File size: 16,117 Bytes
5ae6c99
0ba78e9
fd18ef6
0ba78e9
0d5e0f7
54f6b18
0ba78e9
9bb22fc
0ba78e9
6c14077
9bb22fc
0d5e0f7
79d85b6
675f890
 
 
 
 
 
 
 
0d5e0f7
0ba78e9
 
0d5e0f7
0ba78e9
 
 
6c14077
0d5e0f7
 
294f139
 
 
d7705b9
294f139
 
10eada1
294f139
 
 
9bb22fc
 
a16df4c
 
 
 
 
 
 
 
 
 
 
 
9bb22fc
 
 
 
 
 
24b0def
5b19fc7
 
9bb22fc
 
 
2d74fdd
9bb22fc
 
 
 
 
 
 
 
a16df4c
9bb22fc
 
 
 
 
 
 
 
 
 
 
 
2d74fdd
9bb22fc
 
a16df4c
9bb22fc
 
5b19fc7
0779c9b
 
 
da19d23
 
 
 
f417916
4f5bbb3
 
d7705b9
da19d23
 
294f139
6c14077
d7705b9
 
 
 
 
 
 
 
f574f70
0d5e0f7
6c14077
24b0def
6c14077
 
0ba78e9
2859204
0779c9b
5b19fc7
 
24b0def
 
5b19fc7
0779c9b
6c14077
 
 
0779c9b
 
 
 
 
 
6c14077
 
 
 
 
 
 
5b19fc7
 
 
 
 
6c14077
0779c9b
6c14077
 
bf0dd52
0779c9b
 
 
 
 
6c14077
54f6b18
294f139
 
 
 
da19d23
5b19fc7
fd18ef6
54f6b18
 
fd18ef6
 
 
 
 
 
54f6b18
5b19fc7
 
 
 
 
54f6b18
5b19fc7
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
 
 
 
0779c9b
54f6b18
5b19fc7
54f6b18
 
5b19fc7
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
 
 
5b19fc7
 
 
 
 
54f6b18
5b19fc7
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
 
 
5b19fc7
 
 
 
 
 
 
 
 
 
54f6b18
 
 
 
24b0def
56bb2d2
675f890
54f6b18
fd18ef6
 
 
 
 
 
54f6b18
 
 
 
 
 
 
 
 
 
 
5b19fc7
 
 
24b0def
5b19fc7
54f6b18
5b19fc7
 
24b0def
54f6b18
 
5b19fc7
 
24b0def
54f6b18
 
 
 
24b0def
54f6b18
 
 
 
 
0d5e0f7
2859204
 
6c14077
9bb22fc
a16df4c
 
 
faca395
 
a16df4c
 
 
 
 
9bb22fc
 
 
2d74fdd
9bb22fc
a16df4c
faca395
 
a16df4c
0d5e0f7
5b19fc7
 
af2acd4
326ac2a
 
 
 
 
 
 
 
 
af2acd4
da19d23
0d5e0f7
fd18ef6
c671908
 
fd18ef6
c671908
10eada1
c671908
 
10eada1
 
 
c671908
 
 
 
 
 
 
 
 
d2c90f3
c671908
 
 
fd18ef6
c671908
 
0779c9b
 
 
 
fd18ef6
c671908
 
 
 
 
 
 
 
 
 
 
fd18ef6
 
0779c9b
 
 
 
 
fd18ef6
c671908
 
 
 
 
 
 
 
 
 
 
f417916
c671908
 
f417916
 
c671908
 
 
675f890
c671908
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import inspect
import os
import uuid
from pathlib import Path

import pandas as pd
import streamlit as st
from datasets import get_dataset_config_names, list_metrics, load_metric
from dotenv import load_dotenv
from huggingface_hub import list_datasets
from tqdm import tqdm

from evaluation import filter_evaluated_models
from utils import (
    format_col_mapping,
    get_compatible_models,
    get_key,
    get_metadata,
    http_get,
    http_post,
)

if Path(".env").is_file():
    load_dotenv(".env")

HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")


TASK_TO_ID = {
    "binary_classification": 1,
    "multi_class_classification": 2,
    # "multi_label_classification": 3, # Not fully supported in AutoTrain
    "entity_extraction": 4,
    "extractive_question_answering": 5,
    "translation": 6,
    "summarization": 8,
}

TASK_TO_DEFAULT_METRICS = {
    "binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
    "multi_class_classification": [
        "f1_micro",
        "f1_macro",
        "f1_weighted",
        "precision_macro",
        "precision_micro",
        "precision_weighted",
        "recall_macro",
        "recall_micro",
        "recall_weighted",
        "accuracy",
    ],
    "entity_extraction": ["precision", "recall", "f1", "accuracy"],
    "extractive_question_answering": [],
    "translation": ["sacrebleu", "gen_len"],
    "summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum", "gen_len"],
}

SUPPORTED_TASKS = list(TASK_TO_ID.keys())


@st.cache
def get_supported_metrics():
    metrics = list_metrics()
    supported_metrics = []
    for metric in tqdm(metrics):
        try:
            metric_func = load_metric(metric)
        except Exception as e:
            print(e)
            print("Skipping the following metric, which cannot load:", metric)

        argspec = inspect.getfullargspec(metric_func.compute)
        if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
            # We require that "references" and "predictions" are arguments
            # to the metric function. We also require that the other arguments
            # besides "references" and "predictions" have defaults and so do not
            # need to be specified explicitly.
            defaults = True
            for key, value in argspec.kwonlydefaults.items():
                if key not in ("references", "predictions"):
                    if value is None:
                        defaults = False
                        break

            if defaults:
                supported_metrics.append(metric)
    return supported_metrics


supported_metrics = get_supported_metrics()


#######
# APP #
#######
st.title("Evaluation as a Service")
st.markdown(
    """
    Welcome to Hugging Face's Evaluation as a Service! This application allows
    you to evaluate πŸ€— Transformers models with a dataset on the Hub. Please
    select the dataset and configuration below. The results of your evaluation
    will be displayed on the public leaderboard
    [here](https://huggingface.co/spaces/autoevaluate/leaderboards).
    """
)

all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
    if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
        default_dataset = query_params["dataset"][0]

selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
st.experimental_set_query_params(**{"dataset": [selected_dataset]})


metadata = get_metadata(selected_dataset)
print(metadata)
if metadata is None:
    st.warning("No evaluation metadata found. Please configure the evaluation job below.")

with st.expander("Advanced configuration"):
    # Select task
    selected_task = st.selectbox(
        "Select a task",
        SUPPORTED_TASKS,
        index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
    )
    # Select config
    configs = get_dataset_config_names(selected_dataset)
    selected_config = st.selectbox("Select a config", configs)

    # Select splits
    splits_resp = http_get(
        path="/splits",
        domain=DATASETS_PREVIEW_API,
        params={"dataset": selected_dataset},
    )
    if splits_resp.status_code == 200:
        split_names = []
        all_splits = splits_resp.json()
        for split in all_splits["splits"]:
            if split["config"] == selected_config:
                split_names.append(split["split"])

        selected_split = st.selectbox(
            "Select a split",
            split_names,
            index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
        )

    # Select columns
    rows_resp = http_get(
        path="/rows",
        domain=DATASETS_PREVIEW_API,
        params={
            "dataset": selected_dataset,
            "config": selected_config,
            "split": selected_split,
        },
    ).json()
    col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)

    st.markdown("**Map your data columns**")
    col1, col2 = st.columns(2)

    # TODO: find a better way to layout these items
    # TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
    col_mapping = {}
    if selected_task in ["binary_classification", "multi_class_classification"]:
        with col1:
            st.markdown("`text` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`target` column")
        with col2:
            text_col = st.selectbox(
                "This column should contain the text you want to classify",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
            )
            target_col = st.selectbox(
                "This column should contain the labels you want to assign to the text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
            )
            col_mapping[text_col] = "text"
            col_mapping[target_col] = "target"

    elif selected_task == "entity_extraction":
        with col1:
            st.markdown("`tokens` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`tags` column")
        with col2:
            tokens_col = st.selectbox(
                "This column should contain the array of tokens",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
            )
            tags_col = st.selectbox(
                "This column should contain the labels to associate to each part of the text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
            )
            col_mapping[tokens_col] = "tokens"
            col_mapping[tags_col] = "tags"

    elif selected_task == "translation":
        with col1:
            st.markdown("`source` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`target` column")
        with col2:
            text_col = st.selectbox(
                "This column should contain the text you want to translate",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
            )
            target_col = st.selectbox(
                "This column should contain an example translation of the source text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
            )
            col_mapping[text_col] = "source"
            col_mapping[target_col] = "target"

    elif selected_task == "summarization":
        with col1:
            st.markdown("`text` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`target` column")
        with col2:
            text_col = st.selectbox(
                "This column should contain the text you want to summarize",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
            )
            target_col = st.selectbox(
                "This column should contain an example summarization of the text",
                col_names,
                index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
            )
            col_mapping[text_col] = "text"
            col_mapping[target_col] = "target"

    elif selected_task == "extractive_question_answering":
        col_mapping = metadata[0]["col_mapping"]
        # Hub YAML parser converts periods to hyphens, so we remap them here
        col_mapping = format_col_mapping(col_mapping)
        with col1:
            st.markdown("`context` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`question` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`answers.text` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`answers.answer_start` column")
        with col2:
            context_col = st.selectbox(
                "This column should contain the question's context",
                col_names,
                index=col_names.index(get_key(col_mapping, "context")) if metadata is not None else 0,
            )
            question_col = st.selectbox(
                "This column should contain the question to be answered, given the context",
                col_names,
                index=col_names.index(get_key(col_mapping, "question")) if metadata is not None else 0,
            )
            answers_text_col = st.selectbox(
                "This column should contain example answers to the question, extracted from the context",
                col_names,
                index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0,
            )
            answers_start_col = st.selectbox(
                "This column should contain the indices in the context of the first character of each answers.text",
                col_names,
                index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0,
            )
            col_mapping[context_col] = "context"
            col_mapping[question_col] = "question"
            col_mapping[answers_text_col] = "answers.text"
            col_mapping[answers_start_col] = "answers.answer_start"

with st.form(key="form"):

    compatible_models = get_compatible_models(selected_task, selected_dataset)
    st.markdown("The following metrics will be computed")
    html_string = " ".join(
        [
            '<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
            + '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
            + 'padding-left:5px;color:white">'
            + metric
            + "</div></div>"
            for metric in TASK_TO_DEFAULT_METRICS[selected_task]
        ]
    )
    st.markdown(html_string, unsafe_allow_html=True)
    selected_metrics = st.multiselect(
        "(Optional) Select additional metrics",
        list(set(supported_metrics) - set(TASK_TO_DEFAULT_METRICS[selected_task])),
    )
    st.info(
        "Note: user-selected metrics will be run with their default arguments from "
        + "[here](https://github.com/huggingface/datasets/tree/master/metrics)"
    )

    selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
    print("Selected models:", selected_models)

    if len(selected_models) > 0:
        selected_models = filter_evaluated_models(
            selected_models,
            selected_task,
            selected_dataset,
            selected_config,
            selected_split,
        )
        print("Selected models:", selected_models)

    submit_button = st.form_submit_button("Make submission")

    if submit_button:
        if len(selected_models) > 0:
            project_id = str(uuid.uuid4())[:3]
            payload = {
                "username": AUTOTRAIN_USERNAME,
                "proj_name": f"eval-project-{project_id}",
                "task": TASK_TO_ID[selected_task],
                "config": {
                    "language": "en"
                    if selected_task != "translation"
                    else "en2de",  # Need this dummy pair to enable translation
                    "max_models": 5,
                    "instance": {
                        "provider": "aws",
                        "instance_type": "ml.g4dn.4xlarge",
                        "max_runtime_seconds": 172800,
                        "num_instances": 1,
                        "disk_size_gb": 150,
                    },
                    "evaluation": {
                        "metrics": selected_metrics,
                        "models": selected_models,
                    },
                },
            }
            print(f"Payload: {payload}")
            project_json_resp = http_post(
                path="/projects/create",
                payload=payload,
                token=HF_TOKEN,
                domain=AUTOTRAIN_BACKEND_API,
            ).json()
            print(project_json_resp)

            if project_json_resp["created"]:
                payload = {
                    "split": 4,  # use "auto" split choice in AutoTrain
                    "col_mapping": col_mapping,
                    "load_config": {"max_size_bytes": 0, "shuffle": False},
                }
                data_json_resp = http_post(
                    path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
                    payload=payload,
                    token=HF_TOKEN,
                    domain=AUTOTRAIN_BACKEND_API,
                    params={
                        "type": "dataset",
                        "config_name": selected_config,
                        "split_name": selected_split,
                    },
                ).json()
                print(data_json_resp)
                if data_json_resp["download_status"] == 1:
                    train_json_resp = http_get(
                        path=f"/projects/{project_json_resp['id']}/data/start_process",
                        token=HF_TOKEN,
                        domain=AUTOTRAIN_BACKEND_API,
                    ).json()
                    print(train_json_resp)
                    if train_json_resp["success"]:
                        st.success(f"βœ… Successfully submitted evaluation job with project ID {project_id}")
                        st.markdown(
                            f"""
                        Evaluation takes appoximately 1 hour to complete, so grab a β˜• or 🍡 while you wait:

                        πŸ“Š Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) \
                            to view the results from your submission
                        """
                        )
                    else:
                        st.error("πŸ™ˆ Oh no, there was an error submitting your evaluation job!")
        else:
            st.warning("⚠️ No models were selected for evaluation!")