File size: 16,630 Bytes
24bea5e
 
c3a93d7
 
615d6d0
 
c3a93d7
 
 
 
 
 
 
 
 
 
 
 
 
 
615d6d0
 
 
153873e
c3a93d7
a12698f
883924d
4200674
a12698f
d5b6416
4fb8cb3
28db237
d5b6416
c47be26
4d1a2ac
b74dd4b
 
153873e
53ed872
 
4d7f222
c3a93d7
 
 
7b1f7ae
 
7a0a81f
615d6d0
0e5cfdb
c3a93d7
 
442a7ab
7b1f7ae
442a7ab
c3a93d7
 
442a7ab
c3a93d7
7b1f7ae
442a7ab
7b1f7ae
442a7ab
 
c3a93d7
 
442a7ab
2d9411d
442a7ab
 
7b1f7ae
442a7ab
c3a93d7
 
442a7ab
 
 
 
 
 
 
 
 
 
 
7b1f7ae
442a7ab
 
 
 
2d9411d
442a7ab
 
7b1f7ae
442a7ab
 
 
c3a93d7
442a7ab
 
 
7b1f7ae
 
 
442a7ab
7b1f7ae
442a7ab
 
c3a93d7
 
 
442a7ab
d1182c4
442a7ab
 
7b1f7ae
442a7ab
c3a93d7
3bef77f
c3a93d7
 
 
 
7b1f7ae
442a7ab
7b1f7ae
442a7ab
c3a93d7
 
 
 
 
 
 
 
 
 
 
 
 
7b1f7ae
c3a93d7
 
442a7ab
c3a93d7
 
 
 
 
 
3beb871
c3a93d7
 
 
7b1f7ae
c3a93d7
7b1f7ae
c3a93d7
 
 
 
 
 
 
 
 
 
7b1f7ae
c3a93d7
 
 
 
 
 
 
 
7b1f7ae
c3a93d7
7b1f7ae
c3a93d7
 
b74dd4b
c3a93d7
 
 
 
 
7b1f7ae
c3a93d7
3beb871
c3a93d7
 
 
3beb871
c3a93d7
b74dd4b
c3a93d7
 
 
3beb871
c3a93d7
 
 
 
 
 
 
7b1f7ae
c3a93d7
 
7b1f7ae
c3a93d7
 
 
 
 
 
2c2ef25
c3a93d7
 
7b1f7ae
c3a93d7
 
2c2ef25
c3a93d7
 
 
 
 
2c2ef25
 
 
 
 
 
 
 
 
 
 
 
 
 
7b1f7ae
c3a93d7
7b1f7ae
c3a93d7
 
 
 
 
 
1f69d12
 
 
 
 
 
 
b74dd4b
 
1f69d12
264be1a
2c2ef25
 
 
 
1f69d12
883924d
0e5cfdb
c3a93d7
 
43b2817
615d6d0
 
0e5cfdb
0e2d0d5
3beb871
c3a93d7
883924d
f3c3d2c
883924d
c3a93d7
 
d45e349
a8751e5
0e5cfdb
c3a93d7
0e5cfdb
4d7f222
53ed872
c3a93d7
6bd5e8b
53ed872
0e5cfdb
 
b292837
 
646386f
c3a93d7
7b1f7ae
615d6d0
442a7ab
3bef77f
c3a93d7
0e5cfdb
c3a93d7
3bef77f
c3a93d7
 
 
 
 
 
2c2ef25
 
 
c3a93d7
 
 
b74dd4b
c3a93d7
 
659ad74
a9d20eb
7b1f7ae
 
 
0e5cfdb
 
bfb2276
0e5cfdb
c3a93d7
 
 
0e5cfdb
 
 
 
 
 
b74dd4b
c3a93d7
0e5cfdb
8b18b66
2c2ef25
 
 
 
c3a93d7
 
 
0e5cfdb
3732f9a
bfb2276
 
 
 
1f69d12
bfb2276
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
TensorFlow exports authored by https://github.com/zldrobit

Usage:
    $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs

Inference:
    $ python path/to/detect.py --weights yolov5s.pt
                                         yolov5s.onnx  (must export with --dynamic)
                                         yolov5s_saved_model
                                         yolov5s.pb
                                         yolov5s.tflite

TensorFlow.js:
    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
    $ npm install
    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
    $ npm start
"""

import argparse
import os
import subprocess
import sys
import time
from pathlib import Path

import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import Conv
from models.experimental import attempt_load
from models.yolo import Detect
from utils.activations import SiLU
from utils.datasets import LoadImages
from utils.general import check_dataset, check_img_size, check_requirements, colorstr, file_size, print_args, \
    url2file, LOGGER
from utils.torch_utils import select_device


def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
    # YOLOv5 TorchScript model export
    try:
        LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
        f = file.with_suffix('.torchscript.pt')

        ts = torch.jit.trace(model, im, strict=False)
        (optimize_for_mobile(ts) if optimize else ts).save(f)

        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        LOGGER.info(f'{prefix} export failure: {e}')


def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    try:
        check_requirements(('onnx',))
        import onnx

        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
        f = file.with_suffix('.onnx')

        torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
                          training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
                          do_constant_folding=not train,
                          input_names=['images'],
                          output_names=['output'],
                          dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
                                        'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
                                        } if dynamic else None)

        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model
        # LOGGER.info(onnx.helper.printable_graph(model_onnx.graph))  # print

        # Simplify
        if simplify:
            try:
                check_requirements(('onnx-simplifier',))
                import onnxsim

                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
                model_onnx, check = onnxsim.simplify(
                    model_onnx,
                    dynamic_input_shape=dynamic,
                    input_shapes={'images': list(im.shape)} if dynamic else None)
                assert check, 'assert check failed'
                onnx.save(model_onnx, f)
            except Exception as e:
                LOGGER.info(f'{prefix} simplifier failure: {e}')
        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        LOGGER.info(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
    except Exception as e:
        LOGGER.info(f'{prefix} export failure: {e}')


def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
    # YOLOv5 CoreML export
    ct_model = None
    try:
        check_requirements(('coremltools',))
        import coremltools as ct

        LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
        f = file.with_suffix('.mlmodel')

        model.train()  # CoreML exports should be placed in model.train() mode
        ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
        ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])])
        ct_model.save(f)

        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        LOGGER.info(f'\n{prefix} export failure: {e}')

    return ct_model


def export_saved_model(model, im, file, dynamic,
                       tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
                       conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
    # YOLOv5 TensorFlow saved_model export
    keras_model = None
    try:
        import tensorflow as tf
        from tensorflow import keras
        from models.tf import TFModel, TFDetect

        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = str(file).replace('.pt', '_saved_model')
        batch_size, ch, *imgsz = list(im.shape)  # BCHW

        tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
        im = tf.zeros((batch_size, *imgsz, 3))  # BHWC order for TensorFlow
        y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
        inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
        outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
        keras_model = keras.Model(inputs=inputs, outputs=outputs)
        keras_model.trainable = False
        keras_model.summary()
        keras_model.save(f, save_format='tf')

        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        LOGGER.info(f'\n{prefix} export failure: {e}')

    return keras_model


def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
    # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
    try:
        import tensorflow as tf
        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2

        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = file.with_suffix('.pb')

        m = tf.function(lambda x: keras_model(x))  # full model
        m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
        frozen_func = convert_variables_to_constants_v2(m)
        frozen_func.graph.as_graph_def()
        tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)

        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        LOGGER.info(f'\n{prefix} export failure: {e}')


def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
    # YOLOv5 TensorFlow Lite export
    try:
        import tensorflow as tf
        from models.tf import representative_dataset_gen

        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        batch_size, ch, *imgsz = list(im.shape)  # BCHW
        f = str(file).replace('.pt', '-fp16.tflite')

        converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
        converter.target_spec.supported_types = [tf.float16]
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        if int8:
            dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False)  # representative data
            converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
            converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
            converter.target_spec.supported_types = []
            converter.inference_input_type = tf.uint8  # or tf.int8
            converter.inference_output_type = tf.uint8  # or tf.int8
            converter.experimental_new_quantizer = False
            f = str(file).replace('.pt', '-int8.tflite')

        tflite_model = converter.convert()
        open(f, "wb").write(tflite_model)
        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')

    except Exception as e:
        LOGGER.info(f'\n{prefix} export failure: {e}')


def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
    # YOLOv5 TensorFlow.js export
    try:
        check_requirements(('tensorflowjs',))
        import re
        import tensorflowjs as tfjs

        LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
        f = str(file).replace('.pt', '_web_model')  # js dir
        f_pb = file.with_suffix('.pb')  # *.pb path
        f_json = f + '/model.json'  # *.json path

        cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
              f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
        subprocess.run(cmd, shell=True)

        json = open(f_json).read()
        with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
            subst = re.sub(
                r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}}}',
                r'{"outputs": {"Identity": {"name": "Identity"}, '
                r'"Identity_1": {"name": "Identity_1"}, '
                r'"Identity_2": {"name": "Identity_2"}, '
                r'"Identity_3": {"name": "Identity_3"}}}',
                json)
            j.write(subst)

        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        LOGGER.info(f'\n{prefix} export failure: {e}')


@torch.no_grad()
def run(data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
        weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=(640, 640),  # image (height, width)
        batch_size=1,  # batch size
        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        include=('torchscript', 'onnx', 'coreml'),  # include formats
        half=False,  # FP16 half-precision export
        inplace=False,  # set YOLOv5 Detect() inplace=True
        train=False,  # model.train() mode
        optimize=False,  # TorchScript: optimize for mobile
        int8=False,  # CoreML/TF INT8 quantization
        dynamic=False,  # ONNX/TF: dynamic axes
        simplify=False,  # ONNX: simplify model
        opset=12,  # ONNX: opset version
        topk_per_class=100,  # TF.js NMS: topk per class to keep
        topk_all=100,  # TF.js NMS: topk for all classes to keep
        iou_thres=0.45,  # TF.js NMS: IoU threshold
        conf_thres=0.25  # TF.js NMS: confidence threshold
        ):
    t = time.time()
    include = [x.lower() for x in include]
    tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs'))  # TensorFlow exports
    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
    file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)

    # Load PyTorch model
    device = select_device(device)
    assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
    model = attempt_load(weights, map_location=device, inplace=True, fuse=True)  # load FP32 model
    nc, names = model.nc, model.names  # number of classes, class names

    # Input
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection

    # Update model
    if half:
        im, model = im.half(), model.half()  # to FP16
    model.train() if train else model.eval()  # training mode = no Detect() layer grid construction
    for k, m in model.named_modules():
        if isinstance(m, Conv):  # assign export-friendly activations
            if isinstance(m.act, nn.SiLU):
                m.act = SiLU()
        elif isinstance(m, Detect):
            m.inplace = inplace
            m.onnx_dynamic = dynamic
            # m.forward = m.forward_export  # assign forward (optional)

    for _ in range(2):
        y = model(im)  # dry runs
    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")

    # Exports
    if 'torchscript' in include:
        export_torchscript(model, im, file, optimize)
    if 'onnx' in include:
        export_onnx(model, im, file, opset, train, dynamic, simplify)
    if 'coreml' in include:
        export_coreml(model, im, file)

    # TensorFlow Exports
    if any(tf_exports):
        pb, tflite, tfjs = tf_exports[1:]
        assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
        model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs,
                                   topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres,
                                   iou_thres=iou_thres)  # keras model
        if pb or tfjs:  # pb prerequisite to tfjs
            export_pb(model, im, file)
        if tflite:
            export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
        if tfjs:
            export_tfjs(model, im, file)

    # Finish
    LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
                f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
                f'\nVisualize with https://netron.app')


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
    parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
    parser.add_argument('--train', action='store_true', help='model.train() mode')
    parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
    parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
    parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
    parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
    parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
    parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
    parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
    parser.add_argument('--include', nargs='+',
                        default=['torchscript', 'onnx'],
                        help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
    opt = parser.parse_args()
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)