|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-base-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnextv2-base-1k-224-finetuned-cassava-leaf-disease |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8841121495327103 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-base-1k-224-finetuned-cassava-leaf-disease |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3624 |
|
- Accuracy: 0.8841 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 360 |
|
- eval_batch_size: 360 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 1440 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 7.5825 | 0.96 | 13 | 2.5252 | 0.4874 | |
|
| 2.4869 | 2.0 | 27 | 1.0172 | 0.6388 | |
|
| 0.7793 | 2.96 | 40 | 0.6048 | 0.7925 | |
|
| 0.5807 | 4.0 | 54 | 0.4873 | 0.8327 | |
|
| 0.5079 | 4.96 | 67 | 0.4330 | 0.8514 | |
|
| 0.4363 | 6.0 | 81 | 0.4140 | 0.8668 | |
|
| 0.4118 | 6.96 | 94 | 0.3962 | 0.8743 | |
|
| 0.3918 | 8.0 | 108 | 0.3924 | 0.8748 | |
|
| 0.3669 | 8.96 | 121 | 0.3816 | 0.8822 | |
|
| 0.3687 | 10.0 | 135 | 0.3784 | 0.8776 | |
|
| 0.3645 | 10.96 | 148 | 0.3684 | 0.8846 | |
|
| 0.349 | 12.0 | 162 | 0.3706 | 0.8804 | |
|
| 0.3341 | 12.96 | 175 | 0.3678 | 0.8813 | |
|
| 0.3304 | 14.0 | 189 | 0.3618 | 0.8794 | |
|
| 0.3318 | 14.96 | 202 | 0.3677 | 0.8808 | |
|
| 0.3178 | 16.0 | 216 | 0.3626 | 0.8818 | |
|
| 0.3209 | 16.96 | 229 | 0.3606 | 0.8822 | |
|
| 0.3129 | 18.0 | 243 | 0.3615 | 0.8836 | |
|
| 0.3013 | 18.96 | 256 | 0.3627 | 0.8841 | |
|
| 0.3046 | 19.26 | 260 | 0.3624 | 0.8841 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|