BBB_Martins-CNN / README.md
marinkaz's picture
Update readme
9944c52
|
raw
history blame
1.65 kB
metadata
language:
  - en
metrics:
  - accuracy
  - AUC ROC
  - precision
  - recall
tags:
  - biology
  - chemistry
  - therapeutic science
  - drug design
  - drug development
  - therapeutics
library_name: tdc
license: bsd-2-clause

Dataset description

As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier (BBB) is the protective layer that blocks most foreign drugs. Thus the ability of a drug to penetrate the barrier to deliver to the site of action forms a crucial challenge in developing drugs for the central nervous system.

Task description

Binary classification. Given a drug SMILES string, predict the activity of BBB.

Dataset statistics

Total: 1,975 drugs

Dataset split

Random split with 70% training, 10% validation, and 20% testing

To load the dataset in TDC, type

from tdc.single_pred import ADME
data = ADME(name = 'BBB_Martins')

Model description

CNN is applying Convolutional Neural Network on SMILES string fingerprint. Model is tuned with 100 runs using Ax platform. To load the pre-trained model, type

from tdc import tdc_hf_interface
tdc_hf = tdc_hf_interface("BBB_Martins-CNN")
# load deeppurpose model from this repo
dp_model = tdc_hf_herg.load_deeppurpose('./data')
tdc_hf.predict_deeppurpose(dp_model, ['YOUR SMILES STRING'])

References