jpino's picture
update model card README.md
4facc45
|
raw
history blame
2.93 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - data_cedulas_layoutv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cedulas_v3
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: data_cedulas_layoutv3
          type: data_cedulas_layoutv3
          config: default
          split: test
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8991596638655462
          - name: Recall
            type: recall
            value: 0.9067796610169492
          - name: F1
            type: f1
            value: 0.9029535864978903
          - name: Accuracy
            type: accuracy
            value: 0.9816565809379728

layoutlmv3-finetuned-cedulas_v3

This model is a fine-tuned version of microsoft/layoutlmv3-base on the data_cedulas_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0832
  • Precision: 0.8992
  • Recall: 0.9068
  • F1: 0.9030
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.12 250 0.7409 0.2850 0.2729 0.2788 0.8614
0.9048 6.25 500 0.3660 0.6222 0.6559 0.6386 0.9393
0.9048 9.38 750 0.2132 0.7492 0.7593 0.7542 0.9544
0.2923 12.5 1000 0.1467 0.7830 0.7949 0.7889 0.9661
0.2923 15.62 1250 0.1172 0.8114 0.8237 0.8175 0.9701
0.1445 18.75 1500 0.1013 0.8560 0.8763 0.8660 0.9766
0.1445 21.88 1750 0.0952 0.8811 0.8915 0.8863 0.9794
0.0956 25.0 2000 0.0876 0.8923 0.8983 0.8953 0.9807
0.0956 28.12 2250 0.0840 0.9005 0.9051 0.9028 0.9811
0.0766 31.25 2500 0.0832 0.8992 0.9068 0.9030 0.9817

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3