cyber_deberta / README.md
eysharaazia's picture
cyber_deberta
23526e5 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: cyber_deberta
    results: []

cyber_deberta

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4669
  • Accuracy: 0.8315
  • F1: 0.8135
  • Precision: 0.8121
  • Recall: 0.8150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5788 1.0 105 0.5623 0.6755 0.4813 0.6766 0.5352
0.478 2.0 210 0.4430 0.7746 0.7444 0.7501 0.7401
0.4087 3.0 315 0.3948 0.8096 0.7835 0.7911 0.7777
0.4004 4.0 420 0.3868 0.8080 0.7917 0.7864 0.7998
0.3216 5.0 525 0.4005 0.8106 0.7928 0.7888 0.7980
0.3144 6.0 630 0.3878 0.8299 0.8062 0.8153 0.7994
0.2598 7.0 735 0.4040 0.8258 0.8084 0.8053 0.8121
0.2234 8.0 840 0.4280 0.8284 0.8108 0.8083 0.8137
0.2088 9.0 945 0.4580 0.8320 0.8154 0.8121 0.8194
0.1775 10.0 1050 0.4669 0.8315 0.8135 0.8121 0.8150

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1