judithrosell's picture
End of training
66eefc1
metadata
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
tags:
  - generated_from_trainer
model-index:
  - name: CRAFT_PubMedBERT_NER
    results: []

CRAFT_PubMedBERT_NER

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1043

  • Seqeval classification report: precision recall f1-score support

     CHEBI       0.71      0.73      0.72       616
        CL       0.85      0.89      0.87      1740
       GGP       0.84      0.76      0.80       611
        GO       0.89      0.90      0.90      3810
        SO       0.81      0.83      0.82      8854
     Taxon       0.58      0.60      0.59       284
    

    micro avg 0.82 0.84 0.83 15915 macro avg 0.78 0.79 0.78 15915

weighted avg 0.82 0.84 0.83 15915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Seqeval classification report
No log 1.0 347 0.1260 precision recall f1-score support
   CHEBI       0.66      0.61      0.63       616
      CL       0.81      0.86      0.83      1740
     GGP       0.74      0.54      0.63       611
      GO       0.86      0.89      0.87      3810
      SO       0.73      0.78      0.76      8854
   Taxon       0.47      0.57      0.52       284

micro avg 0.76 0.80 0.78 15915 macro avg 0.71 0.71 0.71 15915 weighted avg 0.76 0.80 0.78 15915 | | 0.182 | 2.0 | 695 | 0.1089 | precision recall f1-score support

   CHEBI       0.69      0.74      0.71       616
      CL       0.84      0.88      0.86      1740
     GGP       0.83      0.74      0.78       611
      GO       0.88      0.90      0.89      3810
      SO       0.79      0.82      0.81      8854
   Taxon       0.57      0.60      0.58       284

micro avg 0.81 0.84 0.82 15915 macro avg 0.77 0.78 0.77 15915 weighted avg 0.81 0.84 0.82 15915 | | 0.0443 | 3.0 | 1041 | 0.1043 | precision recall f1-score support

   CHEBI       0.71      0.73      0.72       616
      CL       0.85      0.89      0.87      1740
     GGP       0.84      0.76      0.80       611
      GO       0.89      0.90      0.90      3810
      SO       0.81      0.83      0.82      8854
   Taxon       0.58      0.60      0.59       284

micro avg 0.82 0.84 0.83 15915 macro avg 0.78 0.79 0.78 15915 weighted avg 0.82 0.84 0.83 15915 |

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0