lord-reso's picture
End of training
50ed4c9 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - lord-reso/inbrowser-proctor-dataset
metrics:
  - wer
model-index:
  - name: Whisper-Small-Inbrowser-Proctor
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Inbrowser Procotor Dataset
          type: lord-reso/inbrowser-proctor-dataset
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 17.075501752150366

Whisper-Small-Inbrowser-Proctor

This model is a fine-tuned version of openai/whisper-small on the Inbrowser Procotor Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3099
  • Wer: 17.0755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 25
  • training_steps: 250
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3461 0.4545 25 0.4545 26.0433
0.1902 0.9091 50 0.3309 17.4419
0.1184 1.3636 75 0.3120 14.6543
0.0944 1.8182 100 0.3066 16.7251
0.0632 2.2727 125 0.3046 14.8455
0.0688 2.7273 150 0.3060 14.8933
0.0479 3.1818 175 0.3063 17.1074
0.0515 3.6364 200 0.3081 15.4986
0.0296 4.0909 225 0.3096 17.2507
0.0348 4.5455 250 0.3099 17.0755

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1