|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: cyber_deberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cyber_deberta |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4669 |
|
- Accuracy: 0.8315 |
|
- F1: 0.8135 |
|
- Precision: 0.8121 |
|
- Recall: 0.8150 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5788 | 1.0 | 105 | 0.5623 | 0.6755 | 0.4813 | 0.6766 | 0.5352 | |
|
| 0.478 | 2.0 | 210 | 0.4430 | 0.7746 | 0.7444 | 0.7501 | 0.7401 | |
|
| 0.4087 | 3.0 | 315 | 0.3948 | 0.8096 | 0.7835 | 0.7911 | 0.7777 | |
|
| 0.4004 | 4.0 | 420 | 0.3868 | 0.8080 | 0.7917 | 0.7864 | 0.7998 | |
|
| 0.3216 | 5.0 | 525 | 0.4005 | 0.8106 | 0.7928 | 0.7888 | 0.7980 | |
|
| 0.3144 | 6.0 | 630 | 0.3878 | 0.8299 | 0.8062 | 0.8153 | 0.7994 | |
|
| 0.2598 | 7.0 | 735 | 0.4040 | 0.8258 | 0.8084 | 0.8053 | 0.8121 | |
|
| 0.2234 | 8.0 | 840 | 0.4280 | 0.8284 | 0.8108 | 0.8083 | 0.8137 | |
|
| 0.2088 | 9.0 | 945 | 0.4580 | 0.8320 | 0.8154 | 0.8121 | 0.8194 | |
|
| 0.1775 | 10.0 | 1050 | 0.4669 | 0.8315 | 0.8135 | 0.8121 | 0.8150 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|