|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- data_cedulas_layoutv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cedulas_v3 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: data_cedulas_layoutv3 |
|
type: data_cedulas_layoutv3 |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8991596638655462 |
|
- name: Recall |
|
type: recall |
|
value: 0.9067796610169492 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9029535864978903 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9816565809379728 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cedulas_v3 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the data_cedulas_layoutv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0832 |
|
- Precision: 0.8992 |
|
- Recall: 0.9068 |
|
- F1: 0.9030 |
|
- Accuracy: 0.9817 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 3.12 | 250 | 0.7409 | 0.2850 | 0.2729 | 0.2788 | 0.8614 | |
|
| 0.9048 | 6.25 | 500 | 0.3660 | 0.6222 | 0.6559 | 0.6386 | 0.9393 | |
|
| 0.9048 | 9.38 | 750 | 0.2132 | 0.7492 | 0.7593 | 0.7542 | 0.9544 | |
|
| 0.2923 | 12.5 | 1000 | 0.1467 | 0.7830 | 0.7949 | 0.7889 | 0.9661 | |
|
| 0.2923 | 15.62 | 1250 | 0.1172 | 0.8114 | 0.8237 | 0.8175 | 0.9701 | |
|
| 0.1445 | 18.75 | 1500 | 0.1013 | 0.8560 | 0.8763 | 0.8660 | 0.9766 | |
|
| 0.1445 | 21.88 | 1750 | 0.0952 | 0.8811 | 0.8915 | 0.8863 | 0.9794 | |
|
| 0.0956 | 25.0 | 2000 | 0.0876 | 0.8923 | 0.8983 | 0.8953 | 0.9807 | |
|
| 0.0956 | 28.12 | 2250 | 0.0840 | 0.9005 | 0.9051 | 0.9028 | 0.9811 | |
|
| 0.0766 | 31.25 | 2500 | 0.0832 | 0.8992 | 0.9068 | 0.9030 | 0.9817 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|