpc.disto_near_ # Individus loin hcpc.disto_far_ # Parangons hcpc.parangons_
0.360377
0.653286
# Canonical discriminant analysis ``` # Chargement des donnees import pandas as pd import numpy as np from plydata import * import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") wine = pd.read_excel("wine_quality.xls",index_col=1) display(wine >> head()) from scientisttools.discriminant_analysis import CANDISC my_cda = CANDISC(n_components=2, target=["Qualite"], row_labels=wine.index, features_labels=["Temperature","Soleil","Chaleur","Pluie"], parallelize=False) my_cda.fit(wine) my_cda.classes_ my_cda.summary_information_ my_cda.class_level_information_ my_cda.squared_mdist_ my_cda.univariate_test_statistis_ anova = my_cda.anova_ anova my_cda.correlation_ratio_ print(my_cda.manova_) tukey = my_cda.tukey_ print(tukey["Temperature"]) bonf_test = my_cda.bonferroni_correction_ print(bonf_test["Temperature"]) sidak = my_cda.sidak_ print(sidak["Temperature"]) my_cda.tcov_ my_cda.tcorr_ my_cda.gcov_ my_cda.wcov_ my_cda.wcorr_ my_cda.bcorr_ my_cda.eig_.T my_cda.intercept_ my_cda.coef_ from scientisttools.extractfactor import get_candisc row_coord = get_candisc(my_cda) row_coord["coord"].head() my_cda.global_performance_ my_cda.likelihood_test_ transform = my_cda.transform(wine.drop(columns=["Qualite","Obs."])) transform.iloc[:5,:] Xtest = pd.DataFrame(np.array([3000,1100,20,300]).reshape(1,4),index=['1958'], columns = my_cda.features_labels_) Xtest my_cda.transform(Xtest) X = wine[my_cda.features_labels_] predict_proba = my_cda.predict_proba(X) predict_proba.head().round(4) my_cda.decision_function(Xtest) predict_proba = my_cda.predict_proba(X) predict_proba.head() my_cda.predict(Xtest) my_cda.score(X,wine["Qualite"]) from scientisttools.extractfactor import get_eigenvalue,summaryCANDISC,get_candisc_coef eig = get_eigenvalue(my_cda) eig coef = get_candisc_coef(my_cda,choice="absolute") coef coef = get_candisc_coef(my_cda,choice="score") coef summaryCANDISC(my_cda,to_markdown=True) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/candisc_example.ipynb
candisc_example.ipynb
# Chargement des donnees import pandas as pd import numpy as np from plydata import * import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") wine = pd.read_excel("wine_quality.xls",index_col=1) display(wine >> head()) from scientisttools.discriminant_analysis import CANDISC my_cda = CANDISC(n_components=2, target=["Qualite"], row_labels=wine.index, features_labels=["Temperature","Soleil","Chaleur","Pluie"], parallelize=False) my_cda.fit(wine) my_cda.classes_ my_cda.summary_information_ my_cda.class_level_information_ my_cda.squared_mdist_ my_cda.univariate_test_statistis_ anova = my_cda.anova_ anova my_cda.correlation_ratio_ print(my_cda.manova_) tukey = my_cda.tukey_ print(tukey["Temperature"]) bonf_test = my_cda.bonferroni_correction_ print(bonf_test["Temperature"]) sidak = my_cda.sidak_ print(sidak["Temperature"]) my_cda.tcov_ my_cda.tcorr_ my_cda.gcov_ my_cda.wcov_ my_cda.wcorr_ my_cda.bcorr_ my_cda.eig_.T my_cda.intercept_ my_cda.coef_ from scientisttools.extractfactor import get_candisc row_coord = get_candisc(my_cda) row_coord["coord"].head() my_cda.global_performance_ my_cda.likelihood_test_ transform = my_cda.transform(wine.drop(columns=["Qualite","Obs."])) transform.iloc[:5,:] Xtest = pd.DataFrame(np.array([3000,1100,20,300]).reshape(1,4),index=['1958'], columns = my_cda.features_labels_) Xtest my_cda.transform(Xtest) X = wine[my_cda.features_labels_] predict_proba = my_cda.predict_proba(X) predict_proba.head().round(4) my_cda.decision_function(Xtest) predict_proba = my_cda.predict_proba(X) predict_proba.head() my_cda.predict(Xtest) my_cda.score(X,wine["Qualite"]) from scientisttools.extractfactor import get_eigenvalue,summaryCANDISC,get_candisc_coef eig = get_eigenvalue(my_cda) eig coef = get_candisc_coef(my_cda,choice="absolute") coef coef = get_candisc_coef(my_cda,choice="score") coef summaryCANDISC(my_cda,to_markdown=True)
0.376623
0.459076
# Importation, partition train-test et DISQUAL ``` #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas df = pandas.read_excel("mushroom.xls") df.info() #description df.describe(include='object') #valeurs par variable df.describe(include='object').loc['unique'] #partition sur la base de la colonne SAMPLE_STATUS dfTrain = df.loc[df.SAMPLE_STATUS == 'train'].drop('SAMPLE_STATUS',axis='columns') dfTest = df.loc[df.SAMPLE_STATUS == 'test'].drop('SAMPLE_STATUS',axis='columns') #vérif. print(dfTrain.shape) print(dfTest.shape) #méthode DISQUAL instanciation from scientisttools.discriminant_analysis import DISQUAL disqual = DISQUAL(n_components=2, target=['classe'], features_labels=list(dfTrain.columns[:-1]), row_labels=dfTrain.index, parallelize=True) #entraînement - temps de traitement dépasse la minute #ai dû interrompre les calculs disqual.fit(dfTrain) ``` # Test avec simplement l'analyse des corresp. multiples ``` #variables X seulement XTrain = dfTrain.loc[:,dfTrain.columns != 'classe'] XTrain.columns #instancier et lancer l'ACM from scientisttools.decomposition import MCA my_mca = MCA(n_components=None, row_labels=XTrain.index.values, var_labels=XTrain.columns.values, mod_labels=None, matrix_type='completed', benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, parallelize=True) #entraînement -- ici aussi arrêt des calculs #après plus d'une minute my_mca.fit(XTrain) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/disqual_mushroom.ipynb
disqual_mushroom.ipynb
#changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas df = pandas.read_excel("mushroom.xls") df.info() #description df.describe(include='object') #valeurs par variable df.describe(include='object').loc['unique'] #partition sur la base de la colonne SAMPLE_STATUS dfTrain = df.loc[df.SAMPLE_STATUS == 'train'].drop('SAMPLE_STATUS',axis='columns') dfTest = df.loc[df.SAMPLE_STATUS == 'test'].drop('SAMPLE_STATUS',axis='columns') #vérif. print(dfTrain.shape) print(dfTest.shape) #méthode DISQUAL instanciation from scientisttools.discriminant_analysis import DISQUAL disqual = DISQUAL(n_components=2, target=['classe'], features_labels=list(dfTrain.columns[:-1]), row_labels=dfTrain.index, parallelize=True) #entraînement - temps de traitement dépasse la minute #ai dû interrompre les calculs disqual.fit(dfTrain) #variables X seulement XTrain = dfTrain.loc[:,dfTrain.columns != 'classe'] XTrain.columns #instancier et lancer l'ACM from scientisttools.decomposition import MCA my_mca = MCA(n_components=None, row_labels=XTrain.index.values, var_labels=XTrain.columns.values, mod_labels=None, matrix_type='completed', benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, parallelize=True) #entraînement -- ici aussi arrêt des calculs #après plus d'une minute my_mca.fit(XTrain)
0.207295
0.607547
# Linear Discriminant Analysis with both continuous and categories variables (DISMIX) ``` # Chargement des librairies import numpy as np import pandas as pd import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") # Chargement des données D = pd.read_excel("Data_Methodes_Factorielles.xlsx",sheet_name="AFDM_TENNIS",index_col=0) display(D) D.info() ``` on souhaite prédire `RolandGarros` ``` # Importation de la classe de Calcul from scientisttools.discriminant_analysis import DISMIX # Instanciation mixdisc = DISMIX(n_components=None, target=["RolandGarros"], quanti_features_labels=["Taille","Titres","Finales","TitresGC","BestClassDouble"], quali_features_labels=["Lateralite","MainsRevers"], row_labels=D.index, priors=None, parallelize=False) # Entrainement - Fit mixdisc.fit(D) ``` ## Factor Analysis of Mixed Data ``` # FAMD famd = mixdisc.famd_model_ # Valeur propres eig = famd.eig_.T display(pd.DataFrame(eig)) from scientisttools.pyplot import plot_eigenvalues import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,8)) plot_eigenvalues(famd,choice="eigenvalue",ax=axe) plt.show() # Coordonnées des individus pd.DataFrame(famd.row_coord_) # Coefficients issus de LDA mixdisc.lda_coef_ # Constante issue de LDA mixdisc.intercept_ # Coefficients du MIXDISC mixdisc.coef_ # Constante du MIXDISC mixdisc.intercept_ X= D.drop(columns=["RolandGarros"]) y = D["RolandGarros"] pred = mixdisc.predict(X) pred # Accurate mixdisc.score(X,y) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/dismix_example.ipynb
dismix_example.ipynb
# Chargement des librairies import numpy as np import pandas as pd import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") # Chargement des données D = pd.read_excel("Data_Methodes_Factorielles.xlsx",sheet_name="AFDM_TENNIS",index_col=0) display(D) D.info() # Importation de la classe de Calcul from scientisttools.discriminant_analysis import DISMIX # Instanciation mixdisc = DISMIX(n_components=None, target=["RolandGarros"], quanti_features_labels=["Taille","Titres","Finales","TitresGC","BestClassDouble"], quali_features_labels=["Lateralite","MainsRevers"], row_labels=D.index, priors=None, parallelize=False) # Entrainement - Fit mixdisc.fit(D) # FAMD famd = mixdisc.famd_model_ # Valeur propres eig = famd.eig_.T display(pd.DataFrame(eig)) from scientisttools.pyplot import plot_eigenvalues import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,8)) plot_eigenvalues(famd,choice="eigenvalue",ax=axe) plt.show() # Coordonnées des individus pd.DataFrame(famd.row_coord_) # Coefficients issus de LDA mixdisc.lda_coef_ # Constante issue de LDA mixdisc.intercept_ # Coefficients du MIXDISC mixdisc.coef_ # Constante du MIXDISC mixdisc.intercept_ X= D.drop(columns=["RolandGarros"]) y = D["RolandGarros"] pred = mixdisc.predict(X) pred # Accurate mixdisc.score(X,y)
0.314471
0.797241
# Discriminant Correspondence Analysis (DISCA) ``` # Chargement de la base import numpy as np import pandas as pd import plotnine as pn import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") D = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DIVAY",header=0) D from scientisttools.discriminant_analysis import DISCA disca = DISCA(n_components=None, target=["Region"], features_labels=list(D.columns[1:]), matrix_type="completed", priors=None, parallelize=False) disca.fit(D) disca.statistics_test_["cramer's V"] # Individus supplémentaires Xsup = pd.DataFrame({ "Woody" : "A","Fruity" : "C", "Sweet" : "B", "Alcohol" : "B", "Hedonic" : "A" },index=[13]) Xsup yTrain = D["Region"] XTrain = D.drop(columns=["Region"]) XTrain disca.transform(Xsup) disca.decision_function(Xsup) disca.predict_proba(Xsup) disca.predict(Xsup) disca.score(XTrain,yTrain) disca.score(XTrain,disca.predict(XTrain)) ``` # Approche 2 - Dummies variables ``` dummies = pd.get_dummies(XTrain,prefix_sep="_") D2 = pd.concat([yTrain,dummies],axis=1) D2 disca2 = DISCA(n_components=None, target=["Region"], features_labels=None, mod_labels=list[dummies.columns], matrix_type="dummies", priors=None, parallelize=False) disca2.fit(D2) disca2.coef_ disca2.row_coord_ disca2.statistics_test_["cramer's V"] ca = disca.ca_model_ from scientisttools.pyplot import plot_eigenvalues import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,8)) plot_eigenvalues(ca,choice="eigenvalue",ax=axe) plt.show() ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/disca_example.ipynb
disca_example.ipynb
# Chargement de la base import numpy as np import pandas as pd import plotnine as pn import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") D = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DIVAY",header=0) D from scientisttools.discriminant_analysis import DISCA disca = DISCA(n_components=None, target=["Region"], features_labels=list(D.columns[1:]), matrix_type="completed", priors=None, parallelize=False) disca.fit(D) disca.statistics_test_["cramer's V"] # Individus supplémentaires Xsup = pd.DataFrame({ "Woody" : "A","Fruity" : "C", "Sweet" : "B", "Alcohol" : "B", "Hedonic" : "A" },index=[13]) Xsup yTrain = D["Region"] XTrain = D.drop(columns=["Region"]) XTrain disca.transform(Xsup) disca.decision_function(Xsup) disca.predict_proba(Xsup) disca.predict(Xsup) disca.score(XTrain,yTrain) disca.score(XTrain,disca.predict(XTrain)) dummies = pd.get_dummies(XTrain,prefix_sep="_") D2 = pd.concat([yTrain,dummies],axis=1) D2 disca2 = DISCA(n_components=None, target=["Region"], features_labels=None, mod_labels=list[dummies.columns], matrix_type="dummies", priors=None, parallelize=False) disca2.fit(D2) disca2.coef_ disca2.row_coord_ disca2.statistics_test_["cramer's V"] ca = disca.ca_model_ from scientisttools.pyplot import plot_eigenvalues import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,8)) plot_eigenvalues(ca,choice="eigenvalue",ax=axe) plt.show()
0.320502
0.659196
# Importation et inspection des données ``` #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #chargement des données import pandas jobrate = pandas.read_excel("jobrate.xlsx") jobrate.head() #information sur les données jobrate.info() #variables actives X = jobrate[jobrate.columns[:-1]] print(X.columns) #matrice des corrélations R = X.corr() print(R) #représentation graphique - heatmap import seaborn as sns sns.heatmap(R,vmin=-1,vmax=+1,cmap='Blues') #ou avec le carré des corrélations #la valeur min devient 0 dans ce cas sns.heatmap(R**2,vmin=0,vmax=+1,cmap='Blues') ``` # CAH sur les variables ``` import numpy D = numpy.sqrt(1-R**2) print(D.iloc[:3,:3]) #préparation pour la CAH de scipy #vectoriser la matrice des distances from scipy.spatial.distance import squareform VD = squareform(D) print(VD) #CAH - Ward from scipy.cluster.hierarchy import ward cah = ward(VD) print(cah) #dendrogramme import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram plt.title("CAH") dendrogram(cah,labels=X.columns,orientation='left',color_threshold=0) plt.show() #matérialisation de 4 classes plt.title("CAH - 4 classes") dendrogram(cah,labels=X.columns,orientation='left',color_threshold=0.95) plt.show() #découpage effectif en 4 classes from scipy.cluster.hierarchy import fcluster groupes = fcluster(cah,t=0.95,criterion='distance') print(groupes) #comptage print(numpy.unique(groupes,return_counts=True)) #liste des variables pour le groupe 1 print(X.columns[groupes == 1]) #affichage des groupes for g in numpy.unique(groupes): print(g," : ",X.columns[groupes == g]) ``` # Traitement de la variable supplémentaire (overral) ``` #corrélation avec chaque variable print(X.corrwith(jobrate.Overall_Rating)) #dataset pour le groupe 1 X[X.columns[groupes == 1]].head() #corrélations des variables du groupe 1 avec "overall" print(X[X.columns[groupes == 1]].corrwith(jobrate.Overall_Rating)) #moyenne des carrés des corrélations avec les groupes for g in numpy.unique(groupes): print(g," : ",numpy.mean(X[X.columns[groupes==g]].corrwith(jobrate.Overall_Rating)**2)) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/jobrate_var_clustering.ipynb
jobrate_var_clustering.ipynb
#changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #chargement des données import pandas jobrate = pandas.read_excel("jobrate.xlsx") jobrate.head() #information sur les données jobrate.info() #variables actives X = jobrate[jobrate.columns[:-1]] print(X.columns) #matrice des corrélations R = X.corr() print(R) #représentation graphique - heatmap import seaborn as sns sns.heatmap(R,vmin=-1,vmax=+1,cmap='Blues') #ou avec le carré des corrélations #la valeur min devient 0 dans ce cas sns.heatmap(R**2,vmin=0,vmax=+1,cmap='Blues') import numpy D = numpy.sqrt(1-R**2) print(D.iloc[:3,:3]) #préparation pour la CAH de scipy #vectoriser la matrice des distances from scipy.spatial.distance import squareform VD = squareform(D) print(VD) #CAH - Ward from scipy.cluster.hierarchy import ward cah = ward(VD) print(cah) #dendrogramme import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram plt.title("CAH") dendrogram(cah,labels=X.columns,orientation='left',color_threshold=0) plt.show() #matérialisation de 4 classes plt.title("CAH - 4 classes") dendrogram(cah,labels=X.columns,orientation='left',color_threshold=0.95) plt.show() #découpage effectif en 4 classes from scipy.cluster.hierarchy import fcluster groupes = fcluster(cah,t=0.95,criterion='distance') print(groupes) #comptage print(numpy.unique(groupes,return_counts=True)) #liste des variables pour le groupe 1 print(X.columns[groupes == 1]) #affichage des groupes for g in numpy.unique(groupes): print(g," : ",X.columns[groupes == g]) #corrélation avec chaque variable print(X.corrwith(jobrate.Overall_Rating)) #dataset pour le groupe 1 X[X.columns[groupes == 1]].head() #corrélations des variables du groupe 1 avec "overall" print(X[X.columns[groupes == 1]].corrwith(jobrate.Overall_Rating)) #moyenne des carrés des corrélations avec les groupes for g in numpy.unique(groupes): print(g," : ",numpy.mean(X[X.columns[groupes==g]].corrwith(jobrate.Overall_Rating)**2))
0.241132
0.759091
``` #dossier de travail import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des individus actifs import pandas as pd X = pd.read_excel("loisirs_subset.xlsx",sheet_name="data") X.info() ``` # ACM sous scientisttools ``` # ACM from scientisttools.decomposition import MCA my_mca = MCA(n_components=2, row_labels=X.index, var_labels=X.columns, mod_labels=None, matrix_type="completed", benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, parallelize=False) my_mca.fit(X) from scientisttools.pyplot import plotMCA import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,10)) plotMCA(my_mca,choice="mod",repel=True,ax=axe) plt.show() ``` ## Classification ascendante hiérarchique sur les modalités ``` from scientisttools.clustering import VARHCPC # varhcpc = VARHCPC(n_clusters=3, metric="euclidean", method="ward", parallelize=False) # Instanciation varhcpc.fit(my_mca) # Dendrogram from scientisttools.pyplot import plot_dendrogram plot_dendrogram(varhcpc,orientation='top',leaf_rotation=90,color_threshold=0) plt.show() varhcpc.cluster_centers_ from scientisttools.pyplot import plotVARHCPC fig,axe =plt.subplots(figsize=(10,10)) plotVARHCPC(varhcpc,ax=axe,xlim=(-1.2,1.2),ylim=(-1.2,1.2),repel=True,random_state=123,show_clust_cent=False) plt.show() ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/varhcpc2.ipynb
varhcpc2.ipynb
#dossier de travail import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des individus actifs import pandas as pd X = pd.read_excel("loisirs_subset.xlsx",sheet_name="data") X.info() # ACM from scientisttools.decomposition import MCA my_mca = MCA(n_components=2, row_labels=X.index, var_labels=X.columns, mod_labels=None, matrix_type="completed", benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, parallelize=False) my_mca.fit(X) from scientisttools.pyplot import plotMCA import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,10)) plotMCA(my_mca,choice="mod",repel=True,ax=axe) plt.show() from scientisttools.clustering import VARHCPC # varhcpc = VARHCPC(n_clusters=3, metric="euclidean", method="ward", parallelize=False) # Instanciation varhcpc.fit(my_mca) # Dendrogram from scientisttools.pyplot import plot_dendrogram plot_dendrogram(varhcpc,orientation='top',leaf_rotation=90,color_threshold=0) plt.show() varhcpc.cluster_centers_ from scientisttools.pyplot import plotVARHCPC fig,axe =plt.subplots(figsize=(10,10)) plotVARHCPC(varhcpc,ax=axe,xlim=(-1.2,1.2),ylim=(-1.2,1.2),repel=True,random_state=123,show_clust_cent=False) plt.show()
0.384334
0.628977
# CANDISC SKLEARN ``` # Chargement des donnees import pandas as pd import numpy as np from plydata import * import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") data = pd.read_excel("wine_quality.xls",index_col=1) display(data >> head()) wine = data >> select("-Obs.") display(wine >> head()) import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis X = wine.drop(columns=["Qualite"]) y =wine["Qualite"] clf = LinearDiscriminantAnalysis(solver="svd") clf.fit(X, y) predict=clf.predict(X) predict transform = clf.transform(X) transform[:5,] decision = clf.decision_function(X) decision[:5,:] ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/candisc_sklearn.ipynb
candisc_sklearn.ipynb
# Chargement des donnees import pandas as pd import numpy as np from plydata import * import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") data = pd.read_excel("wine_quality.xls",index_col=1) display(data >> head()) wine = data >> select("-Obs.") display(wine >> head()) import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis X = wine.drop(columns=["Qualite"]) y =wine["Qualite"] clf = LinearDiscriminantAnalysis(solver="svd") clf.fit(X, y) predict=clf.predict(X) predict transform = clf.transform(X) transform[:5,] decision = clf.decision_function(X) decision[:5,:]
0.278649
0.463505
# Discriminant Analysis with categorical variables (DISQUAL) ``` # Chargement des librairies import numpy as np import pandas as pd #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") DTrain = pd.read_excel("CongressVotePipeline.xlsx",sheet_name="train",header=0) display(DTrain.head()) DTrain.info() from scientisttools.discriminant_analysis import DISQUAL disqual = DISQUAL(n_components=None, target=["group"], features_labels=list(DTrain.columns[:-1]), row_labels=DTrain.index, parallelize=False) disqual.fit(DTrain) stats_test = disqual.statistics_test_ stats_test.keys() stats_test["chi2"] stats_test["log-likelihood-test"] stats_test["cramer's V"] stats_test["tschuprow's T"] stats_test["pearson"] ``` ## Résultats de l'ACM ``` mca = disqual.mca_model_ ``` ### Valeurs propres ``` eig = mca.eig_.T display(pd.DataFrame(eig)) from scientisttools.pyplot import plot_eigenvalues import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,8)) plot_eigenvalues(mca,ax=axe,n_components=32) plt.show() from scientisttools.extractfactor import get_mca_mod,get_mca_ind mod =get_mca_mod(mca) mod_infos = mod["infos"] display(mod_infos) mod_coord = mod["coord"] display(mod_coord.iloc[:,:2]) # Fonction de projection fproj = disqual.projection_function_ display(fproj.iloc[:,:2]) # Coordonnées des individus row = get_mca_ind(mca) row_coord = row["coord"] display(row_coord.head(10).iloc[:,:2]) # Coeffcients du lDA lda_coef = disqual.lda_coef_ display(lda_coef) lda_intercept = disqual.lda_intercept_ display(lda_intercept) # Evaluation globale se = disqual.statistical_evaluation_ display(se) coef = disqual.coef_ display(coef) intercept = disqual.intercept_ display(intercept) DTest = pd.read_excel("CongressVotePipeline.xlsx",sheet_name="test",header=0) DTest.head() DTest.info() XTest = DTest[DTest.columns[:-1]] new_coord = disqual.transform(XTest) new_coord.iloc[:,:2] XTrain = DTrain[DTrain.columns[:-1]] coord = disqual.transform(XTrain) coord.iloc[:,:2] pred_train = disqual.predict(XTrain) pred_train from sklearn.metrics import confusion_matrix confusion_matrix(DTrain[DTrain.columns[-1]],pred_train) pred_test = disqual.predict(XTest) pred_test confusion_matrix(DTest[DTest.columns[-1]],pred_test) prob_train = disqual.predict_proba(XTrain) prob_train prob_test = disqual.predict_proba(XTest) prob_test ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/disqual_example.ipynb
disqual_example.ipynb
# Chargement des librairies import numpy as np import pandas as pd #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") DTrain = pd.read_excel("CongressVotePipeline.xlsx",sheet_name="train",header=0) display(DTrain.head()) DTrain.info() from scientisttools.discriminant_analysis import DISQUAL disqual = DISQUAL(n_components=None, target=["group"], features_labels=list(DTrain.columns[:-1]), row_labels=DTrain.index, parallelize=False) disqual.fit(DTrain) stats_test = disqual.statistics_test_ stats_test.keys() stats_test["chi2"] stats_test["log-likelihood-test"] stats_test["cramer's V"] stats_test["tschuprow's T"] stats_test["pearson"] mca = disqual.mca_model_ eig = mca.eig_.T display(pd.DataFrame(eig)) from scientisttools.pyplot import plot_eigenvalues import matplotlib.pyplot as plt fig, axe =plt.subplots(figsize=(10,8)) plot_eigenvalues(mca,ax=axe,n_components=32) plt.show() from scientisttools.extractfactor import get_mca_mod,get_mca_ind mod =get_mca_mod(mca) mod_infos = mod["infos"] display(mod_infos) mod_coord = mod["coord"] display(mod_coord.iloc[:,:2]) # Fonction de projection fproj = disqual.projection_function_ display(fproj.iloc[:,:2]) # Coordonnées des individus row = get_mca_ind(mca) row_coord = row["coord"] display(row_coord.head(10).iloc[:,:2]) # Coeffcients du lDA lda_coef = disqual.lda_coef_ display(lda_coef) lda_intercept = disqual.lda_intercept_ display(lda_intercept) # Evaluation globale se = disqual.statistical_evaluation_ display(se) coef = disqual.coef_ display(coef) intercept = disqual.intercept_ display(intercept) DTest = pd.read_excel("CongressVotePipeline.xlsx",sheet_name="test",header=0) DTest.head() DTest.info() XTest = DTest[DTest.columns[:-1]] new_coord = disqual.transform(XTest) new_coord.iloc[:,:2] XTrain = DTrain[DTrain.columns[:-1]] coord = disqual.transform(XTrain) coord.iloc[:,:2] pred_train = disqual.predict(XTrain) pred_train from sklearn.metrics import confusion_matrix confusion_matrix(DTrain[DTrain.columns[-1]],pred_train) pred_test = disqual.predict(XTest) pred_test confusion_matrix(DTest[DTest.columns[-1]],pred_test) prob_train = disqual.predict_proba(XTrain) prob_train prob_test = disqual.predict_proba(XTest) prob_test
0.408277
0.755592
# Linear Discriminant Analysis (LDA) ``` # Chargement de la base import numpy as np import pandas as pd import plotnine as pn import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") D = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DATA_1",header=0) D # Représentation graphique p = pn.ggplot(D,pn.aes(x="X1",y="X2"))+pn.geom_point(pn.aes(color="Groupe"))+pn.ggtitle("Position relatives dans classes dans le plan") print(p) from scientisttools.discriminant_analysis import LDA ``` ## Distribution multinomiale ``` lda = LDA(features_labels=["X1","X2"], target=["Groupe"], distribution="multinomiale", row_labels=D.index, parallelize=False) lda.fit(D) # Moyennes conditionnelles g_k = lda.gmean_ g_k p = p+ pn.geom_point(g_k,pn.aes(x="X1",y="X2",color=g_k.index))+pn.geom_text(g_k,pn.aes(x="X1",y="X2",label=g_k.index,color=g_k.index)) print(p) lda.gcov_ p2 = (pn.ggplot(D,pn.aes(x="X1",y="X2",color="Groupe"))+ pn.geom_point()+ pn.scale_color_manual(values=["skyblue","green"])+ pn.stat_ellipse(type="norm",level=0.7)+ pn.ggtitle('Ellipses de dispersion')) print(p2) # Nouveua individu XTest = pd.DataFrame({"X1" : 6, "X2" : 7},index=["omega"]) XTest lda.decision_function(XTest) lda.predict_proba(XTest) lda.predict(XTest) ``` ## Hypothèse d'homoscédasticité ``` lda2 = LDA(features_labels=["X1","X2"], target=["Groupe"], distribution="homoscedastik", row_labels=D.index, parallelize=False) lda2.fit(D) lda2.intercept_ lda2.coef_ lda.priors_ X = D[["X1","X2"]] lda2.decision_function(X) lda2.decision_function(XTest) lda2.predict_proba(X=X) lda2.squared_mdist_ lda2.predict_proba(X=XTest) lda2.predict(XTest) # 2valuation globale lda2.global_performance_ # Contribution des variables lda2.statistical_evaluation_ lda2.wcov_ lda2.tcov_ lda2.generalized_distance(X) print(lda2.manova_) lda2.generalized_distance(XTest) lda3 = LDA(features_labels=["X1","X2"], target=["Groupe"], distribution="homoscedastik", row_labels = D.index, priors=[1/2,1/2], parallelize=False) lda3.fit(D) lda3.priors_ ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/lda_example2.ipynb
lda_example2.ipynb
# Chargement de la base import numpy as np import pandas as pd import plotnine as pn import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") D = pd.read_excel("Data_Illustration_Livre_ADL.xlsx",sheet_name="DATA_1",header=0) D # Représentation graphique p = pn.ggplot(D,pn.aes(x="X1",y="X2"))+pn.geom_point(pn.aes(color="Groupe"))+pn.ggtitle("Position relatives dans classes dans le plan") print(p) from scientisttools.discriminant_analysis import LDA lda = LDA(features_labels=["X1","X2"], target=["Groupe"], distribution="multinomiale", row_labels=D.index, parallelize=False) lda.fit(D) # Moyennes conditionnelles g_k = lda.gmean_ g_k p = p+ pn.geom_point(g_k,pn.aes(x="X1",y="X2",color=g_k.index))+pn.geom_text(g_k,pn.aes(x="X1",y="X2",label=g_k.index,color=g_k.index)) print(p) lda.gcov_ p2 = (pn.ggplot(D,pn.aes(x="X1",y="X2",color="Groupe"))+ pn.geom_point()+ pn.scale_color_manual(values=["skyblue","green"])+ pn.stat_ellipse(type="norm",level=0.7)+ pn.ggtitle('Ellipses de dispersion')) print(p2) # Nouveua individu XTest = pd.DataFrame({"X1" : 6, "X2" : 7},index=["omega"]) XTest lda.decision_function(XTest) lda.predict_proba(XTest) lda.predict(XTest) lda2 = LDA(features_labels=["X1","X2"], target=["Groupe"], distribution="homoscedastik", row_labels=D.index, parallelize=False) lda2.fit(D) lda2.intercept_ lda2.coef_ lda.priors_ X = D[["X1","X2"]] lda2.decision_function(X) lda2.decision_function(XTest) lda2.predict_proba(X=X) lda2.squared_mdist_ lda2.predict_proba(X=XTest) lda2.predict(XTest) # 2valuation globale lda2.global_performance_ # Contribution des variables lda2.statistical_evaluation_ lda2.wcov_ lda2.tcov_ lda2.generalized_distance(X) print(lda2.manova_) lda2.generalized_distance(XTest) lda3 = LDA(features_labels=["X1","X2"], target=["Groupe"], distribution="homoscedastik", row_labels = D.index, priors=[1/2,1/2], parallelize=False) lda3.fit(D) lda3.priors_
0.254787
0.805479
# Metric and Non - Metric MDS ``` # Chargement des librairies import pandas as pd import numpy as np from plydata import * import matplotlib.pyplot as plt from scientisttools.extractfactor import get_mds from scipy.spatial.distance import pdist,squareform from scientisttools.pyplot import plot_shepard import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #chargement - index_col = 0 pour indiquer que la colonne n°0 est un label import pandas D = pd.read_excel("Data_Methodes_Factorielles.xlsx",sheet_name="MDS_MADAGASCAR",index_col=0) display(D) from scientisttools.manifold import MDS my_mds = MDS(n_components=2, random_state=123, proximity ="precomputed", labels=D.index.values, normalized_stress=True, parallelize=False) my_mds.fit(D) from scientisttools.extractfactor import get_mds coord = get_mds(my_mds)["coord"] display(coord) print(my_mds.stress_) fig, axe =plt.subplots(figsize=(8,8)) plot_shepard(my_mds,ax=axe) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/mds_example.ipynb
mds_example.ipynb
# Chargement des librairies import pandas as pd import numpy as np from plydata import * import matplotlib.pyplot as plt from scientisttools.extractfactor import get_mds from scipy.spatial.distance import pdist,squareform from scientisttools.pyplot import plot_shepard import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #chargement - index_col = 0 pour indiquer que la colonne n°0 est un label import pandas D = pd.read_excel("Data_Methodes_Factorielles.xlsx",sheet_name="MDS_MADAGASCAR",index_col=0) display(D) from scientisttools.manifold import MDS my_mds = MDS(n_components=2, random_state=123, proximity ="precomputed", labels=D.index.values, normalized_stress=True, parallelize=False) my_mds.fit(D) from scientisttools.extractfactor import get_mds coord = get_mds(my_mds)["coord"] display(coord) print(my_mds.stress_) fig, axe =plt.subplots(figsize=(8,8)) plot_shepard(my_mds,ax=axe)
0.298083
0.62055
# MCA ``` #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas df = pandas.read_excel("mushroom_acm.xlsx") #df = pandas.read_excel("canines.xlsx") df.info() from scientisttools.decomposition import MCA my_mca = MCA(n_components=None, row_labels=df.index.values, var_labels=df.columns.values, mod_labels=None, matrix_type='completed', benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, graph=False) #entraînement my_mca.fit(df) #valeurs propres print(my_mca.eig_[0]) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/mca_mushroom.ipynb
mca_mushroom.ipynb
#changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas df = pandas.read_excel("mushroom_acm.xlsx") #df = pandas.read_excel("canines.xlsx") df.info() from scientisttools.decomposition import MCA my_mca = MCA(n_components=None, row_labels=df.index.values, var_labels=df.columns.values, mod_labels=None, matrix_type='completed', benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, graph=False) #entraînement my_mca.fit(df) #valeurs propres print(my_mca.eig_[0])
0.173463
0.438545
# Hierarchical Clustering Analysis of continuous variables ``` import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") import pandas as pd df = pd.read_excel("jobrate.xlsx") df.head() df.info() #variables actives D = df[df.columns[:-1]] from scientisttools.clustering import VARHCA varhca = VARHCA(n_clusters=4, var_labels=D.columns, matrix_type="completed", metric="euclidean", method="ward", parallelize=False) # Instanciation varhca.fit(D) varhca.linkage_matrix_ varhca.distances_ ``` # Individus supplémentaires ``` Xsup = df[df.columns[-1]] Xsup.head() varhca.transform(Xsup) ``` # Approche 2 : Matrice globale ``` varhca2 = VARHCA(n_clusters=4, var_labels=df.columns[:-1], var_sup_labels=["Overall_Rating"], matrix_type="completed", metric="euclidean", method="ward", parallelize=False) varhca2.fit(df) varhca2.corr_mean_square_ ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/varhca.ipynb
varhca.ipynb
import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") import pandas as pd df = pd.read_excel("jobrate.xlsx") df.head() df.info() #variables actives D = df[df.columns[:-1]] from scientisttools.clustering import VARHCA varhca = VARHCA(n_clusters=4, var_labels=D.columns, matrix_type="completed", metric="euclidean", method="ward", parallelize=False) # Instanciation varhca.fit(D) varhca.linkage_matrix_ varhca.distances_ Xsup = df[df.columns[-1]] Xsup.head() varhca.transform(Xsup) varhca2 = VARHCA(n_clusters=4, var_labels=df.columns[:-1], var_sup_labels=["Overall_Rating"], matrix_type="completed", metric="euclidean", method="ward", parallelize=False) varhca2.fit(df) varhca2.corr_mean_square_
0.325306
0.67868
# VARHCPC ``` #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas as pd vote = pd.read_excel("vote_clustering.xlsx") vote.head() #variables actives X = vote.iloc[:,1:] print(X.columns) ``` ## ACM sur les données actives ``` # ACM from scientisttools.decomposition import MCA my_mca = MCA(n_components=2, row_labels=X.index, var_labels=X.columns, mod_labels=None, matrix_type="completed", benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, parallelize=False) my_mca.fit(X) # Coordonnées des modalités pd.DataFrame(my_mca.mod_coord_,index=my_mca.mod_labels_,columns=my_mca.dim_index_) pd.DataFrame(my_mca.mod_infos_,index=my_mca.mod_labels_,columns=["dist","weight","Inertie"]) ``` > Note Dans ce tableau `weight` représente le poids relatif de chaque modalité, c'est - à - dire : $$ w_{k} = \dfrac{n_{k}}{n\times p} $$ où * $n_{k}$ est le nombre d'individu possédant la modalité $k$ * $n$ le nombre total d'individu * $p$ le nombre de variables catégorielles Dans le cadre de la classification automatique, on utilise le poids absolu (ou proportion), c'est - à - dire : $$ p_{k} = \dfrac{n_{k}}{n} = w_{k}\times p $$ ``` # Poids absolus des modalités my_mca.mod_infos_[:,1]*my_mca.n_vars_ ``` ## Classification automatique ``` from scientisttools.clustering import VARHCPC # varhcpc = VARHCPC(n_clusters=3, metric="euclidean", method="average", parallelize=False) # Instanciation varhcpc.fit(my_mca) ``` ### Dendrogram ``` # Dendrogram import matplotlib.pyplot as plt from scientisttools.pyplot import plot_dendrogram plot_dendrogram(varhcpc,orientation='top',leaf_rotation=90,color_threshold=1.6) plt.show() varhcpc.cluster_centers_ from scientisttools.pyplot import plotVARHCPC fig,axe =plt.subplots(figsize=(10,10)) plotVARHCPC(varhcpc,ax=axe,xlim=(-1.5,2),ylim=(-5,1),repel=True,random_state=123,show_clust_cent=True) plt.show() ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/varhcpc.ipynb
varhcpc.ipynb
#changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas as pd vote = pd.read_excel("vote_clustering.xlsx") vote.head() #variables actives X = vote.iloc[:,1:] print(X.columns) # ACM from scientisttools.decomposition import MCA my_mca = MCA(n_components=2, row_labels=X.index, var_labels=X.columns, mod_labels=None, matrix_type="completed", benzecri=True, greenacre=True, row_sup_labels=None, quali_sup_labels=None, quanti_sup_labels=None, parallelize=False) my_mca.fit(X) # Coordonnées des modalités pd.DataFrame(my_mca.mod_coord_,index=my_mca.mod_labels_,columns=my_mca.dim_index_) pd.DataFrame(my_mca.mod_infos_,index=my_mca.mod_labels_,columns=["dist","weight","Inertie"]) # Poids absolus des modalités my_mca.mod_infos_[:,1]*my_mca.n_vars_ from scientisttools.clustering import VARHCPC # varhcpc = VARHCPC(n_clusters=3, metric="euclidean", method="average", parallelize=False) # Instanciation varhcpc.fit(my_mca) # Dendrogram import matplotlib.pyplot as plt from scientisttools.pyplot import plot_dendrogram plot_dendrogram(varhcpc,orientation='top',leaf_rotation=90,color_threshold=1.6) plt.show() varhcpc.cluster_centers_ from scientisttools.pyplot import plotVARHCPC fig,axe =plt.subplots(figsize=(10,10)) plotVARHCPC(varhcpc,ax=axe,xlim=(-1.5,2),ylim=(-5,1),repel=True,random_state=123,show_clust_cent=True) plt.show()
0.382833
0.623334
# Multiple Factor Analysis (MFA) ``` #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas as pd url = "http://factominer.free.fr/factomethods/datasets/wine.txt" wine = pd.read_table(url,sep="\t") wine.head() wine.info() from prince import MFA wine2 = pd.DataFrame(data=wine.values, columns = pd.MultiIndex.from_tuples( [ ("others","Label"), ("others","Soil"), ("before shaking","Odor.Intensity"), ("before shaking","Aroma.quality"), ("before shaking","Fruity"), ("before shaking","Flower"), ("before shaking","Spice"), ("vision","Visual.intensity"), ("vision","Nuance"), ("vision","Surface.feeling"), ("after shaking","Odor.intensity"), ("after shaking","Quality.of.odour"), ("after shaking","Fruity"), ("after shaking","Flower"), ("after shaking","Spice"), ("after shaking","Plante"), ("after shaking","Phenolic"), ("after shaking","Aroma.intensity"), ("after shaking","Aroma.persistency"), ("after shaking","Aroma.quality"), ("gustation","Attack.intensity"), ("gustation","Acidity"), ("gustation","Astringency"), ("gustation","Alcohol"), ("gustation","Balance"), ("gustation","Smooth"), ("gustation","Bitterness"), ("gustation","Intensity"), ("gustation","Harmony"), ("overall judgement","Overall.quality"), ("overall judgement","Typical") ] )) groups = wine2.columns.levels[0].drop(["others","overall judgement"]).tolist() groups wine2 = wine2[groups].astype("float") import prince mfa = prince.MFA( n_components=3, n_iter=3, copy=True, check_input=True, engine='sklearn', random_state=42 ) mfa = mfa.fit(wine2, groups=groups) mfa.eigenvalues_summary mfa.row_coordinates(wine2) mfa.plot(wine2) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/mfa2_prince.ipynb
mfa2_prince.ipynb
#changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas as pd url = "http://factominer.free.fr/factomethods/datasets/wine.txt" wine = pd.read_table(url,sep="\t") wine.head() wine.info() from prince import MFA wine2 = pd.DataFrame(data=wine.values, columns = pd.MultiIndex.from_tuples( [ ("others","Label"), ("others","Soil"), ("before shaking","Odor.Intensity"), ("before shaking","Aroma.quality"), ("before shaking","Fruity"), ("before shaking","Flower"), ("before shaking","Spice"), ("vision","Visual.intensity"), ("vision","Nuance"), ("vision","Surface.feeling"), ("after shaking","Odor.intensity"), ("after shaking","Quality.of.odour"), ("after shaking","Fruity"), ("after shaking","Flower"), ("after shaking","Spice"), ("after shaking","Plante"), ("after shaking","Phenolic"), ("after shaking","Aroma.intensity"), ("after shaking","Aroma.persistency"), ("after shaking","Aroma.quality"), ("gustation","Attack.intensity"), ("gustation","Acidity"), ("gustation","Astringency"), ("gustation","Alcohol"), ("gustation","Balance"), ("gustation","Smooth"), ("gustation","Bitterness"), ("gustation","Intensity"), ("gustation","Harmony"), ("overall judgement","Overall.quality"), ("overall judgement","Typical") ] )) groups = wine2.columns.levels[0].drop(["others","overall judgement"]).tolist() groups wine2 = wine2[groups].astype("float") import prince mfa = prince.MFA( n_components=3, n_iter=3, copy=True, check_input=True, engine='sklearn', random_state=42 ) mfa = mfa.fit(wine2, groups=groups) mfa.eigenvalues_summary mfa.row_coordinates(wine2) mfa.plot(wine2)
0.206814
0.6703
``` #changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas df = pandas.read_excel("Olive_Oil_Candisc.xlsx",sheet_name="dataset") df.info() display(df.head()) #classes - distribution df.CLASSE.value_counts() #analyse factorielle discriminante from scientisttools.discriminant_analysis import CANDISC #instanciation candisc = CANDISC(n_components=2, target=['CLASSE'], features_labels=list(df.columns[1:]), row_labels=df.index, priors=None, parallelize=True) #entraînement -- l'erreur apparaît ici... candisc.fit(df) candisc.likelihood_test_ print(candisc.manova_) display(pandas.DataFrame(candisc.eig_.T)) candisc.univariate_test_statistis_ pandas.DataFrame(candisc.coef_,index=candisc.features_labels_,columns=candisc.dim_index_) candisc.gcenter_ pandas.DataFrame(candisc.score_coef_,index=candisc.features_labels_,columns=candisc.classes_) candisc.gdisto_ candisc.tcorr_ candisc.bcorr_ candisc.wcorr_ candisc.global_performance_ candisc.anova_ ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/candisc_olive_oil.ipynb
candisc_olive_oil.ipynb
#changement de dossier import os os.chdir("d:/Bureau/PythonProject/packages/scientisttools/data/") #importation des données import pandas df = pandas.read_excel("Olive_Oil_Candisc.xlsx",sheet_name="dataset") df.info() display(df.head()) #classes - distribution df.CLASSE.value_counts() #analyse factorielle discriminante from scientisttools.discriminant_analysis import CANDISC #instanciation candisc = CANDISC(n_components=2, target=['CLASSE'], features_labels=list(df.columns[1:]), row_labels=df.index, priors=None, parallelize=True) #entraînement -- l'erreur apparaît ici... candisc.fit(df) candisc.likelihood_test_ print(candisc.manova_) display(pandas.DataFrame(candisc.eig_.T)) candisc.univariate_test_statistis_ pandas.DataFrame(candisc.coef_,index=candisc.features_labels_,columns=candisc.dim_index_) candisc.gcenter_ pandas.DataFrame(candisc.score_coef_,index=candisc.features_labels_,columns=candisc.classes_) candisc.gdisto_ candisc.tcorr_ candisc.bcorr_ candisc.wcorr_ candisc.global_performance_ candisc.anova_
0.213869
0.262771
# Additionnal functions ``` from scientisttools.utils import * import numpy as np from scipy.spatial.distance import pdist,squareform # Match arg lst = ["gaussian", "epanechnikov", "rectangular", "triangular"] print(match_arg("gauss", lst)) print(match_arg("pauss", lst)) # is_euclidean np.random.seed(123) w = np.array(np.random.uniform(size=10000)).reshape(100,100) w = squareform(pdist(w,metric="euclidean")) is_euclidean(w) is_euclidean(w,plot=True,printf=True) w = np.array([[1,4],[2,5],[3,6]]) bicenter_wt(w, [0.2,0.6,0.2], [0.3,0.7]) notes = np.array([13, 11, 10, 11, 12, 5, 8, 7, 2, 4, 16, 17, 13, 16, 15]) suivi = np.array([1,1,1,1,1,2,2,2,2,2,3,3,3,3,3]) display(notes) display(suivi) pd.DataFrame(eta2(suivi,notes),index=['eta - test']) ```
scientisttools
/scientisttools-0.0.8.tar.gz/scientisttools-0.0.8/notebooks/utils.ipynb
utils.ipynb
from scientisttools.utils import * import numpy as np from scipy.spatial.distance import pdist,squareform # Match arg lst = ["gaussian", "epanechnikov", "rectangular", "triangular"] print(match_arg("gauss", lst)) print(match_arg("pauss", lst)) # is_euclidean np.random.seed(123) w = np.array(np.random.uniform(size=10000)).reshape(100,100) w = squareform(pdist(w,metric="euclidean")) is_euclidean(w) is_euclidean(w,plot=True,printf=True) w = np.array([[1,4],[2,5],[3,6]]) bicenter_wt(w, [0.2,0.6,0.2], [0.3,0.7]) notes = np.array([13, 11, 10, 11, 12, 5, 8, 7, 2, 4, 16, 17, 13, 16, 15]) suivi = np.array([1,1,1,1,1,2,2,2,2,2,3,3,3,3,3]) display(notes) display(suivi) pd.DataFrame(eta2(suivi,notes),index=['eta - test'])
0.407687
0.816736