metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: output_dir
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.575
output_dir
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2775
- Accuracy: 0.575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0007
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 31
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8 | 2 | 2.0745 | 0.1125 |
No log | 2.0 | 5 | 1.9646 | 0.1875 |
No log | 2.8 | 7 | 1.8686 | 0.325 |
1.9551 | 4.0 | 10 | 1.7196 | 0.3937 |
1.9551 | 4.8 | 12 | 1.5011 | 0.4813 |
1.9551 | 6.0 | 15 | 1.3693 | 0.4938 |
1.9551 | 6.8 | 17 | 1.4287 | 0.4625 |
1.3855 | 8.0 | 20 | 1.2961 | 0.5188 |
1.3855 | 8.8 | 22 | 1.2534 | 0.5312 |
1.3855 | 10.0 | 25 | 1.2544 | 0.5 |
1.3855 | 10.8 | 27 | 1.2417 | 0.5437 |
0.8352 | 12.0 | 30 | 1.1863 | 0.5437 |
0.8352 | 12.8 | 32 | 1.2524 | 0.5437 |
0.8352 | 14.0 | 35 | 1.3570 | 0.5062 |
0.8352 | 14.8 | 37 | 1.3046 | 0.5687 |
0.4513 | 16.0 | 40 | 1.3582 | 0.4688 |
0.4513 | 16.8 | 42 | 1.3063 | 0.5625 |
0.4513 | 18.0 | 45 | 1.3494 | 0.5312 |
0.4513 | 18.8 | 47 | 1.2484 | 0.5938 |
0.282 | 20.0 | 50 | 1.3694 | 0.5437 |
0.282 | 20.8 | 52 | 1.4651 | 0.5375 |
0.282 | 22.0 | 55 | 1.3577 | 0.5563 |
0.282 | 22.8 | 57 | 1.2522 | 0.5625 |
0.2038 | 24.0 | 60 | 1.4027 | 0.5813 |
0.2038 | 24.8 | 62 | 1.2445 | 0.5938 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3