tanoManzo's picture
End of training
e0a31d3 verified
|
raw
history blame
2.1 kB
metadata
base_model: AIRI-Institute/gena-lm-bert-base-t2t
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC
    results: []

gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7056
  • F1 Score: 0.1876
  • Precision: 0.5195
  • Recall: 0.1145
  • Accuracy: 0.4764
  • Auc: 0.4935
  • Prc: 0.5260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.7004 0.0840 500 0.7056 0.1876 0.5195 0.1145 0.4764 0.4935 0.5260
0.6952 0.1680 1000 0.7056 0.1876 0.5195 0.1145 0.4764 0.4935 0.5260
0.6977 0.2520 1500 0.7056 0.1876 0.5195 0.1145 0.4764 0.4935 0.5260
0.7008 0.3360 2000 0.7056 0.1876 0.5195 0.1145 0.4764 0.4935 0.5260

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0