louislu9911's picture
Model save
572788c verified
|
raw
history blame
3.06 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnextv2-base-1k-224-finetuned-cassava-leaf-disease
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8841121495327103

convnextv2-base-1k-224-finetuned-cassava-leaf-disease

This model is a fine-tuned version of facebook/convnextv2-base-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3624
  • Accuracy: 0.8841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 360
  • eval_batch_size: 360
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1440
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.5825 0.96 13 2.5252 0.4874
2.4869 2.0 27 1.0172 0.6388
0.7793 2.96 40 0.6048 0.7925
0.5807 4.0 54 0.4873 0.8327
0.5079 4.96 67 0.4330 0.8514
0.4363 6.0 81 0.4140 0.8668
0.4118 6.96 94 0.3962 0.8743
0.3918 8.0 108 0.3924 0.8748
0.3669 8.96 121 0.3816 0.8822
0.3687 10.0 135 0.3784 0.8776
0.3645 10.96 148 0.3684 0.8846
0.349 12.0 162 0.3706 0.8804
0.3341 12.96 175 0.3678 0.8813
0.3304 14.0 189 0.3618 0.8794
0.3318 14.96 202 0.3677 0.8808
0.3178 16.0 216 0.3626 0.8818
0.3209 16.96 229 0.3606 0.8822
0.3129 18.0 243 0.3615 0.8836
0.3013 18.96 256 0.3627 0.8841
0.3046 19.26 260 0.3624 0.8841

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1