metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- konsman/setfit-messages-updated-influence-level
metrics:
- accuracy
widget:
- text: >-
The influence level of Staying hydrated is especially important for older
adults to prevent dehydration.
- text: >-
The influence level of Regularly updating emergency contact information is
important for the elderly.
- text: >-
The influence level of Early detection saves lives. Support breast cancer
awareness month. Wear pink, spread awareness. Stand with us this breast
cancer awareness month.
- text: >-
The influence level of Mental Health Day is approaching. Join our online
discussion on well-being. Prioritize mental health. Participate in our
online discussion this Mental Health Day.
- text: >-
The influence level of Regular kidney function tests are important for
those with high blood pressure.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: konsman/setfit-messages-updated-influence-level
type: konsman/setfit-messages-updated-influence-level
split: test
metrics:
- type: accuracy
value: 0.47368421052631576
name: Accuracy
SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model trained on the konsman/setfit-messages-updated-influence-level dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 4 classes
- Training Dataset: konsman/setfit-messages-updated-influence-level
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
2 |
|
3 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.4737 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-label-v2")
# Run inference
preds = model("The influence level of Regularly updating emergency contact information is important for the elderly.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 12 | 20.8438 | 36 |
Label | Training Sample Count |
---|---|
0 | 8 |
1 | 8 |
2 | 8 |
3 | 8 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
- head_learning_rate: 2.2041595048800003e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0031 | 1 | 0.1587 | - |
0.1562 | 50 | 0.116 | - |
0.3125 | 100 | 0.0918 | - |
0.4688 | 150 | 0.0042 | - |
0.625 | 200 | 0.0005 | - |
0.7812 | 250 | 0.0012 | - |
0.9375 | 300 | 0.0005 | - |
1.0938 | 350 | 0.0005 | - |
1.25 | 400 | 0.0003 | - |
1.4062 | 450 | 0.0002 | - |
1.5625 | 500 | 0.0002 | - |
1.7188 | 550 | 0.0001 | - |
1.875 | 600 | 0.0001 | - |
2.0312 | 650 | 0.0002 | - |
2.1875 | 700 | 0.0001 | - |
2.3438 | 750 | 0.0001 | - |
2.5 | 800 | 0.0001 | - |
2.6562 | 850 | 0.0001 | - |
2.8125 | 900 | 0.0001 | - |
2.9688 | 950 | 0.0001 | - |
3.125 | 1000 | 0.0002 | - |
3.2812 | 1050 | 0.0001 | - |
3.4375 | 1100 | 0.0001 | - |
3.5938 | 1150 | 0.0001 | - |
3.75 | 1200 | 0.0001 | - |
3.9062 | 1250 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}