File size: 1,771 Bytes
e864c53
 
 
c091e6a
 
 
 
 
e864c53
 
 
 
 
 
 
 
 
 
3464b6c
e864c53
e54488f
 
 
 
 
e864c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54488f
9d1bdc3
 
e864c53
 
 
e54488f
e864c53
 
 
c091e6a
 
e54488f
 
 
 
 
e864c53
 
 
 
9d1bdc3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: wolof-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wolof-finetuned-ner

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3572
- Precision: 0.7719
- Recall: 0.8980
- F1: 0.8302
- Accuracy: 0.9845

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 226  | 0.3649          | 0.7690    | 0.8605 | 0.8122 | 0.9852   |
| No log        | 2.0   | 452  | 0.3350          | 0.8088    | 0.8776 | 0.8418 | 0.9861   |
| 0.4546        | 3.0   | 678  | 0.3737          | 0.7842    | 0.8776 | 0.8283 | 0.9848   |
| 0.4546        | 4.0   | 904  | 0.3271          | 0.7713    | 0.8946 | 0.8283 | 0.9841   |
| 0.0992        | 5.0   | 1130 | 0.3572          | 0.7719    | 0.8980 | 0.8302 | 0.9845   |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3