|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: output_dir |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.575 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output_dir |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2775 |
|
- Accuracy: 0.575 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0007 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 31 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.8 | 2 | 2.0745 | 0.1125 | |
|
| No log | 2.0 | 5 | 1.9646 | 0.1875 | |
|
| No log | 2.8 | 7 | 1.8686 | 0.325 | |
|
| 1.9551 | 4.0 | 10 | 1.7196 | 0.3937 | |
|
| 1.9551 | 4.8 | 12 | 1.5011 | 0.4813 | |
|
| 1.9551 | 6.0 | 15 | 1.3693 | 0.4938 | |
|
| 1.9551 | 6.8 | 17 | 1.4287 | 0.4625 | |
|
| 1.3855 | 8.0 | 20 | 1.2961 | 0.5188 | |
|
| 1.3855 | 8.8 | 22 | 1.2534 | 0.5312 | |
|
| 1.3855 | 10.0 | 25 | 1.2544 | 0.5 | |
|
| 1.3855 | 10.8 | 27 | 1.2417 | 0.5437 | |
|
| 0.8352 | 12.0 | 30 | 1.1863 | 0.5437 | |
|
| 0.8352 | 12.8 | 32 | 1.2524 | 0.5437 | |
|
| 0.8352 | 14.0 | 35 | 1.3570 | 0.5062 | |
|
| 0.8352 | 14.8 | 37 | 1.3046 | 0.5687 | |
|
| 0.4513 | 16.0 | 40 | 1.3582 | 0.4688 | |
|
| 0.4513 | 16.8 | 42 | 1.3063 | 0.5625 | |
|
| 0.4513 | 18.0 | 45 | 1.3494 | 0.5312 | |
|
| 0.4513 | 18.8 | 47 | 1.2484 | 0.5938 | |
|
| 0.282 | 20.0 | 50 | 1.3694 | 0.5437 | |
|
| 0.282 | 20.8 | 52 | 1.4651 | 0.5375 | |
|
| 0.282 | 22.0 | 55 | 1.3577 | 0.5563 | |
|
| 0.282 | 22.8 | 57 | 1.2522 | 0.5625 | |
|
| 0.2038 | 24.0 | 60 | 1.4027 | 0.5813 | |
|
| 0.2038 | 24.8 | 62 | 1.2445 | 0.5938 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|