|
--- |
|
base_model: BAAI/bge-small-en-v1.5 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
- dot_accuracy@1 |
|
- dot_accuracy@3 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_precision@1 |
|
- dot_precision@3 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_recall@1 |
|
- dot_recall@3 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_ndcg@10 |
|
- dot_mrr@10 |
|
- dot_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:723 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: how do different regions contribute to my returns |
|
sentences: |
|
- '[{"get_portfolio(None)": "portfolio"}, {"filter(''portfolio'',''ticker'',''=='',''<TICKER1>'')": |
|
"portfolio"}, {"get_attribute(''portfolio'',[''losses''],''<DATES>'')": "portfolio"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',None,''returns'')": |
|
"portfolio"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')": |
|
"portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}, {"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": |
|
"<TICKER1>_performance_data"}]' |
|
- source_sentence: how have I done in US equity this year? |
|
sentences: |
|
- '[{"get_portfolio([''weight''])": "portfolio"}, {"get_attribute(''portfolio'',[''dividend |
|
yield''],''<DATES>'')": "portfolio"}, {"calculate(''portfolio'',[''dividend yield'',''weight''],''multiply'',''weighted_yield'')": |
|
"portfolio"}, {"aggregate(''portfolio'',''ticker'',''weighted_yield'',''sum'',None)": |
|
"portfolio_yield"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"get_attribute(''portfolio'',[''dividend |
|
yield''],''<DATES>'')": "portfolio"}, {"calculate(''portfolio'',[''dividend yield'', |
|
''marketValue''],''multiply'',''div_income'')": "portfolio"}, {"sort(''portfolio'',''div_income'',''desc'')": |
|
"portfolio"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us |
|
equity'',''returns'')": "portfolio"}]' |
|
- source_sentence: What is the total value of my cash? |
|
sentences: |
|
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector |
|
utilities'',''portfolio'')": "portfolio"}]' |
|
- '[{"get_portfolio([''type'', ''marketValue''])": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''CASH'')": |
|
"portfolio"}, {"aggregate(''portfolio'',''ticker'',''marketValue'',''sum'',None)": |
|
"buying_power"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector |
|
information technology'',''returns'')": "portfolio"}]' |
|
- source_sentence: What is the exposure of my account to Chinese market? |
|
sentences: |
|
- '[{"get_portfolio([''marketValue''])": "portfolio"}, {"sort(''portfolio'',''marketValue'',''asc'')": |
|
"portfolio"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',''china'',''portfolio'')": |
|
"portfolio"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''volatility'',None,''portfolio'')": |
|
"portfolio"}]' |
|
- source_sentence: Which of my investments are projected to generate the most return? |
|
sentences: |
|
- '[{"get_portfolio([''marketValue''])": "portfolio"}, {"get_attribute(''portfolio'',[''<TICKER1>''],''<DATES>'')": |
|
"portfolio"}, {"calculate(''portfolio'',[''marketValue'', ''<TICKER1>''],''multiply'',''expo_<TICKER1>'')": |
|
"portfolio"}, {"sort(''portfolio'',''expo_<TICKER1>'',''desc'')": "portfolio"}, |
|
{"aggregate(''portfolio'',''ticker'',''expo_<TICKER1>'',''sum'',None)": "port_expo_<TICKER1>"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us |
|
equity'',''returns'')": "portfolio"}]' |
|
- '[{"get_portfolio(None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''returns''])": |
|
"portfolio"}, {"sort(''portfolio'',''returns'',''desc'')": "portfolio"}]' |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6643835616438356 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8287671232876712 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.863013698630137 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9178082191780822 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6643835616438356 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.27625570776255703 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17260273972602735 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0917808219178082 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.018455098934550992 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.023021308980213092 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.02397260273972603 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.02549467275494673 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.1736543171752474 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7480294629267232 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.020863027954722068 |
|
name: Cosine Map@100 |
|
- type: dot_accuracy@1 |
|
value: 0.6643835616438356 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.8287671232876712 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.863013698630137 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9178082191780822 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.6643835616438356 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.27625570776255703 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.17260273972602735 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.0917808219178082 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.018455098934550992 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.023021308980213092 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.02397260273972603 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.02549467275494673 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.1736543171752474 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7480294629267232 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.020863027954722068 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'Which of my investments are projected to generate the most return?', |
|
'[{"get_portfolio(None)": "portfolio"}, {"get_expected_attribute(\'portfolio\',[\'returns\'])": "portfolio"}, {"sort(\'portfolio\',\'returns\',\'desc\')": "portfolio"}]', |
|
'[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6644 | |
|
| cosine_accuracy@3 | 0.8288 | |
|
| cosine_accuracy@5 | 0.863 | |
|
| cosine_accuracy@10 | 0.9178 | |
|
| cosine_precision@1 | 0.6644 | |
|
| cosine_precision@3 | 0.2763 | |
|
| cosine_precision@5 | 0.1726 | |
|
| cosine_precision@10 | 0.0918 | |
|
| cosine_recall@1 | 0.0185 | |
|
| cosine_recall@3 | 0.023 | |
|
| cosine_recall@5 | 0.024 | |
|
| cosine_recall@10 | 0.0255 | |
|
| cosine_ndcg@10 | 0.1737 | |
|
| cosine_mrr@10 | 0.748 | |
|
| **cosine_map@100** | **0.0209** | |
|
| dot_accuracy@1 | 0.6644 | |
|
| dot_accuracy@3 | 0.8288 | |
|
| dot_accuracy@5 | 0.863 | |
|
| dot_accuracy@10 | 0.9178 | |
|
| dot_precision@1 | 0.6644 | |
|
| dot_precision@3 | 0.2763 | |
|
| dot_precision@5 | 0.1726 | |
|
| dot_precision@10 | 0.0918 | |
|
| dot_recall@1 | 0.0185 | |
|
| dot_recall@3 | 0.023 | |
|
| dot_recall@5 | 0.024 | |
|
| dot_recall@10 | 0.0255 | |
|
| dot_ndcg@10 | 0.1737 | |
|
| dot_mrr@10 | 0.748 | |
|
| dot_map@100 | 0.0209 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 723 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 11.8 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 84.41 tokens</li><li>max: 194 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:--------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>what is my portfolio 3 year cagr?</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> | |
|
| <code>what is my 1 year rate of return</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> | |
|
| <code>show backtest of my performance this year?</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 10 |
|
- `per_device_eval_batch_size`: 10 |
|
- `num_train_epochs`: 6 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 10 |
|
- `per_device_eval_batch_size`: 10 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 6 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | cosine_map@100 | |
|
|:------:|:----:|:--------------:| |
|
| 0.0274 | 2 | 0.0136 | |
|
| 0.0548 | 4 | 0.0137 | |
|
| 0.0822 | 6 | 0.0139 | |
|
| 0.1096 | 8 | 0.0142 | |
|
| 0.1370 | 10 | 0.0145 | |
|
| 0.1644 | 12 | 0.0144 | |
|
| 0.1918 | 14 | 0.0147 | |
|
| 0.2192 | 16 | 0.0151 | |
|
| 0.2466 | 18 | 0.0153 | |
|
| 0.2740 | 20 | 0.0158 | |
|
| 0.3014 | 22 | 0.0165 | |
|
| 0.3288 | 24 | 0.0163 | |
|
| 0.3562 | 26 | 0.0167 | |
|
| 0.3836 | 28 | 0.0171 | |
|
| 0.4110 | 30 | 0.0175 | |
|
| 0.4384 | 32 | 0.0177 | |
|
| 0.4658 | 34 | 0.0180 | |
|
| 0.4932 | 36 | 0.0183 | |
|
| 0.5205 | 38 | 0.0185 | |
|
| 0.5479 | 40 | 0.0186 | |
|
| 0.5753 | 42 | 0.0186 | |
|
| 0.6027 | 44 | 0.0186 | |
|
| 0.6301 | 46 | 0.0186 | |
|
| 0.6575 | 48 | 0.0187 | |
|
| 0.6849 | 50 | 0.0189 | |
|
| 0.7123 | 52 | 0.0190 | |
|
| 0.7397 | 54 | 0.0189 | |
|
| 0.7671 | 56 | 0.0188 | |
|
| 0.7945 | 58 | 0.0189 | |
|
| 0.8219 | 60 | 0.0192 | |
|
| 0.8493 | 62 | 0.0193 | |
|
| 0.8767 | 64 | 0.0194 | |
|
| 0.9041 | 66 | 0.0194 | |
|
| 0.9315 | 68 | 0.0197 | |
|
| 0.9589 | 70 | 0.0200 | |
|
| 0.9863 | 72 | 0.0201 | |
|
| 1.0 | 73 | 0.0202 | |
|
| 1.0137 | 74 | 0.0203 | |
|
| 1.0411 | 76 | 0.0202 | |
|
| 1.0685 | 78 | 0.0203 | |
|
| 1.0959 | 80 | 0.0205 | |
|
| 1.1233 | 82 | 0.0207 | |
|
| 1.1507 | 84 | 0.0207 | |
|
| 1.1781 | 86 | 0.0206 | |
|
| 1.2055 | 88 | 0.0205 | |
|
| 1.2329 | 90 | 0.0205 | |
|
| 1.2603 | 92 | 0.0205 | |
|
| 1.2877 | 94 | 0.0204 | |
|
| 1.3151 | 96 | 0.0204 | |
|
| 1.3425 | 98 | 0.0205 | |
|
| 1.3699 | 100 | 0.0205 | |
|
| 1.3973 | 102 | 0.0205 | |
|
| 1.4247 | 104 | 0.0205 | |
|
| 1.4521 | 106 | 0.0204 | |
|
| 1.4795 | 108 | 0.0205 | |
|
| 1.5068 | 110 | 0.0208 | |
|
| 1.5342 | 112 | 0.0206 | |
|
| 1.5616 | 114 | 0.0205 | |
|
| 1.5890 | 116 | 0.0206 | |
|
| 1.6164 | 118 | 0.0205 | |
|
| 1.6438 | 120 | 0.0205 | |
|
| 1.6712 | 122 | 0.0205 | |
|
| 1.6986 | 124 | 0.0207 | |
|
| 1.7260 | 126 | 0.0207 | |
|
| 1.7534 | 128 | 0.0207 | |
|
| 1.7808 | 130 | 0.0205 | |
|
| 1.8082 | 132 | 0.0206 | |
|
| 1.8356 | 134 | 0.0208 | |
|
| 1.8630 | 136 | 0.0206 | |
|
| 1.8904 | 138 | 0.0206 | |
|
| 1.9178 | 140 | 0.0206 | |
|
| 1.9452 | 142 | 0.0205 | |
|
| 1.9726 | 144 | 0.0206 | |
|
| 2.0 | 146 | 0.0207 | |
|
| 2.0274 | 148 | 0.0209 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |