File size: 37,395 Bytes
24bea5e
 
 
 
fe341fa
f3c3d2c
1e84a23
5e0b90d
24bea5e
1e84a23
1445ab2
1e84a23
c67e722
61c5019
f3c3d2c
1e84a23
f3c3d2c
6dd82c0
78fd077
 
1e84a23
f3c3d2c
a64a4c8
1e84a23
 
 
c03d590
57b0d3a
1e84a23
394131c
8fa3724
1e84a23
5d66e48
5ea771d
1e84a23
96a8446
8f875d9
 
9c513ca
8f875d9
d5966c9
c3e599c
8f875d9
1e84a23
 
c03d590
96a8446
8f875d9
c161557
4c839ee
1e84a23
af00134
 
 
 
 
 
 
 
 
 
c3e599c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9708cf5
7b1f7ae
af00134
 
 
7b1f7ae
79bca2b
7b1f7ae
 
 
ed9bac8
7b1f7ae
 
c3e599c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbfafea
 
 
 
 
 
 
 
 
 
 
f3c3d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7476012
 
 
 
 
 
 
 
 
 
 
 
 
7820614
 
 
 
 
 
 
 
 
 
 
b74929c
 
 
 
 
3732f9a
 
7b1f7ae
3732f9a
 
1e84a23
84bfa89
 
 
1e84a23
 
84bfa89
 
1e84a23
cbe39a1
e189fa1
 
 
 
 
c4addd7
cbe39a1
bf6f415
ebafd1e
cbe39a1
1e84a23
fcd5702
f3c3d2c
d2e754b
 
 
fcd5702
f3c3d2c
fcd5702
 
 
1922dde
fcd5702
 
 
f3c3d2c
 
c47be26
f3c3d2c
1922dde
c1bed60
 
 
 
 
f3c3d2c
a820b43
 
c3e599c
2da4e7a
 
333ccc5
 
2da4e7a
333ccc5
 
6dd82c0
 
 
 
 
 
 
 
 
 
 
 
c3a93d7
 
e6e36aa
c3a93d7
 
e6e36aa
c3a93d7
e6e36aa
c3a93d7
 
1b1ab4c
 
509dd51
 
 
 
f3c3d2c
509dd51
 
 
 
 
6dd82c0
 
 
 
 
 
 
 
7820614
7476012
7820614
051e9e8
7820614
d5966c9
 
 
 
7820614
 
 
 
 
 
d5966c9
7820614
d5966c9
 
1e84a23
 
33202b7
57b0d3a
8c326a1
33202b7
 
407a905
33202b7
 
8c326a1
407a905
 
 
 
 
 
57b0d3a
 
7820614
4c839ee
e2b7bc0
2b329b0
57b0d3a
e2b7bc0
 
7820614
27bf428
 
e2b7bc0
 
2b329b0
333ccc5
2b329b0
 
 
cba4303
7b1643b
 
d5966c9
7b1643b
 
d5966c9
7b1643b
 
d5966c9
7b1643b
d5966c9
333ccc5
 
e2b7bc0
 
333ccc5
d5966c9
e77c77f
 
f3e3f76
 
 
 
 
 
 
d5966c9
a557b7d
099e6f5
 
26c2e54
 
 
fcd5702
 
26c2e54
 
 
 
 
 
d5966c9
26c2e54
 
 
a2b3c71
7ee5aed
f984cce
a2b3c71
 
 
7ee5aed
 
 
a2b3c71
 
 
25a7e1d
a2b3c71
 
 
 
2435bfe
f984cce
2435bfe
 
c5966ab
7d3686a
 
76d301b
32b8738
d5966c9
32b8738
d5966c9
32b8738
 
2435bfe
 
5a8e434
 
 
2435bfe
0f395b3
c54e394
c5966ab
 
c3e599c
 
 
 
 
 
 
 
 
1b5edb6
5d66e48
 
 
 
 
 
9c513ca
 
5d66e48
 
 
 
63e09fd
5d66e48
 
6445a81
 
 
 
5d66e48
 
 
f79d747
6445a81
c8a98cb
 
5d66e48
ed887b5
6306091
548a98a
 
d5966c9
6306091
39c17ce
56c2c34
 
d5966c9
ffe9eb4
f79d747
a64a4c8
 
 
78fd077
d5966c9
56c2c34
78fd077
f79d747
d5966c9
56c2c34
 
41523e2
5d66e48
 
41523e2
43b2817
 
 
 
 
 
 
5189b3a
5d66e48
78fd077
 
 
5d66e48
 
 
d5966c9
37eaffe
 
 
 
4d7bca7
d5966c9
45632b2
a64a4c8
45632b2
a64a4c8
 
 
78fd077
 
 
54652fe
8cab907
 
 
 
78fd077
5d66e48
78fd077
 
 
1e84a23
7bf04d9
 
 
1e84a23
 
 
d5289b5
 
 
 
 
0e341c5
63dd65e
0e341c5
 
 
6ab5895
 
dd03b20
6ab5895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1c056
dd03b20
6ab5895
 
1e84a23
 
 
 
 
 
 
4d3680c
1e84a23
4d3680c
1e84a23
 
 
 
 
 
 
 
 
 
96a8446
 
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f542926
1e84a23
 
 
 
 
 
 
 
 
f542926
1e84a23
 
 
 
 
 
 
bdd88e1
d921214
 
 
 
 
 
 
 
 
80299a5
3749573
f899417
80299a5
3749573
 
 
 
 
 
 
 
bdd88e1
 
 
 
 
 
 
 
 
 
 
 
 
d4456e4
bdd88e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e84a23
 
 
b57f83d
1e84a23
 
 
 
 
 
 
 
 
 
 
 
80299a5
1e84a23
80299a5
 
 
 
 
 
 
 
1e84a23
 
c09964c
3f74cd9
c09964c
ec81c7b
 
c09964c
1e84a23
260b172
68e6ab6
ff02ae0
1e84a23
41cc7ca
 
 
 
1e84a23
b4a29b5
69be8e7
1e84a23
eb97b2e
c09964c
95fa653
1e84a23
 
68e6ab6
1e84a23
 
cba4303
ff02ae0
1e84a23
95fa653
 
cba4303
 
 
95fa653
cba4303
95fa653
 
1e84a23
 
 
 
 
66d73e4
1e84a23
 
 
 
 
 
bb87276
66d73e4
1e84a23
66d73e4
 
1e84a23
 
1fc9d42
948bcdd
1e84a23
 
 
 
 
69be8e7
1e84a23
69be8e7
1e84a23
69be8e7
 
1e84a23
 
66d73e4
 
394131c
4f44aaf
 
1e84a23
fe341fa
 
 
 
 
 
1e84a23
 
 
d5966c9
1e84a23
 
 
 
 
fab5085
0032af2
41bb70b
fab5085
 
a42af30
ec1d849
1e84a23
cce95e7
1e84a23
0032af2
 
 
d5966c9
1e84a23
 
c21da59
cba4303
 
e78aeac
 
 
 
 
1e84a23
e78aeac
1e84a23
e78aeac
2692e67
e78aeac
 
 
 
 
 
1e84a23
e32abb5
e78aeac
 
 
c21da59
 
1922dde
e78aeac
c21da59
1922dde
 
c21da59
 
 
 
 
 
e32abb5
f7e075f
e78aeac
f7e075f
1e84a23
 
3883261
 
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720aaa6
1e84a23
 
 
5866646
1e84a23
 
 
 
 
 
 
 
c949fc8
c5c647e
c4addd7
c949fc8
8535053
c4addd7
 
 
 
8535053
17b5f5b
 
c949fc8
61c5019
 
 
7c6bae0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
General utils
"""

import contextlib
import glob
import logging
import math
import os
import platform
import random
import re
import shutil
import signal
import time
import urllib
from datetime import datetime
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from subprocess import check_output
from zipfile import ZipFile

import cv2
import numpy as np
import pandas as pd
import pkg_resources as pkg
import torch
import torchvision
import yaml

from utils.downloads import gsutil_getsize
from utils.metrics import box_iou, fitness

# Settings
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
DATASETS_DIR = ROOT.parent / 'datasets'  # YOLOv5 datasets directory
NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true'  # global verbose mode
FONT = 'Arial.ttf'  # https://ultralytics.com/assets/Arial.ttf

torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
pd.options.display.max_columns = 10
cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS)  # NumExpr max threads
os.environ['OMP_NUM_THREADS'] = str(NUM_THREADS)  # OpenMP max threads (PyTorch and SciPy)


def is_kaggle():
    # Is environment a Kaggle Notebook?
    try:
        assert os.environ.get('PWD') == '/kaggle/working'
        assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
        return True
    except AssertionError:
        return False


def is_writeable(dir, test=False):
    # Return True if directory has write permissions, test opening a file with write permissions if test=True
    if test:  # method 1
        file = Path(dir) / 'tmp.txt'
        try:
            with open(file, 'w'):  # open file with write permissions
                pass
            file.unlink()  # remove file
            return True
        except OSError:
            return False
    else:  # method 2
        return os.access(dir, os.R_OK)  # possible issues on Windows


def set_logging(name=None, verbose=VERBOSE):
    # Sets level and returns logger
    if is_kaggle():
        for h in logging.root.handlers:
            logging.root.removeHandler(h)  # remove all handlers associated with the root logger object
    rank = int(os.getenv('RANK', -1))  # rank in world for Multi-GPU trainings
    logging.basicConfig(format="%(message)s", level=logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING)
    return logging.getLogger(name)


LOGGER = set_logging('yolov5')  # define globally (used in train.py, val.py, detect.py, etc.)


def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
    # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
    env = os.getenv(env_var)
    if env:
        path = Path(env)  # use environment variable
    else:
        cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'}  # 3 OS dirs
        path = Path.home() / cfg.get(platform.system(), '')  # OS-specific config dir
        path = (path if is_writeable(path) else Path('/tmp')) / dir  # GCP and AWS lambda fix, only /tmp is writeable
    path.mkdir(exist_ok=True)  # make if required
    return path


CONFIG_DIR = user_config_dir()  # Ultralytics settings dir


class Profile(contextlib.ContextDecorator):
    # Usage: @Profile() decorator or 'with Profile():' context manager
    def __enter__(self):
        self.start = time.time()

    def __exit__(self, type, value, traceback):
        print(f'Profile results: {time.time() - self.start:.5f}s')


class Timeout(contextlib.ContextDecorator):
    # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
    def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
        self.seconds = int(seconds)
        self.timeout_message = timeout_msg
        self.suppress = bool(suppress_timeout_errors)

    def _timeout_handler(self, signum, frame):
        raise TimeoutError(self.timeout_message)

    def __enter__(self):
        signal.signal(signal.SIGALRM, self._timeout_handler)  # Set handler for SIGALRM
        signal.alarm(self.seconds)  # start countdown for SIGALRM to be raised

    def __exit__(self, exc_type, exc_val, exc_tb):
        signal.alarm(0)  # Cancel SIGALRM if it's scheduled
        if self.suppress and exc_type is TimeoutError:  # Suppress TimeoutError
            return True


class WorkingDirectory(contextlib.ContextDecorator):
    # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
    def __init__(self, new_dir):
        self.dir = new_dir  # new dir
        self.cwd = Path.cwd().resolve()  # current dir

    def __enter__(self):
        os.chdir(self.dir)

    def __exit__(self, exc_type, exc_val, exc_tb):
        os.chdir(self.cwd)


def try_except(func):
    # try-except function. Usage: @try_except decorator
    def handler(*args, **kwargs):
        try:
            func(*args, **kwargs)
        except Exception as e:
            print(e)

    return handler


def methods(instance):
    # Get class/instance methods
    return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]


def print_args(name, opt):
    # Print argparser arguments
    LOGGER.info(colorstr(f'{name}: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))


def init_seeds(seed=0):
    # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
    # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
    import torch.backends.cudnn as cudnn
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)


def intersect_dicts(da, db, exclude=()):
    # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
    return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}


def get_latest_run(search_dir='.'):
    # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
    last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
    return max(last_list, key=os.path.getctime) if last_list else ''


def is_docker():
    # Is environment a Docker container?
    return Path('/workspace').exists()  # or Path('/.dockerenv').exists()


def is_colab():
    # Is environment a Google Colab instance?
    try:
        import google.colab
        return True
    except ImportError:
        return False


def is_pip():
    # Is file in a pip package?
    return 'site-packages' in Path(__file__).resolve().parts


def is_ascii(s=''):
    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
    s = str(s)  # convert list, tuple, None, etc. to str
    return len(s.encode().decode('ascii', 'ignore')) == len(s)


def is_chinese(s='人工智能'):
    # Is string composed of any Chinese characters?
    return True if re.search('[\u4e00-\u9fff]', str(s)) else False


def emojis(str=''):
    # Return platform-dependent emoji-safe version of string
    return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str


def file_age(path=__file__):
    # Return days since last file update
    dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime))  # delta
    return dt.days  # + dt.seconds / 86400  # fractional days


def file_update_date(path=__file__):
    # Return human-readable file modification date, i.e. '2021-3-26'
    t = datetime.fromtimestamp(Path(path).stat().st_mtime)
    return f'{t.year}-{t.month}-{t.day}'


def file_size(path):
    # Return file/dir size (MB)
    mb = 1 << 20  # bytes to MiB (1024 ** 2)
    path = Path(path)
    if path.is_file():
        return path.stat().st_size / mb
    elif path.is_dir():
        return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
    else:
        return 0.0


def check_online():
    # Check internet connectivity
    import socket
    try:
        socket.create_connection(("1.1.1.1", 443), 5)  # check host accessibility
        return True
    except OSError:
        return False


def git_describe(path=ROOT):  # path must be a directory
    # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
    try:
        return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
    except Exception:
        return ''


@try_except
@WorkingDirectory(ROOT)
def check_git_status():
    # Recommend 'git pull' if code is out of date
    msg = ', for updates see https://github.com/ultralytics/yolov5'
    s = colorstr('github: ')  # string
    assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
    assert not is_docker(), s + 'skipping check (Docker image)' + msg
    assert check_online(), s + 'skipping check (offline)' + msg

    cmd = 'git fetch && git config --get remote.origin.url'
    url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git')  # git fetch
    branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()  # checked out
    n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True))  # commits behind
    if n > 0:
        s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
    else:
        s += f'up to date with {url} ✅'
    LOGGER.info(emojis(s))  # emoji-safe


def check_python(minimum='3.6.2'):
    # Check current python version vs. required python version
    check_version(platform.python_version(), minimum, name='Python ', hard=True)


def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
    # Check version vs. required version
    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
    result = (current == minimum) if pinned else (current >= minimum)  # bool
    s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed'  # string
    if hard:
        assert result, s  # assert min requirements met
    if verbose and not result:
        LOGGER.warning(s)
    return result


@try_except
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True):
    # Check installed dependencies meet requirements (pass *.txt file or list of packages)
    prefix = colorstr('red', 'bold', 'requirements:')
    check_python()  # check python version
    if isinstance(requirements, (str, Path)):  # requirements.txt file
        file = Path(requirements)
        assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
        with file.open() as f:
            requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
    else:  # list or tuple of packages
        requirements = [x for x in requirements if x not in exclude]

    n = 0  # number of packages updates
    for r in requirements:
        try:
            pkg.require(r)
        except Exception:  # DistributionNotFound or VersionConflict if requirements not met
            s = f"{prefix} {r} not found and is required by YOLOv5"
            if install:
                LOGGER.info(f"{s}, attempting auto-update...")
                try:
                    assert check_online(), f"'pip install {r}' skipped (offline)"
                    LOGGER.info(check_output(f"pip install '{r}'", shell=True).decode())
                    n += 1
                except Exception as e:
                    LOGGER.warning(f'{prefix} {e}')
            else:
                LOGGER.info(f'{s}. Please install and rerun your command.')

    if n:  # if packages updated
        source = file.resolve() if 'file' in locals() else requirements
        s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
            f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
        LOGGER.info(emojis(s))


def check_img_size(imgsz, s=32, floor=0):
    # Verify image size is a multiple of stride s in each dimension
    if isinstance(imgsz, int):  # integer i.e. img_size=640
        new_size = max(make_divisible(imgsz, int(s)), floor)
    else:  # list i.e. img_size=[640, 480]
        new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
    if new_size != imgsz:
        LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
    return new_size


def check_imshow():
    # Check if environment supports image displays
    try:
        assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
        assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
        cv2.imshow('test', np.zeros((1, 1, 3)))
        cv2.waitKey(1)
        cv2.destroyAllWindows()
        cv2.waitKey(1)
        return True
    except Exception as e:
        LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
        return False


def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
    # Check file(s) for acceptable suffix
    if file and suffix:
        if isinstance(suffix, str):
            suffix = [suffix]
        for f in file if isinstance(file, (list, tuple)) else [file]:
            s = Path(f).suffix.lower()  # file suffix
            if len(s):
                assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"


def check_yaml(file, suffix=('.yaml', '.yml')):
    # Search/download YAML file (if necessary) and return path, checking suffix
    return check_file(file, suffix)


def check_file(file, suffix=''):
    # Search/download file (if necessary) and return path
    check_suffix(file, suffix)  # optional
    file = str(file)  # convert to str()
    if Path(file).is_file() or file == '':  # exists
        return file
    elif file.startswith(('http:/', 'https:/')):  # download
        url = str(Path(file)).replace(':/', '://')  # Pathlib turns :// -> :/
        file = Path(urllib.parse.unquote(file).split('?')[0]).name  # '%2F' to '/', split https://url.com/file.txt?auth
        if Path(file).is_file():
            LOGGER.info(f'Found {url} locally at {file}')  # file already exists
        else:
            LOGGER.info(f'Downloading {url} to {file}...')
            torch.hub.download_url_to_file(url, file)
            assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}'  # check
        return file
    else:  # search
        files = []
        for d in 'data', 'models', 'utils':  # search directories
            files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True))  # find file
        assert len(files), f'File not found: {file}'  # assert file was found
        assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
        return files[0]  # return file


def check_font(font=FONT):
    # Download font to CONFIG_DIR if necessary
    font = Path(font)
    if not font.exists() and not (CONFIG_DIR / font.name).exists():
        url = "https://ultralytics.com/assets/" + font.name
        LOGGER.info(f'Downloading {url} to {CONFIG_DIR / font.name}...')
        torch.hub.download_url_to_file(url, str(font), progress=False)


def check_dataset(data, autodownload=True):
    # Download and/or unzip dataset if not found locally
    # Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip

    # Download (optional)
    extract_dir = ''
    if isinstance(data, (str, Path)) and str(data).endswith('.zip'):  # i.e. gs://bucket/dir/coco128.zip
        download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1)
        data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
        extract_dir, autodownload = data.parent, False

    # Read yaml (optional)
    if isinstance(data, (str, Path)):
        with open(data, errors='ignore') as f:
            data = yaml.safe_load(f)  # dictionary

    # Resolve paths
    path = Path(extract_dir or data.get('path') or '')  # optional 'path' default to '.'
    if not path.is_absolute():
        path = (ROOT / path).resolve()
    for k in 'train', 'val', 'test':
        if data.get(k):  # prepend path
            data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]

    # Parse yaml
    assert 'nc' in data, "Dataset 'nc' key missing."
    if 'names' not in data:
        data['names'] = [f'class{i}' for i in range(data['nc'])]  # assign class names if missing
    train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
    if val:
        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
        if not all(x.exists() for x in val):
            LOGGER.info('\nDataset not found, missing paths: %s' % [str(x) for x in val if not x.exists()])
            if s and autodownload:  # download script
                root = path.parent if 'path' in data else '..'  # unzip directory i.e. '../'
                if s.startswith('http') and s.endswith('.zip'):  # URL
                    f = Path(s).name  # filename
                    LOGGER.info(f'Downloading {s} to {f}...')
                    torch.hub.download_url_to_file(s, f)
                    Path(root).mkdir(parents=True, exist_ok=True)  # create root
                    ZipFile(f).extractall(path=root)  # unzip
                    Path(f).unlink()  # remove zip
                    r = None  # success
                elif s.startswith('bash '):  # bash script
                    LOGGER.info(f'Running {s} ...')
                    r = os.system(s)
                else:  # python script
                    r = exec(s, {'yaml': data})  # return None
                LOGGER.info(f"Dataset autodownload {f'success, saved to {root}' if r in (0, None) else 'failure'}\n")
            else:
                raise Exception('Dataset not found.')

    return data  # dictionary


def url2file(url):
    # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
    url = str(Path(url)).replace(':/', '://')  # Pathlib turns :// -> :/
    file = Path(urllib.parse.unquote(url)).name.split('?')[0]  # '%2F' to '/', split https://url.com/file.txt?auth
    return file


def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
    # Multi-threaded file download and unzip function, used in data.yaml for autodownload
    def download_one(url, dir):
        # Download 1 file
        f = dir / Path(url).name  # filename
        if Path(url).is_file():  # exists in current path
            Path(url).rename(f)  # move to dir
        elif not f.exists():
            LOGGER.info(f'Downloading {url} to {f}...')
            if curl:
                os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -")  # curl download, retry and resume on fail
            else:
                torch.hub.download_url_to_file(url, f, progress=True)  # torch download
        if unzip and f.suffix in ('.zip', '.gz'):
            LOGGER.info(f'Unzipping {f}...')
            if f.suffix == '.zip':
                ZipFile(f).extractall(path=dir)  # unzip
            elif f.suffix == '.gz':
                os.system(f'tar xfz {f} --directory {f.parent}')  # unzip
            if delete:
                f.unlink()  # remove zip

    dir = Path(dir)
    dir.mkdir(parents=True, exist_ok=True)  # make directory
    if threads > 1:
        pool = ThreadPool(threads)
        pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))  # multi-threaded
        pool.close()
        pool.join()
    else:
        for u in [url] if isinstance(url, (str, Path)) else url:
            download_one(u, dir)


def make_divisible(x, divisor):
    # Returns nearest x divisible by divisor
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor


def clean_str(s):
    # Cleans a string by replacing special characters with underscore _
    return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)


def one_cycle(y1=0.0, y2=1.0, steps=100):
    # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1


def colorstr(*input):
    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
    colors = {'black': '\033[30m',  # basic colors
              'red': '\033[31m',
              'green': '\033[32m',
              'yellow': '\033[33m',
              'blue': '\033[34m',
              'magenta': '\033[35m',
              'cyan': '\033[36m',
              'white': '\033[37m',
              'bright_black': '\033[90m',  # bright colors
              'bright_red': '\033[91m',
              'bright_green': '\033[92m',
              'bright_yellow': '\033[93m',
              'bright_blue': '\033[94m',
              'bright_magenta': '\033[95m',
              'bright_cyan': '\033[96m',
              'bright_white': '\033[97m',
              'end': '\033[0m',  # misc
              'bold': '\033[1m',
              'underline': '\033[4m'}
    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']


def labels_to_class_weights(labels, nc=80):
    # Get class weights (inverse frequency) from training labels
    if labels[0] is None:  # no labels loaded
        return torch.Tensor()

    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
    classes = labels[:, 0].astype(np.int)  # labels = [class xywh]
    weights = np.bincount(classes, minlength=nc)  # occurrences per class

    # Prepend gridpoint count (for uCE training)
    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start

    weights[weights == 0] = 1  # replace empty bins with 1
    weights = 1 / weights  # number of targets per class
    weights /= weights.sum()  # normalize
    return torch.from_numpy(weights)


def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
    # Produces image weights based on class_weights and image contents
    class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
    image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
    # index = random.choices(range(n), weights=image_weights, k=1)  # weight image sample
    return image_weights


def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
         35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
         64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
    return x


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
    return y


def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
    if clip:
        clip_coords(x, (h - eps, w - eps))  # warning: inplace clip
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w  # x center
    y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h  # y center
    y[:, 2] = (x[:, 2] - x[:, 0]) / w  # width
    y[:, 3] = (x[:, 3] - x[:, 1]) / h  # height
    return y


def xyn2xy(x, w=640, h=640, padw=0, padh=0):
    # Convert normalized segments into pixel segments, shape (n,2)
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * x[:, 0] + padw  # top left x
    y[:, 1] = h * x[:, 1] + padh  # top left y
    return y


def segment2box(segment, width=640, height=640):
    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
    x, y = segment.T  # segment xy
    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
    x, y, = x[inside], y[inside]
    return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy


def segments2boxes(segments):
    # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
    boxes = []
    for s in segments:
        x, y = s.T  # segment xy
        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
    return xyxy2xywh(np.array(boxes))  # cls, xywh


def resample_segments(segments, n=1000):
    # Up-sample an (n,2) segment
    for i, s in enumerate(segments):
        x = np.linspace(0, len(s) - 1, n)
        xp = np.arange(len(s))
        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
    return segments


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def clip_coords(boxes, shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[:, 0].clamp_(0, shape[1])  # x1
        boxes[:, 1].clamp_(0, shape[0])  # y1
        boxes[:, 2].clamp_(0, shape[1])  # x2
        boxes[:, 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2


def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=(), max_det=300):
    """Runs Non-Maximum Suppression (NMS) on inference results

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    nc = prediction.shape[2] - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    # Settings
    min_wh, max_wh = 2, 7680  # (pixels) minimum and maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            LOGGER.warning(f'WARNING: NMS time limit {time_limit}s exceeded')
            break  # time limit exceeded

    return output


def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
    # Strip optimizer from 'f' to finalize training, optionally save as 's'
    x = torch.load(f, map_location=torch.device('cpu'))
    if x.get('ema'):
        x['model'] = x['ema']  # replace model with ema
    for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates':  # keys
        x[k] = None
    x['epoch'] = -1
    x['model'].half()  # to FP16
    for p in x['model'].parameters():
        p.requires_grad = False
    torch.save(x, s or f)
    mb = os.path.getsize(s or f) / 1E6  # filesize
    LOGGER.info(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")


def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
    evolve_csv = save_dir / 'evolve.csv'
    evolve_yaml = save_dir / 'hyp_evolve.yaml'
    keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
            'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys())  # [results + hyps]
    keys = tuple(x.strip() for x in keys)
    vals = results + tuple(hyp.values())
    n = len(keys)

    # Download (optional)
    if bucket:
        url = f'gs://{bucket}/evolve.csv'
        if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
            os.system(f'gsutil cp {url} {save_dir}')  # download evolve.csv if larger than local

    # Log to evolve.csv
    s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n')  # add header
    with open(evolve_csv, 'a') as f:
        f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')

    # Save yaml
    with open(evolve_yaml, 'w') as f:
        data = pd.read_csv(evolve_csv)
        data = data.rename(columns=lambda x: x.strip())  # strip keys
        i = np.argmax(fitness(data.values[:, :4]))  #
        generations = len(data)
        f.write('# YOLOv5 Hyperparameter Evolution Results\n' +
                f'# Best generation: {i}\n' +
                f'# Last generation: {generations - 1}\n' +
                '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' +
                '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
        yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)

    # Print to screen
    LOGGER.info(prefix + f'{generations} generations finished, current result:\n' +
                prefix + ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' +
                prefix + ', '.join(f'{x:20.5g}' for x in vals) + '\n\n')

    if bucket:
        os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}')  # upload


def apply_classifier(x, model, img, im0):
    # Apply a second stage classifier to YOLO outputs
    # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
    im0 = [im0] if isinstance(im0, np.ndarray) else im0
    for i, d in enumerate(x):  # per image
        if d is not None and len(d):
            d = d.clone()

            # Reshape and pad cutouts
            b = xyxy2xywh(d[:, :4])  # boxes
            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
            d[:, :4] = xywh2xyxy(b).long()

            # Rescale boxes from img_size to im0 size
            scale_coords(img.shape[2:], d[:, :4], im0[i].shape)

            # Classes
            pred_cls1 = d[:, 5].long()
            ims = []
            for j, a in enumerate(d):  # per item
                cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
                im = cv2.resize(cutout, (224, 224))  # BGR
                # cv2.imwrite('example%i.jpg' % j, cutout)

                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
                im /= 255  # 0 - 255 to 0.0 - 1.0
                ims.append(im)

            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections

    return x


def increment_path(path, exist_ok=False, sep='', mkdir=False):
    # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
    path = Path(path)  # os-agnostic
    if path.exists() and not exist_ok:
        path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
        dirs = glob.glob(f"{path}{sep}*")  # similar paths
        matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
        i = [int(m.groups()[0]) for m in matches if m]  # indices
        n = max(i) + 1 if i else 2  # increment number
        path = Path(f"{path}{sep}{n}{suffix}")  # increment path
    if mkdir:
        path.mkdir(parents=True, exist_ok=True)  # make directory
    return path


# Variables
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns  # terminal window size for tqdm