File size: 33,271 Bytes
63d903a
 
 
0b607fb
be913ab
63d903a
2594602
 
63d903a
 
c1bd83b
 
63d903a
 
 
495c1d2
b4dffd4
 
a6abb8f
c89450b
a6abb8f
 
 
 
2594602
781b94b
28ed44f
63d903a
a6abb8f
 
 
 
 
 
63d903a
b4dffd4
 
 
149b538
 
b4dffd4
 
63d903a
 
 
 
 
 
 
 
 
b4dffd4
63d903a
 
 
 
 
 
 
495c1d2
63d903a
 
 
 
 
 
 
 
 
6b3b427
63d903a
d52f389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d903a
149b538
 
 
63d903a
149b538
d52f389
63d903a
 
 
 
 
 
149b538
 
 
c89450b
 
 
149b538
 
 
 
 
 
 
 
 
 
 
 
63d903a
c89450b
 
 
63d903a
c89450b
 
 
 
 
 
 
 
 
 
 
 
 
 
d52f389
 
 
 
 
63d903a
c89450b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149b538
b4dffd4
63d903a
b4dffd4
 
a6abb8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711bfec
 
 
 
 
 
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594602
6b3b427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b607fb
a2c0e0e
 
 
 
 
b4dffd4
 
 
781b94b
b4dffd4
781b94b
b4dffd4
ee18607
a6abb8f
 
b4dffd4
 
a6abb8f
 
 
 
63d903a
b4dffd4
 
 
 
 
 
 
 
63d903a
204d06f
a6abb8f
 
 
149b538
204d06f
149b538
a6abb8f
204d06f
 
 
 
 
 
 
a6abb8f
ee18607
 
 
 
a6abb8f
 
dc56661
 
 
 
149b538
 
 
 
 
 
 
 
 
dc56661
 
 
149b538
 
dc56661
a6abb8f
 
 
 
fcbb7d1
a6abb8f
 
 
149b538
a6abb8f
fcbb7d1
a6abb8f
204d06f
a6abb8f
 
 
 
 
204d06f
a6abb8f
 
 
 
 
a422324
 
 
 
6b3b427
a422324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204d06f
a6abb8f
 
 
 
 
 
 
 
dc56661
a6abb8f
dc56661
6b3b427
a6abb8f
 
 
 
 
 
 
6b3b427
a6abb8f
 
 
 
 
149b538
 
a6abb8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d903a
0c9ba4e
 
 
 
 
 
 
 
 
 
 
6b3b427
 
 
0c9ba4e
6b3b427
 
0c9ba4e
6b3b427
 
0c9ba4e
ee18607
d1372f5
6b3b427
 
ee18607
 
 
 
6b3b427
ee18607
 
23a46aa
 
6b3b427
ee18607
 
 
 
 
 
 
 
 
6b3b427
 
b4dffd4
0c9ba4e
a422324
6b3b427
 
 
a422324
 
c1bd83b
149b538
 
 
b4dffd4
 
149b538
b4dffd4
 
149b538
b4dffd4
 
 
c1bd83b
 
 
 
 
149b538
c1bd83b
 
149b538
c1bd83b
149b538
 
 
c1bd83b
 
 
 
 
 
 
 
 
149b538
 
 
c1bd83b
149b538
b4dffd4
a6abb8f
149b538
a6abb8f
 
 
 
149b538
a6abb8f
 
b4dffd4
 
a6abb8f
 
 
 
 
149b538
a6abb8f
 
149b538
a6abb8f
 
 
 
 
 
 
149b538
 
d1372f5
b4dffd4
 
 
63d903a
b4dffd4
 
 
149b538
 
 
 
 
 
 
 
 
b4dffd4
a6c785f
149b538
 
 
 
 
 
c89450b
149b538
 
d7187db
 
 
 
 
a422324
 
d7187db
 
a422324
 
 
 
 
d7187db
b4dffd4
a422324
149b538
 
 
 
781b94b
204d06f
 
b4dffd4
 
 
149b538
b4dffd4
 
149b538
204d06f
 
b4dffd4
 
204d06f
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149b538
 
204d06f
 
 
 
978efd2
204d06f
b4dffd4
 
 
 
a422324
b4dffd4
63d903a
 
b4dffd4
63d903a
d52f389
63d903a
 
c89450b
b4dffd4
149b538
 
 
 
d52f389
 
 
 
 
c89450b
 
 
 
 
149b538
63d903a
 
 
 
 
149b538
 
 
 
 
63d903a
 
0b607fb
2594602
f9f0a5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_core.vectorstores import VectorStore
from langchain_core.documents import Document
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect
import logging
import shutil


# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"

print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "@cf/meta/llama-3.1-8b-instruct",
    "mistralai/Mistral-Nemo-Instruct-2407"
]

# Initialize LlamaParse
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
    """Loads and splits the document into pages."""
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")

# Add this at the beginning of your script, after imports
DOCUMENTS_FILE = "uploaded_documents.json"

def load_documents():
    if os.path.exists(DOCUMENTS_FILE):
        with open(DOCUMENTS_FILE, "r") as f:
            return json.load(f)
    return []

def save_documents(documents):
    with open(DOCUMENTS_FILE, "w") as f:
        json.dump(documents, f)

# Replace the global uploaded_documents with this
uploaded_documents = load_documents()

# Modify the update_vectors function
def update_vectors(files, parser):
    global uploaded_documents
    logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
    
    if not files:
        logging.warning("No files provided for update_vectors")
        return "Please upload at least one PDF file.", display_documents()
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        logging.info(f"Processing file: {file.name}")
        try:
            data = load_document(file, parser)
            if not data:
                logging.warning(f"No chunks loaded from {file.name}")
                continue
            logging.info(f"Loaded {len(data)} chunks from {file.name}")
            all_data.extend(data)
            total_chunks += len(data)
            if not any(doc["name"] == file.name for doc in uploaded_documents):
                uploaded_documents.append({"name": file.name, "selected": True})
                logging.info(f"Added new document to uploaded_documents: {file.name}")
            else:
                logging.info(f"Document already exists in uploaded_documents: {file.name}")
        except Exception as e:
            logging.error(f"Error processing file {file.name}: {str(e)}")
    
    logging.info(f"Total chunks processed: {total_chunks}")
    
    if not all_data:
        logging.warning("No valid data extracted from uploaded files")
        return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents()
    
    try:
        if os.path.exists("faiss_database"):
            logging.info("Updating existing FAISS database")
            database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
            database.add_documents(all_data)
        else:
            logging.info("Creating new FAISS database")
            database = FAISS.from_documents(all_data, embed)
        
        database.save_local("faiss_database")
        logging.info("FAISS database saved")
    except Exception as e:
        logging.error(f"Error updating FAISS database: {str(e)}")
        return f"Error updating vector store: {str(e)}", display_documents()

    # Save the updated list of documents
    save_documents(uploaded_documents)

    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()

def delete_documents(selected_docs):
    global uploaded_documents
    
    if not selected_docs:
        return "No documents selected for deletion.", display_documents()
    
    embed = get_embeddings()
    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    
    deleted_docs = []
    docs_to_keep = []
    for doc in database.docstore._dict.values():
        if doc.metadata.get("source") not in selected_docs:
            docs_to_keep.append(doc)
        else:
            deleted_docs.append(doc.metadata.get("source", "Unknown"))
    
    # Print debugging information
    logging.info(f"Total documents before deletion: {len(database.docstore._dict)}")
    logging.info(f"Documents to keep: {len(docs_to_keep)}")
    logging.info(f"Documents to delete: {len(deleted_docs)}")
    
    if not docs_to_keep:
        # If all documents are deleted, remove the FAISS database directory
        if os.path.exists("faiss_database"):
            shutil.rmtree("faiss_database")
        logging.info("All documents deleted. Removed FAISS database directory.")
    else:
        # Create new FAISS index with remaining documents
        new_database = FAISS.from_documents(docs_to_keep, embed)
        new_database.save_local("faiss_database")
        logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.")
    
    # Update uploaded_documents list
    uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs]
    save_documents(uploaded_documents)
    
    return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()

def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
    print(f"Starting generate_chunked_response with {num_calls} calls")
    full_response = ""
    messages = [{"role": "user", "content": prompt}]
    
    if model == "@cf/meta/llama-3.1-8b-instruct":
        # Cloudflare API
        for i in range(num_calls):
            print(f"Starting Cloudflare API call {i+1}")
            if should_stop:
                print("Stop clicked, breaking loop")
                break
            try:
                response = requests.post(
                    f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
                    headers={"Authorization": f"Bearer {API_TOKEN}"},
                    json={
                        "stream": true,
                        "messages": [
                            {"role": "system", "content": "You are a friendly assistant"},
                            {"role": "user", "content": prompt}
                        ],
                        "max_tokens": max_tokens,
                        "temperature": temperature
                    },
                    stream=true
                )
                
                for line in response.iter_lines():
                    if should_stop:
                        print("Stop clicked during streaming, breaking")
                        break
                    if line:
                        try:
                            json_data = json.loads(line.decode('utf-8').split('data: ')[1])
                            chunk = json_data['response']
                            full_response += chunk
                        except json.JSONDecodeError:
                            continue
                print(f"Cloudflare API call {i+1} completed")
            except Exception as e:
                print(f"Error in generating response from Cloudflare: {str(e)}")
    else:
        # Original Hugging Face API logic
        client = InferenceClient(model, token=huggingface_token)
        
        for i in range(num_calls):
            print(f"Starting Hugging Face API call {i+1}")
            if should_stop:
                print("Stop clicked, breaking loop")
                break
            try:
                for message in client.chat_completion(
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    stream=True,
                ):
                    if should_stop:
                        print("Stop clicked during streaming, breaking")
                        break
                    if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                        chunk = message.choices[0].delta.content
                        full_response += chunk
                print(f"Hugging Face API call {i+1} completed")
            except Exception as e:
                print(f"Error in generating response from Hugging Face: {str(e)}")
    
    # Clean up the response
    clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
    clean_response = clean_response.replace("Using the following context:", "").strip()
    clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
    
    # Remove duplicate paragraphs and sentences
    paragraphs = clean_response.split('\n\n')
    unique_paragraphs = []
    for paragraph in paragraphs:
        if paragraph not in unique_paragraphs:
            sentences = paragraph.split('. ')
            unique_sentences = []
            for sentence in sentences:
                if sentence not in unique_sentences:
                    unique_sentences.append(sentence)
            unique_paragraphs.append('. '.join(unique_sentences))
    
    final_response = '\n\n'.join(unique_paragraphs)
    
    print(f"Final clean response: {final_response[:100]}...")
    return final_response

class SimpleDDGSearch:
    def search(self, query: str, num_results: int = 5):
        results = DDGS().text(query, region='wt-wt', safesearch='off', max_results=num_results)
        return [res["href"] for res in results]

class TrafilaturaWebCrawler:
    def get_website_content_from_url(self, url: str) -> str:
        try:
            downloaded = fetch_url(url)
            if downloaded is None:
                return f"Failed to fetch content from URL: {url}"
            
            result = extract(downloaded, output_format='json', include_comments=False, with_metadata=True, url=url)
            
            if result:
                result_dict = json.loads(result)
                title = result_dict.get('title', 'No title found')
                content = result_dict.get('text', 'No content extracted')
                
                if content == 'No content extracted':
                    content = extract(downloaded, include_comments=False)
                
                return f'=========== Website Title: {title} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{content}\n\n=========== Website Content End ===========\n\n'
            else:
                return f"No content extracted from URL: {url}"
        except Exception as e:
            return f"An error occurred while processing {url}: {str(e)}"

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source."
    )
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
    if not message.strip():
        return "", history

    history = history + [(message, "")]

    try:
        for response in respond(message, history, model, temperature, num_calls, use_web_search):
            history[-1] = (message, response)
            yield history
    except gr.CancelledError:
        yield history
    except Exception as e:
        logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
        history[-1] = (message, f"An unexpected error occurred: {str(e)}")
        yield history

def retry_last_response(history, use_web_search, model, temperature, num_calls):
    if not history:
        return history
    
    last_user_msg = history[-1][0]
    history = history[:-1]  # Remove the last response
    
    return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)

def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key):
    logging.info(f"User Query: {message}")
    logging.info(f"Model Used: {model}")
    logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
    logging.info(f"Selected Documents: {selected_docs}")
    logging.info(f"Instruction Key: {instruction_key}")

    try:
        if instruction_key and instruction_key != "None":
            # This is a summary generation request
            instruction = INSTRUCTION_PROMPTS[instruction_key]
            context_str = get_context_for_summary(selected_docs)
            message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary."
            use_web_search = False  # Ensure we use PDF search for summaries

        if use_web_search:
            for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
                response = f"{main_content}\n\n{sources}"
                first_line = response.split('\n')[0] if response else ''
#                logging.info(f"Generated Response (first line): {first_line}")
                yield response
        else:
            embed = get_embeddings()
            if os.path.exists("faiss_database"):
                database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
                retriever = database.as_retriever()
                
                # Filter relevant documents based on user selection
                all_relevant_docs = retriever.get_relevant_documents(message)
                relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
                
                if not relevant_docs:
                    yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
                    return

                context_str = "\n".join([doc.page_content for doc in relevant_docs])
            else:
                context_str = "No documents available."
                yield "No documents available. Please upload PDF documents to answer questions."
                return
            
            if model == "@cf/meta/llama-3.1-8b-instruct":
                # Use Cloudflare API
                for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
                    first_line = partial_response.split('\n')[0] if partial_response else ''
#                    logging.info(f"Generated Response (first line): {first_line}")
                    yield partial_response
            else:
                # Use Hugging Face API
                for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
                    first_line = partial_response.split('\n')[0] if partial_response else ''
#                    logging.info(f"Generated Response (first line): {first_line}")
                    yield partial_response

    except Exception as e:
        logging.error(f"Error with {model}: {str(e)}")
        if "microsoft/Phi-3-mini-4k-instruct" in model:
            logging.info("Falling back to Mistral model due to Phi-3 error")
            fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
            yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs, instruction_key)
        else:
            yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."

logging.basicConfig(level=logging.DEBUG)

def get_context_for_summary(selected_docs):
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        retriever = database.as_retriever(search_kwargs={"k": 5})  # Retrieve top 5 most relevant chunks
        
        # Create a generic query that covers common financial summary topics
        generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights"
        
        relevant_docs = retriever.get_relevant_documents(generic_query)
        filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
        
        if not filtered_docs:
            return "No relevant information found in the selected documents for summary generation."
        
        context_str = "\n".join([doc.page_content for doc in filtered_docs])
        return context_str
    else:
        return "No documents available for summary generation."

def get_context_for_query(query, selected_docs):
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        retriever = database.as_retriever(search_kwargs={"k": 3})  # Retrieve top 3 most relevant chunks
        
        relevant_docs = retriever.get_relevant_documents(query)
        filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
        
        if not filtered_docs:
            return "No relevant information found in the selected documents for the given query."
        
        context_str = "\n".join([doc.page_content for doc in filtered_docs])
        return context_str
    else:
        return "No documents available to answer the query."

def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
    headers = {
        "Authorization": f"Bearer {API_TOKEN}",
        "Content-Type": "application/json"
    }
    model = "@cf/meta/llama-3.1-8b-instruct"

    if search_type == "pdf":
        instruction = f"""Using the following context from the PDF documents:
{context}
Write a detailed and complete response that answers the following user question: '{query}'"""
    else:  # web search
        instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    inputs = [
        {"role": "system", "content": instruction},
        {"role": "user", "content": query}
    ]

    payload = {
        "messages": inputs,
        "stream": True,
        "temperature": temperature,
        "max_tokens": 32000
    }

    full_response = ""
    for i in range(num_calls):
        try:
            with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
                if response.status_code == 200:
                    for line in response.iter_lines():
                        if line:
                            try:
                                json_response = json.loads(line.decode('utf-8').split('data: ')[1])
                                if 'response' in json_response:
                                    chunk = json_response['response']
                                    full_response += chunk
                                    yield full_response
                            except (json.JSONDecodeError, IndexError) as e:
                                logging.error(f"Error parsing streaming response: {str(e)}")
                                continue
                else:
                    logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
                    yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
        except Exception as e:
            logging.error(f"Error in generating response from Cloudflare: {str(e)}")
            yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
    
    if not full_response:
        yield "I apologize, but I couldn't generate a response at this time. Please try again later."

def create_web_search_vectors(search_results):
    embed = get_embeddings()
    
    documents = []
    for result in search_results:
        if 'body' in result:
            content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
            documents.append(Document(page_content=content, metadata={"source": result['href']}))
    
    return FAISS.from_documents(documents, embed)

def get_response_with_search(query, model, num_calls=3, temperature=0.2):
    searcher = SimpleDDGSearch()
    search_results = searcher.search(query, num_results=5)
    
    crawler = TrafilaturaWebCrawler()
    context = ""
    
    for url in search_results:
        context += crawler.get_website_content_from_url(url) + "\n"
    
    prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    if model == "@cf/meta/llama-3.1-8b-instruct":
        # Use Cloudflare API
        for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
            yield response, ""  # Yield streaming response without sources
    else:
        # Use Hugging Face API
        client = InferenceClient(model, token=huggingface_token)
        
        main_content = ""
        for i in range(num_calls):
            for message in client.chat_completion(
                messages=[{"role": "user", "content": prompt}],
                max_tokens=10000,
                temperature=temperature,
                stream=True,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    main_content += chunk
                    yield main_content, ""  # Yield partial main content without sources


INSTRUCTION_PROMPTS = {
    "Asset Managers": "Summarize the key financial metrics, assets under management, and performance highlights for this asset management company.",
    "Consumer Finance Companies": "Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.",
    "Mortgage REITs": "Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.",
    # Add more instruction prompts as needed
}

def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
    logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
    
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        logging.info("Loading FAISS database")
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        logging.warning("No FAISS database found")
        yield "No documents available. Please upload PDF documents to answer questions."
        return

    # Pre-filter the documents
    filtered_docs = []
    for doc_id, doc in database.docstore._dict.items():
        if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs:
            filtered_docs.append(doc)
    
    logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}")

    if not filtered_docs:
        logging.warning(f"No documents found for the selected sources: {selected_docs}")
        yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
        return

    # Create a new FAISS index with only the selected documents
    filtered_db = FAISS.from_documents(filtered_docs, embed)
    
    retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
    logging.info(f"Retrieving relevant documents for query: {query}")
    relevant_docs = retriever.get_relevant_documents(query)
    logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")

    for doc in relevant_docs:
        logging.info(f"Document source: {doc.metadata['source']}")
        logging.info(f"Document content preview: {doc.page_content[:100]}...")  # Log first 100 characters of each document

    context_str = "\n".join([doc.page_content for doc in relevant_docs])
    logging.info(f"Total context length: {len(context_str)}")

    if model == "@cf/meta/llama-3.1-8b-instruct":
        logging.info("Using Cloudflare API")
        # Use Cloudflare API with the retrieved context
        for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
            yield response
    else:
        logging.info("Using Hugging Face API")
        # Use Hugging Face API
        prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""
        
        client = InferenceClient(model, token=huggingface_token)
        
        response = ""
        for i in range(num_calls):
            logging.info(f"API call {i+1}/{num_calls}")
            for message in client.chat_completion(
                messages=[{"role": "user", "content": prompt}],
                max_tokens=10000,
                temperature=temperature,
                stream=True,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    response += chunk
                    yield response  # Yield partial response
        
        logging.info("Finished generating response")

def vote(data: gr.LikeData):
    if data.liked:
        print(f"You upvoted this response: {data.value}")
    else:
        print(f"You downvoted this response: {data.value}")

css = """
/* Fine-tune chatbox size */
.chatbot-container {
    height: 600px !important;
    width: 100% !important;
}
.chatbot-container > div {
    height: 100%;
    width: 100%;
}
"""

uploaded_documents = []

def display_documents():
    return gr.CheckboxGroup(
        choices=[doc["name"] for doc in uploaded_documents],
        value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
        label="Select documents to query or delete"
    )

def initial_conversation():
    return [
        (None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n"
                "1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n"
                "2. Use web search to find information\n"
                "3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n"
                "4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n"
                "To get started, upload some PDFs or ask me a question!")
    ]
# Add this new function
def refresh_documents():
    global uploaded_documents
    uploaded_documents = load_documents()
    return display_documents()

# Define the checkbox outside the demo block
document_selector = gr.CheckboxGroup(label="Select documents to query")

use_web_search = gr.Checkbox(label="Use Web Search", value=True)

custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"

instruction_choices = ["None"] + list(INSTRUCTION_PROMPTS.keys())

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
        use_web_search,
        document_selector,
        gr.Dropdown(choices=instruction_choices, label="Select Entity Type for Summary", value="None")
    ],
    title="AI-powered Web Search and PDF Chat Assistant",
    description="Chat with your PDFs, use web search to answer questions, or generate summaries. Select an Entity Type for Summary to generate a specific summary.",
    theme=gr.themes.Soft(
        primary_hue="orange",
        secondary_hue="amber",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
    ).set(
        body_background_fill_dark="#0c0505",
        block_background_fill_dark="#0c0505",
        block_border_width="1px",
        block_title_background_fill_dark="#1b0f0f",
        input_background_fill_dark="#140b0b",
        button_secondary_background_fill_dark="#140b0b",
        border_color_accent_dark="#1b0f0f",
        border_color_primary_dark="#1b0f0f",
        background_fill_secondary_dark="#0c0505",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#140b0b"
    ),
    css=css,
    examples=[
        ["Tell me about the contents of the uploaded PDFs."],
        ["What are the main topics discussed in the documents?"],
        ["Can you summarize the key points from the PDFs?"]
    ],
    cache_examples=False,
    analytics_enabled=False,
    textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
    chatbot = gr.Chatbot(  
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        height=400,
        value=initial_conversation()
    )
)

# Add file upload functionality
with demo:
    gr.Markdown("## Upload and Manage PDF Documents")

    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
        update_button = gr.Button("Upload Document")
        refresh_button = gr.Button("Refresh Document List")
    
    update_output = gr.Textbox(label="Update Status")
    delete_button = gr.Button("Delete Selected Documents")
    
    # Update both the output text and the document selector
    update_button.click(update_vectors, 
                        inputs=[file_input, parser_dropdown], 
                        outputs=[update_output, document_selector])
    
    # Add the refresh button functionality
    refresh_button.click(refresh_documents, 
                         inputs=[], 
                         outputs=[document_selector])
    
    # Add the delete button functionality
    delete_button.click(delete_documents,
                        inputs=[document_selector],
                        outputs=[update_output, document_selector])

    gr.Markdown(
    """
    ## How to use
    1. Upload PDF documents using the file input at the top.
    2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
    3. Select the documents you want to query using the checkboxes.
    4. Ask questions in the chat interface. 
    5. Toggle "Use Web Search" to switch between PDF chat and web search.
    6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
    7. Use the provided examples or ask your own questions.
    """
    )

if __name__ == "__main__":
    demo.launch(share=True)