output_dir / README.md
zeenfts's picture
End of training
213956a
|
raw
history blame
3.28 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: output_dir
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.575

output_dir

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2775
  • Accuracy: 0.575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0007
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 31

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 2 2.0745 0.1125
No log 2.0 5 1.9646 0.1875
No log 2.8 7 1.8686 0.325
1.9551 4.0 10 1.7196 0.3937
1.9551 4.8 12 1.5011 0.4813
1.9551 6.0 15 1.3693 0.4938
1.9551 6.8 17 1.4287 0.4625
1.3855 8.0 20 1.2961 0.5188
1.3855 8.8 22 1.2534 0.5312
1.3855 10.0 25 1.2544 0.5
1.3855 10.8 27 1.2417 0.5437
0.8352 12.0 30 1.1863 0.5437
0.8352 12.8 32 1.2524 0.5437
0.8352 14.0 35 1.3570 0.5062
0.8352 14.8 37 1.3046 0.5687
0.4513 16.0 40 1.3582 0.4688
0.4513 16.8 42 1.3063 0.5625
0.4513 18.0 45 1.3494 0.5312
0.4513 18.8 47 1.2484 0.5938
0.282 20.0 50 1.3694 0.5437
0.282 20.8 52 1.4651 0.5375
0.282 22.0 55 1.3577 0.5563
0.282 22.8 57 1.2522 0.5625
0.2038 24.0 60 1.4027 0.5813
0.2038 24.8 62 1.2445 0.5938

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3