Spaces:
Sleeping
Sleeping
File size: 59,160 Bytes
aa5ee46 3860ffa aa5ee46 3860ffa aa5ee46 3860ffa aa5ee46 3860ffa aa5ee46 c4c6512 3860ffa aa5ee46 c4c6512 aa5ee46 3860ffa 4ad47a9 aa5ee46 4b11292 aa5ee46 3860ffa aa5ee46 4ad47a9 aa5ee46 54b0fbe 4de346a 3860ffa aa5ee46 c4c6512 f0d8178 3860ffa c4c6512 a794399 c4c6512 7406842 c4c6512 e7ce0d3 c4c6512 b015d09 c4c6512 b015d09 c4c6512 b015d09 a794399 c4c6512 b015d09 c4c6512 b015d09 a794399 b015d09 c4c6512 a794399 c4c6512 b015d09 c4c6512 a794399 c4c6512 b015d09 7406842 342ecda 360ddab aa5ee46 7d916cf 360ddab 342ecda afa2bc0 aa5ee46 360ddab aa5ee46 360ddab aa5ee46 4ad47a9 aa5ee46 4ad47a9 aa5ee46 54b0fbe aa5ee46 43bd4b0 6272c46 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 0a28502 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 f0d8178 aa5ee46 4b29652 aa5ee46 4ad47a9 aa5ee46 4b29652 aa5ee46 4ad47a9 aa5ee46 4ad47a9 aa5ee46 4b29652 aa5ee46 4ad47a9 aa5ee46 4ad47a9 aa5ee46 c10597c 3860ffa 4ad47a9 3860ffa 4ad47a9 3860ffa e7ce0d3 3860ffa e7ce0d3 3860ffa 4ad47a9 3860ffa 4ad47a9 3860ffa 7406842 3860ffa afa2bc0 e7ce0d3 90e5b39 3860ffa c10597c 342ecda 3860ffa ac6cb16 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4ad47a9 3860ffa 4ad47a9 3860ffa 4ad47a9 3860ffa 4ad47a9 3860ffa af9489c c4c6512 b015d09 3257615 a794399 af9489c 3860ffa aa5ee46 360ddab aa5ee46 4b29652 c6e1104 aa5ee46 4ad47a9 4b29652 4ad47a9 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 c6e1104 aa5ee46 4b29652 aa5ee46 4b29652 0a28502 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 308542a aa5ee46 e41c892 aa5ee46 c6e1104 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 c6e1104 aa5ee46 c6e1104 aa5ee46 6272c46 4de346a af9489c 342ecda af9489c aa5ee46 342ecda aa5ee46 342ecda aa5ee46 4b29652 aa5ee46 4ad47a9 4b29652 aa5ee46 4b29652 aa5ee46 4b29652 aa5ee46 3b2ba8f 3860ffa aa5ee46 3860ffa aa5ee46 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4ad47a9 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa af9489c 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4ad47a9 3860ffa 4b29652 4ad47a9 3860ffa 4ad47a9 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 ac6cb16 3860ffa ac6cb16 4ad47a9 3860ffa aa5ee46 3860ffa aa5ee46 3860ffa 4b29652 aa5ee46 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa 4b29652 3860ffa aa5ee46 3860ffa 4ad47a9 a0b74a7 3860ffa 4ad47a9 3860ffa aa5ee46 3860ffa aa5ee46 3860ffa aa5ee46 3860ffa 4b29652 aa5ee46 3860ffa aa5ee46 3860ffa aa5ee46 4ad47a9 3860ffa 4ad47a9 3860ffa 4ad47a9 3860ffa aa5ee46 4b29652 3860ffa 4b29652 3860ffa 4ad47a9 3860ffa 4b29652 3860ffa 4ad47a9 4b29652 aa5ee46 4ad47a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 |
import gradio as gr
import os
import torch
from shutil import rmtree
from torch import nn
from torch.nn import functional as F
import numpy as np
import subprocess
import cv2
import pickle
import librosa
from ultralytics import YOLO
from decord import VideoReader
from decord import cpu, gpu
from utils.audio_utils import *
from utils.inference_utils import *
from sync_models.gestsync_models import *
from shutil import rmtree, copy, copytree
import scenedetect
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
from scipy.interpolate import interp1d
from scipy import signal
from tqdm import tqdm
from glob import glob
from scipy.io.wavfile import write
import mediapipe as mp
from protobuf_to_dict import protobuf_to_dict
import warnings
import spaces
mp_holistic = mp.solutions.holistic
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# Initialize global variables
CHECKPOINT_PATH = "model_rgb.pth"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
use_cuda = torch.cuda.is_available()
print("Use cuda status: ", use_cuda)
batch_size = 24
fps = 25
n_negative_samples = 100
facedet_scale=0.25
crop_scale=0
min_track=50
frame_rate=25
num_failed_det=25
min_frame_size=64
print("Device: ", device)
# Initialize the mediapipe holistic keypoint detection model
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
def bb_intersection_over_union(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxB[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def track_shot(scenefaces):
iouThres = 0.5 # Minimum IOU between consecutive face detections
tracks = []
while True:
track = []
for framefaces in scenefaces:
for face in framefaces:
if track == []:
track.append(face)
framefaces.remove(face)
elif face['frame'] - track[-1]['frame'] <= num_failed_det:
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
if iou > iouThres:
track.append(face)
framefaces.remove(face)
continue
else:
break
if track == []:
break
elif len(track) > min_track:
framenum = np.array([f['frame'] for f in track])
bboxes = np.array([np.array(f['bbox']) for f in track])
frame_i = np.arange(framenum[0], framenum[-1] + 1)
bboxes_i = []
for ij in range(0, 4):
interpfn = interp1d(framenum, bboxes[:, ij])
bboxes_i.append(interpfn(frame_i))
bboxes_i = np.stack(bboxes_i, axis=1)
if max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1])) > min_frame_size:
tracks.append({'frame': frame_i, 'bbox': bboxes_i})
return tracks
def check_folder(folder):
if os.path.exists(folder):
return True
return False
def del_folder(folder):
if os.path.exists(folder):
rmtree(folder)
def read_video(o, start_idx):
with open(o, 'rb') as o:
video_stream = VideoReader(o)
if start_idx > 0:
video_stream.skip_frames(start_idx)
return video_stream
def crop_video(avi_dir, tmp_dir, track, cropfile, tight_scale=1):
fourcc = cv2.VideoWriter_fourcc(*'XVID')
vOut = cv2.VideoWriter(cropfile + '.avi', fourcc, frame_rate, (480, 270))
dets = {'x': [], 'y': [], 's': [], 'bbox': track['bbox'], 'frame': track['frame']}
for det in track['bbox']:
# Reduce the size of the bounding box by a small factor if tighter crops are needed (default -> no reduction in size)
width = (det[2] - det[0]) * tight_scale
height = (det[3] - det[1]) * tight_scale
center_x = (det[0] + det[2]) / 2
center_y = (det[1] + det[3]) / 2
dets['s'].append(max(height, width) / 2)
dets['y'].append(center_y) # crop center y
dets['x'].append(center_x) # crop center x
# Smooth detections
dets['s'] = signal.medfilt(dets['s'], kernel_size=13)
dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
videofile = os.path.join(avi_dir, 'video.avi')
frame_no_to_start = track['frame'][0]
video_stream = cv2.VideoCapture(videofile)
video_stream.set(cv2.CAP_PROP_POS_FRAMES, frame_no_to_start)
for fidx, frame in enumerate(track['frame']):
cs = crop_scale
bs = dets['s'][fidx] # Detection box size
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
image = video_stream.read()[1]
frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), 'constant', constant_values=(110, 110))
my = dets['y'][fidx] + bsi # BBox center Y
mx = dets['x'][fidx] + bsi # BBox center X
face = frame[int(my - bs):int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)):int(mx + bs * (1 + cs))]
vOut.write(cv2.resize(face, (480, 270)))
video_stream.release()
audiotmp = os.path.join(tmp_dir, 'audio.wav')
audiostart = (track['frame'][0]) / frame_rate
audioend = (track['frame'][-1] + 1) / frame_rate
vOut.release()
# ========== CROP AUDIO FILE ==========
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ss %.3f -to %.3f %s" % (os.path.join(avi_dir, 'audio.wav'), audiostart, audioend, audiotmp))
output = subprocess.call(command, shell=True, stdout=None)
copy(audiotmp, cropfile + '.wav')
# print('Written %s' % cropfile)
# print('Mean pos: x %.2f y %.2f s %.2f' % (np.mean(dets['x']), np.mean(dets['y']), np.mean(dets['s'])))
return {'track': track, 'proc_track': dets}
@spaces.GPU(duration=60)
def inference_video(avi_dir, work_dir, padding=0):
videofile = os.path.join(avi_dir, 'video.avi')
vidObj = cv2.VideoCapture(videofile)
yolo_model = YOLO("yolov9m.pt")
global dets, fidx
dets = []
fidx = 0
print("Detecting people in the video using YOLO...")
def generate_detections():
global dets, fidx
while True:
success, image = vidObj.read()
if not success:
break
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Perform person detection
results = yolo_model(image_np, verbose=False)
detections = results[0].boxes
dets.append([])
for i, det in enumerate(detections):
x1, y1, x2, y2 = det.xyxy[0].detach().cpu().numpy()
cls = det.cls[0].detach().cpu().numpy()
conf = det.conf[0].detach().cpu().numpy()
if int(cls) == 0 and conf>0.7: # Class 0 is 'person' in COCO dataset
x1 = max(0, int(x1) - padding)
y1 = max(0, int(y1) - padding)
x2 = min(image_np.shape[1], int(x2) + padding)
y2 = min(image_np.shape[0], int(y2) + padding)
dets[-1].append({'frame': fidx, 'bbox': [x1, y1, x2, y2], 'conf': conf})
fidx += 1
yield
return dets
for _ in tqdm(generate_detections()):
pass
print("Successfully detected people in the video")
savepath = os.path.join(work_dir, 'faces.pckl')
with open(savepath, 'wb') as fil:
pickle.dump(dets, fil)
return dets
def scene_detect(avi_dir, work_dir):
video_manager = VideoManager([os.path.join(avi_dir, 'video.avi')])
stats_manager = StatsManager()
scene_manager = SceneManager(stats_manager)
scene_manager.add_detector(ContentDetector())
base_timecode = video_manager.get_base_timecode()
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list(base_timecode)
savepath = os.path.join(work_dir, 'scene.pckl')
if scene_list == []:
scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
with open(savepath, 'wb') as fil:
pickle.dump(scene_list, fil)
print('%s - scenes detected %d' % (os.path.join(avi_dir, 'video.avi'), len(scene_list)))
return scene_list
def process_video_asd(file, sd_root, work_root, data_root, avi_dir, tmp_dir, work_dir, crop_dir, frames_dir):
video_file_name = os.path.basename(file.strip())
sd_dest_folder = sd_root
work_dest_folder = work_root
del_folder(sd_dest_folder)
del_folder(work_dest_folder)
videofile = file
if os.path.exists(work_dir):
rmtree(work_dir)
if os.path.exists(crop_dir):
rmtree(crop_dir)
if os.path.exists(avi_dir):
rmtree(avi_dir)
if os.path.exists(frames_dir):
rmtree(frames_dir)
if os.path.exists(tmp_dir):
rmtree(tmp_dir)
os.makedirs(work_dir)
os.makedirs(crop_dir)
os.makedirs(avi_dir)
os.makedirs(frames_dir)
os.makedirs(tmp_dir)
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -qscale:v 2 -async 1 -r 25 %s" % (videofile,
os.path.join(avi_dir,
'video.avi')))
status = subprocess.call(command, shell=True, stdout=None)
if status != 0:
msg = "Error in pre-processing the video, please check the input video and try again"
return msg
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s" % (os.path.join(avi_dir,
'video.avi'),
os.path.join(avi_dir,
'audio.wav')))
status = subprocess.call(command, shell=True, stdout=None)
if status != 0:
msg = "Error in pre-processing the video, please check the input video and try again"
return msg
try:
faces = inference_video(avi_dir, work_dir)
except:
msg = "Error in pre-processing the video, please check the input video and try again"
return msg
print("YOLO done")
print("Detecting scenes in the video...")
try:
scene = scene_detect(avi_dir, work_dir)
except:
msg = "Error in detecting the scenes in the video, please check the input video and try again"
return msg
print("Scene detect done")
print("Tracking video...")
allscenes = []
for shot in scene:
if shot[1].frame_num - shot[0].frame_num >= min_track:
allscenes.append(track_shot(faces[shot[0].frame_num:shot[1].frame_num]))
print("Cropping video...")
alltracks = []
for sc_num in range(len(allscenes)):
vidtracks = []
for ii, track in enumerate(allscenes[sc_num]):
os.makedirs(os.path.join(crop_dir, 'scene_'+str(sc_num)), exist_ok=True)
vidtracks.append(crop_video(avi_dir, tmp_dir, track, os.path.join(crop_dir, 'scene_'+str(sc_num), '%05d' % ii)))
alltracks.append(vidtracks)
savepath = os.path.join(work_dir, 'tracks.pckl')
with open(savepath, 'wb') as fil:
pickle.dump(alltracks, fil)
rmtree(tmp_dir)
rmtree(avi_dir)
rmtree(frames_dir)
copytree(crop_dir, sd_dest_folder)
copytree(work_dir, work_dest_folder)
return "success"
@spaces.GPU(duration=60)
def get_person_detection(all_frames, frame_count, padding=20):
try:
# Load YOLOv9 model (pre-trained on COCO dataset)
yolo_model = YOLO("yolov9s.pt")
print("Loaded the YOLO model")
person_videos = {}
person_tracks = {}
print("Processing the frames...")
for frame_idx in tqdm(range(frame_count)):
frame = all_frames[frame_idx]
# Perform person detection
results = yolo_model(frame, verbose=False)
detections = results[0].boxes
for i, det in enumerate(detections):
x1, y1, x2, y2 = det.xyxy[0]
cls = det.cls[0]
if int(cls) == 0: # Class 0 is 'person' in COCO dataset
x1 = max(0, int(x1) - padding)
y1 = max(0, int(y1) - padding)
x2 = min(frame.shape[1], int(x2) + padding)
y2 = min(frame.shape[0], int(y2) + padding)
if i not in person_videos:
person_videos[i] = []
person_tracks[i] = []
person_videos[i].append(frame)
person_tracks[i].append([x1,y1,x2,y2])
num_persons = 0
for i in person_videos.keys():
if len(person_videos[i]) >= frame_count//2:
num_persons+=1
if num_persons==0:
msg = "No person detected in the video! Please give a video with one person as input"
return None, None, msg
if num_persons>1:
msg = "More than one person detected in the video! Please give a video with only one person as input"
return None, None, msg
except:
msg = "Error in detecting person in the video, please check the input video and try again"
return None, None, msg
return person_videos, person_tracks, "success"
def preprocess_video(path, result_folder, apply_preprocess, padding=20):
'''
This function preprocesses the input video to extract the audio and crop the frames using YOLO model
Args:
- path (string) : Path of the input video file
- result_folder (string) : Path of the folder to save the extracted audio and cropped video
- padding (int) : Padding to add to the bounding box
Returns:
- wav_file (string) : Path of the extracted audio file
- fps (int) : FPS of the input video
- video_output (string) : Path of the cropped video file
- msg (string) : Message to be returned
'''
# Load all video frames
try:
vr = VideoReader(path, ctx=cpu(0))
fps = vr.get_avg_fps()
frame_count = len(vr)
except:
msg = "Oops! Could not load the video. Please check the input video and try again."
return None, None, None, msg
if frame_count < 25:
msg = "Not enough frames to process! Please give a longer video as input"
return None, None, None, msg
# Extract the audio from the input video file using ffmpeg
wav_file = os.path.join(result_folder, "audio.wav")
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -async 1 -ac 1 -vn \
-acodec pcm_s16le -ar 16000 %s -y' % (path, wav_file), shell=True)
if status != 0:
msg = "Oops! Could not load the audio file. Please check the input video and try again."
return None, None, None, msg
print("Extracted the audio from the video")
if apply_preprocess=="True":
all_frames = []
for k in range(len(vr)):
all_frames.append(vr[k].asnumpy())
all_frames = np.asarray(all_frames)
print("Extracted the frames for pre-processing")
person_videos, person_tracks, msg = get_person_detection(all_frames, frame_count, padding)
if msg != "success":
return None, None, None, msg
# For the person detected, crop the frame based on the bounding box
if len(person_videos[0]) > frame_count-10:
crop_filename = os.path.join(result_folder, "preprocessed_video.avi")
fourcc = cv2.VideoWriter_fourcc(*'DIVX')
# Get bounding box coordinates based on person_tracks[i]
max_x1 = min([track[0] for track in person_tracks[0]])
max_y1 = min([track[1] for track in person_tracks[0]])
max_x2 = max([track[2] for track in person_tracks[0]])
max_y2 = max([track[3] for track in person_tracks[0]])
max_width = max_x2 - max_x1
max_height = max_y2 - max_y1
out = cv2.VideoWriter(crop_filename, fourcc, fps, (max_width, max_height))
for frame in person_videos[0]:
crop = frame[max_y1:max_y2, max_x1:max_x2]
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
out.write(crop)
out.release()
no_sound_video = crop_filename.split('.')[0] + '_nosound.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (crop_filename, no_sound_video), shell=True)
if status != 0:
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
return None, None, None, msg
video_output = crop_filename.split('.')[0] + '.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 %s' %
(wav_file , no_sound_video, video_output), shell=True)
if status != 0:
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
return None, None, None, msg
os.remove(crop_filename)
os.remove(no_sound_video)
print("Successfully saved the pre-processed video: ", video_output)
else:
msg = "Could not track the person in the full video! Please give a single-speaker video as input"
return None, None, None, msg
else:
video_output = path
return wav_file, fps, video_output, "success"
def resample_video(video_file, video_fname, result_folder):
'''
This function resamples the video to 25 fps
Args:
- video_file (string) : Path of the input video file
- video_fname (string) : Name of the input video file
- result_folder (string) : Path of the folder to save the resampled video
Returns:
- video_file_25fps (string) : Path of the resampled video file
'''
video_file_25fps = os.path.join(result_folder, '{}.mp4'.format(video_fname))
# Resample the video to 25 fps
status = subprocess.call("ffmpeg -hide_banner -loglevel panic -y -i {} -c:v libx264 -preset veryslow -crf 0 -filter:v fps=25 -pix_fmt yuv420p {}".format(video_file, video_file_25fps), shell=True)
if status != 0:
msg = "Oops! Could not resample the video to 25 FPS. Please check the input video and try again."
return None, msg
print('Resampled the video to 25 fps: {}'.format(video_file_25fps))
return video_file_25fps, "success"
def load_checkpoint(path, model):
'''
This function loads the trained model from the checkpoint
Args:
- path (string) : Path of the checkpoint file
- model (object) : Model object
Returns:
- model (object) : Model object with the weights loaded from the checkpoint
'''
# Load the checkpoint
checkpoint = torch.load(path, map_location="cpu")
# if use_cuda:
# checkpoint = torch.load(path)
# else:
# checkpoint = torch.load(path, map_location="cpu")
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
if use_cuda:
model.to(device)
print("Loaded checkpoint from: {}".format(path))
return model.eval()
def load_video_frames(video_file):
'''
This function extracts the frames from the video
Args:
- video_file (string) : Path of the video file
Returns:
- frames (list) : List of frames extracted from the video
- msg (string) : Message to be returned
'''
# Read the video
try:
vr = VideoReader(video_file, ctx=cpu(0))
except:
msg = "Oops! Could not load the input video file"
return None, msg
# Extract the frames
frames = []
for k in range(len(vr)):
frames.append(vr[k].asnumpy())
frames = np.asarray(frames)
return frames, "success"
def get_keypoints(frames):
'''
This function extracts the keypoints from the frames using MediaPipe Holistic pipeline
Args:
- frames (list) : List of frames extracted from the video
Returns:
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
- msg (string) : Message to be returned
'''
try:
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
resolution = frames[0].shape
all_frame_kps = []
for frame in frames:
results = holistic.process(frame)
pose, left_hand, right_hand, face = None, None, None, None
if results.pose_landmarks is not None:
pose = protobuf_to_dict(results.pose_landmarks)['landmark']
if results.left_hand_landmarks is not None:
left_hand = protobuf_to_dict(results.left_hand_landmarks)['landmark']
if results.right_hand_landmarks is not None:
right_hand = protobuf_to_dict(results.right_hand_landmarks)['landmark']
if results.face_landmarks is not None:
face = protobuf_to_dict(results.face_landmarks)['landmark']
frame_dict = {"pose":pose, "left_hand":left_hand, "right_hand":right_hand, "face":face}
all_frame_kps.append(frame_dict)
kp_dict = {"kps":all_frame_kps, "resolution":resolution}
except Exception as e:
print("Error: ", e)
return None, "Error: Could not extract keypoints from the frames"
return kp_dict, "success"
def check_visible_gestures(kp_dict):
'''
This function checks if the gestures in the video are visible
Args:
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
Returns:
- msg (string) : Message to be returned
'''
keypoints = kp_dict['kps']
keypoints = np.array(keypoints)
if len(keypoints)<25:
msg = "Not enough keypoints to process! Please give a longer video as input"
return msg
pose_count, hand_count = 0, 0
for frame_kp_dict in keypoints:
pose = frame_kp_dict["pose"]
left_hand = frame_kp_dict["left_hand"]
right_hand = frame_kp_dict["right_hand"]
if pose is None:
pose_count += 1
if left_hand is None and right_hand is None:
hand_count += 1
if hand_count/len(keypoints) > 0.6 or pose_count/len(keypoints) > 0.6:
msg = "The gestures in the input video are not visible! Please give a video with visible gestures as input."
return msg
print("Successfully verified the input video - Gestures are visible!")
return "success"
def load_rgb_masked_frames(input_frames, kp_dict, asd=False, stride=1, window_frames=25, width=480, height=270):
'''
This function masks the faces using the keypoints extracted from the frames
Args:
- input_frames (list) : List of frames extracted from the video
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
- stride (int) : Stride to extract the frames
- window_frames (int) : Number of frames in each window that is given as input to the model
- width (int) : Width of the frames
- height (int) : Height of the frames
Returns:
- input_frames (array) : Frame window to be given as input to the model
- num_frames (int) : Number of frames to extract
- orig_masked_frames (array) : Masked frames extracted from the video
- msg (string) : Message to be returned
'''
print("Creating masked input frames...")
input_frames_masked = []
if kp_dict is None:
for img in tqdm(input_frames):
img = cv2.resize(img, (width, height))
masked_img = cv2.rectangle(img, (0,0), (width,110), (0,0,0), -1)
input_frames_masked.append(masked_img)
else:
# Face indices to extract the face-coordinates needed for masking
face_oval_idx = [10, 21, 54, 58, 67, 93, 103, 109, 127, 132, 136, 148, 149, 150, 152, 162, 172,
176, 234, 251, 284, 288, 297, 323, 332, 338, 356, 361, 365, 377, 378, 379, 389, 397, 400, 454]
input_keypoints, resolution = kp_dict['kps'], kp_dict['resolution']
print("Input keypoints: ", len(input_keypoints))
for i, frame_kp_dict in tqdm(enumerate(input_keypoints)):
img = input_frames[i]
face = frame_kp_dict["face"]
if face is None:
img = cv2.resize(img, (width, height))
masked_img = cv2.rectangle(img, (0,0), (width,110), (0,0,0), -1)
else:
face_kps = []
for idx in range(len(face)):
if idx in face_oval_idx:
x, y = int(face[idx]["x"]*resolution[1]), int(face[idx]["y"]*resolution[0])
face_kps.append((x,y))
face_kps = np.array(face_kps)
x1, y1 = min(face_kps[:,0]), min(face_kps[:,1])
x2, y2 = max(face_kps[:,0]), max(face_kps[:,1])
masked_img = cv2.rectangle(img, (0,0), (resolution[1],y2+15), (0,0,0), -1)
if masked_img.shape[0] != width or masked_img.shape[1] != height:
masked_img = cv2.resize(masked_img, (width, height))
input_frames_masked.append(masked_img)
orig_masked_frames = np.array(input_frames_masked)
input_frames = np.array(input_frames_masked) / 255.
if asd:
input_frames = np.pad(input_frames, ((12, 12), (0,0), (0,0), (0,0)), 'edge')
# print("Input images full: ", input_frames.shape) # num_framesx270x480x3
input_frames = np.array([input_frames[i:i+window_frames, :, :] for i in range(0,input_frames.shape[0], stride) if (i+window_frames <= input_frames.shape[0])])
# print("Input images window: ", input_frames.shape) # Tx25x270x480x3
print("Successfully created masked input frames")
num_frames = input_frames.shape[0]
if num_frames<10:
msg = "Not enough frames to process! Please give a longer video as input."
return None, None, None, msg
return input_frames, num_frames, orig_masked_frames, "success"
def load_spectrograms(wav_file, asd=False, num_frames=None, window_frames=25, stride=4):
'''
This function extracts the spectrogram from the audio file
Args:
- wav_file (string) : Path of the extracted audio file
- num_frames (int) : Number of frames to extract
- window_frames (int) : Number of frames in each window that is given as input to the model
- stride (int) : Stride to extract the audio frames
Returns:
- spec (array) : Spectrogram array window to be used as input to the model
- orig_spec (array) : Spectrogram array extracted from the audio file
- msg (string) : Message to be returned
'''
# Extract the audio from the input video file using ffmpeg
try:
wav = librosa.load(wav_file, sr=16000)[0]
except:
msg = "Oops! Could extract the spectrograms from the audio file. Please check the input and try again."
return None, None, msg
# Convert to tensor
wav = torch.FloatTensor(wav).unsqueeze(0)
mel, _, _, _ = wav2filterbanks(wav.to(device))
spec = mel.squeeze(0).cpu().numpy()
orig_spec = spec
spec = np.array([spec[i:i+(window_frames*stride), :] for i in range(0, spec.shape[0], stride) if (i+(window_frames*stride) <= spec.shape[0])])
if num_frames is not None:
if len(spec) != num_frames:
spec = spec[:num_frames]
frame_diff = np.abs(len(spec) - num_frames)
if frame_diff > 60:
print("The input video and audio length do not match - The results can be unreliable! Please check the input video.")
if asd:
pad_frames = (window_frames//2)
spec = np.pad(spec, ((pad_frames, pad_frames), (0,0), (0,0)), 'edge')
return spec, orig_spec, "success"
def calc_optimal_av_offset(vid_emb, aud_emb, num_avg_frames, model):
'''
This function calculates the audio-visual offset between the video and audio
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- num_avg_frames (int) : Number of frames to average the scores
- model (object) : Model object
Returns:
- offset (int) : Optimal audio-visual offset
- msg (string) : Message to be returned
'''
pos_vid_emb, all_aud_emb, pos_idx, stride, status = create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames)
if status != "success":
return None, status
scores, _ = calc_av_scores(pos_vid_emb, all_aud_emb, model)
offset = scores.argmax()*stride - pos_idx
return offset.item(), "success"
def create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames, stride=5):
'''
This function creates all possible positive and negative audio embeddings to compare and obtain the sync offset
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- num_avg_frames (int) : Number of frames to average the scores
- stride (int) : Stride to extract the negative windows
Returns:
- vid_emb_pos (array) : Positive video embedding array
- aud_emb_posneg (array) : All possible combinations of audio embedding array
- pos_idx_frame (int) : Positive video embedding array frame
- stride (int) : Stride used to extract the negative windows
- msg (string) : Message to be returned
'''
slice_size = num_avg_frames
aud_emb_posneg = aud_emb.squeeze(1).unfold(-1, slice_size, stride)
aud_emb_posneg = aud_emb_posneg.permute([0, 2, 1, 3])
aud_emb_posneg = aud_emb_posneg[:, :int(n_negative_samples/stride)+1]
pos_idx = (aud_emb_posneg.shape[1]//2)
pos_idx_frame = pos_idx*stride
min_offset_frames = -(pos_idx)*stride
max_offset_frames = (aud_emb_posneg.shape[1] - pos_idx - 1)*stride
print("With the current video length and the number of average frames, the model can predict the offsets in the range: [{}, {}]".format(min_offset_frames, max_offset_frames))
vid_emb_pos = vid_emb[:, :, pos_idx_frame:pos_idx_frame+slice_size]
if vid_emb_pos.shape[2] != slice_size:
msg = "Video is too short to use {} frames to average the scores. Please use a longer input video or reduce the number of average frames".format(slice_size)
return None, None, None, None, msg
return vid_emb_pos, aud_emb_posneg, pos_idx_frame, stride, "success"
def calc_av_scores(vid_emb, aud_emb, model):
'''
This function calls functions to calculate the audio-visual similarity and attention map between the video and audio embeddings
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- model (object) : Model object
Returns:
- scores (array) : Audio-visual similarity scores
- att_map (array) : Attention map
'''
scores = calc_att_map(vid_emb, aud_emb, model)
att_map = logsoftmax_2d(scores)
scores = scores.mean(-1)
return scores, att_map
def calc_att_map(vid_emb, aud_emb, model):
'''
This function calculates the similarity between the video and audio embeddings
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- model (object) : Model object
Returns:
- scores (array) : Audio-visual similarity scores
'''
vid_emb = vid_emb[:, :, None]
aud_emb = aud_emb.transpose(1, 2)
scores = run_func_in_parts(lambda x, y: (x * y).sum(1),
vid_emb,
aud_emb,
part_len=10,
dim=3,
device=device)
scores = model.logits_scale(scores[..., None]).squeeze(-1)
return scores
def generate_video(frames, audio_file, video_fname):
'''
This function generates the video from the frames and audio file
Args:
- frames (array) : Frames to be used to generate the video
- audio_file (string) : Path of the audio file
- video_fname (string) : Path of the video file
Returns:
- video_output (string) : Path of the video file
'''
fname = 'inference.avi'
video = cv2.VideoWriter(fname, cv2.VideoWriter_fourcc(*'DIVX'), 25, (frames[0].shape[1], frames[0].shape[0]))
for i in range(len(frames)):
video.write(cv2.cvtColor(frames[i], cv2.COLOR_BGR2RGB))
video.release()
no_sound_video = video_fname + '_nosound.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (fname, no_sound_video), shell=True)
if status != 0:
msg = "Oops! Could not generate the video. Please check the input video and try again."
return None, msg
video_output = video_fname + '.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -c:v libx264 -preset veryslow -crf 18 -pix_fmt yuv420p -strict -2 -q:v 1 -shortest %s' %
(audio_file, no_sound_video, video_output), shell=True)
if status != 0:
msg = "Oops! Could not generate the video. Please check the input video and try again."
return None, msg
os.remove(fname)
os.remove(no_sound_video)
return video_output, "success"
def sync_correct_video(video_path, frames, wav_file, offset, result_folder, sample_rate=16000, fps=25):
'''
This function corrects the video and audio to sync with each other
Args:
- video_path (string) : Path of the video file
- frames (array) : Frames to be used to generate the video
- wav_file (string) : Path of the audio file
- offset (int) : Predicted sync-offset to be used to correct the video
- result_folder (string) : Path of the result folder to save the output sync-corrected video
- sample_rate (int) : Sample rate of the audio
- fps (int) : Frames per second of the video
Returns:
- video_output (string) : Path of the video file
'''
if offset == 0:
print("The input audio and video are in-sync! No need to perform sync correction.")
return video_path, "success"
print("Performing Sync Correction...")
corrected_frames = np.zeros_like(frames)
if offset > 0:
audio_offset = int(offset*(sample_rate/fps))
wav = librosa.core.load(wav_file, sr=sample_rate)[0]
corrected_wav = wav[audio_offset:]
corrected_wav_file = os.path.join(result_folder, "audio_sync_corrected.wav")
write(corrected_wav_file, sample_rate, corrected_wav)
wav_file = corrected_wav_file
corrected_frames = frames
elif offset < 0:
corrected_frames[0:len(frames)+offset] = frames[np.abs(offset):]
corrected_frames = corrected_frames[:len(frames)-np.abs(offset)]
corrected_video_path = os.path.join(result_folder, "result_sync_corrected")
video_output, status = generate_video(corrected_frames, wav_file, corrected_video_path)
if status != "success":
return None, status
return video_output, "success"
def load_masked_input_frames(test_videos, spec, wav_file, scene_num, result_folder):
'''
This function loads the masked input frames from the video
Args:
- test_videos (list) : List of videos to be processed (speaker-specific tracks)
- spec (array) : Spectrogram of the audio
- wav_file (string) : Path of the audio file
- scene_num (int) : Scene number to be used to save the input masked video
- result_folder (string) : Path of the folder to save the input masked video
Returns:
- all_frames (list) : List of masked input frames window to be used as input to the model
- all_orig_frames (list) : List of original masked input frames
'''
all_frames, all_orig_frames = [], []
for video_num, video in enumerate(test_videos):
print("Processing video: ", video)
# Load the video frames
frames, status = load_video_frames(video)
if status != "success":
return None, None, status
print("Successfully loaded the video frames")
# Extract the keypoints from the frames
# kp_dict, status = get_keypoints(frames)
# if status != "success":
# return None, None, status
# print("Successfully extracted the keypoints")
# Mask the frames using the keypoints extracted from the frames and prepare the input to the model
masked_frames, num_frames, orig_masked_frames, status = load_rgb_masked_frames(frames, kp_dict=None, asd=True)
if status != "success":
return None, None, status
print("Successfully loaded the masked frames")
# Check if the length of the input frames is equal to the length of the spectrogram
if spec.shape[2]!=masked_frames.shape[0]:
num_frames = spec.shape[2]
masked_frames = masked_frames[:num_frames]
orig_masked_frames = orig_masked_frames[:num_frames]
frame_diff = np.abs(spec.shape[2] - num_frames)
if frame_diff > 60:
print("The input video and audio length do not match - The results can be unreliable! Please check the input video.")
# Transpose the frames to the correct format
frames = np.transpose(masked_frames, (4, 0, 1, 2, 3))
frames = torch.FloatTensor(np.array(frames)).unsqueeze(0)
print("Successfully converted the frames to tensor")
all_frames.append(frames)
all_orig_frames.append(orig_masked_frames)
return all_frames, all_orig_frames, "success"
def extract_audio(video, result_folder):
'''
This function extracts the audio from the video file
Args:
- video (string) : Path of the video file
- result_folder (string) : Path of the folder to save the extracted audio file
Returns:
- wav_file (string) : Path of the extracted audio file
'''
wav_file = os.path.join(result_folder, "audio.wav")
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -threads 1 -y -i %s -async 1 -ac 1 -vn \
-acodec pcm_s16le -ar 16000 %s' % (video, wav_file), shell=True)
if status != 0:
msg = "Oops! Could not load the audio file in the given input video. Please check the input and try again"
return None, msg
return wav_file, "success"
@spaces.GPU(duration=60)
def get_embeddings(video_sequences, audio_sequences, model, calc_aud_emb=True):
'''
This function extracts the video and audio embeddings from the input frames and audio sequences
Args:
- video_sequences (array) : Array of video frames to be used as input to the model
- audio_sequences (array) : Array of audio frames to be used as input to the model
- model (object) : Model object
- calc_aud_emb (bool) : Flag to calculate the audio embedding
Returns:
- video_emb (array) : Video embedding
- audio_emb (array) : Audio embedding
'''
video_emb = []
audio_emb = []
model = model.to(device)
for i in tqdm(range(0, len(video_sequences), batch_size)):
video_inp = video_sequences[i:i+batch_size, ]
vid_emb = model.forward_vid(video_inp.to(device), return_feats=False)
vid_emb = torch.mean(vid_emb, axis=-1)
video_emb.append(vid_emb.detach())
if calc_aud_emb:
audio_inp = audio_sequences[i:i+batch_size, ]
aud_emb = model.forward_aud(audio_inp.to(device))
audio_emb.append(aud_emb.detach())
# torch.cuda.empty_cache()
video_emb = torch.cat(video_emb, dim=0)
if calc_aud_emb:
audio_emb = torch.cat(audio_emb, dim=0)
return video_emb, audio_emb
return video_emb
def predict_active_speaker(all_video_embeddings, audio_embedding, global_score, num_avg_frames, model):
'''
This function predicts the active speaker in each frame
Args:
- all_video_embeddings (array) : Array of video embeddings of all speakers
- audio_embedding (array) : Audio embedding
- global_score (bool) : Flag to calculate the global score
Returns:
- pred_speaker (list) : List of active speakers in each frame
'''
cos = nn.CosineSimilarity(dim=1)
audio_embedding = audio_embedding.squeeze(2)
scores = []
for i in range(len(all_video_embeddings)):
video_embedding = all_video_embeddings[i]
# Compute the similarity of each speaker's video embeddings with the audio embedding
sim = cos(video_embedding, audio_embedding)
# Apply the logits scale to the similarity scores (scaling the scores)
output = model.logits_scale(sim.unsqueeze(-1)).squeeze(-1)
if global_score=="True":
score = output.mean(0)
else:
if output.shape[0]<num_avg_frames:
num_avg_frames = output.shape[0]
output_batch = output.unfold(0, num_avg_frames, 1)
score = torch.mean(output_batch, axis=-1)
scores.append(score.detach().cpu().numpy())
if global_score=="True":
print("Using global predictions")
pred_speaker = np.argmax(scores)
else:
print("Using per-frame predictions")
pred_speaker = []
num_negs = list(range(0, len(all_video_embeddings)))
for frame_idx in range(len(scores[0])):
score = [scores[i][frame_idx] for i in num_negs]
pred_idx = np.argmax(score)
pred_speaker.append(pred_idx)
return pred_speaker, num_avg_frames
def save_video(output_tracks, input_frames, wav_file, result_folder):
'''
This function saves the output video with the active speaker detections
Args:
- output_tracks (list) : List of active speakers in each frame
- input_frames (array) : Frames to be used to generate the video
- wav_file (string) : Path of the audio file
- result_folder (string) : Path of the result folder to save the output video
Returns:
- video_output (string) : Path of the output video
'''
try:
output_frames = []
for i in range(len(input_frames)):
# If the active speaker is found, draw a bounding box around the active speaker
if i in output_tracks:
bbox = output_tracks[i]
x1, y1, x2, y2 = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
out = cv2.rectangle(input_frames[i].copy(), (x1, y1), (x2, y2), color=[0, 255, 0], thickness=3)
else:
out = input_frames[i]
output_frames.append(out)
# Generate the output video
output_video_fname = os.path.join(result_folder, "result_active_speaker_det")
video_output, status = generate_video(output_frames, wav_file, output_video_fname)
if status != "success":
return None, status
except Exception as e:
return None, f"Error: {str(e)}"
return video_output, "success"
def preprocess_asd(video_path, result_folder_input):
file = video_path
data_dir = os.path.join(result_folder_input, 'temp')
sd_root = os.path.join(result_folder_input, 'crops')
work_root = os.path.join(result_folder_input, 'metadata')
data_root = result_folder_input
os.makedirs(sd_root, exist_ok=True)
os.makedirs(work_root, exist_ok=True)
avi_dir = os.path.join(data_dir, 'pyavi')
tmp_dir = os.path.join(data_dir, 'pytmp')
work_dir = os.path.join(data_dir, 'pywork')
crop_dir = os.path.join(data_dir, 'pycrop')
frames_dir = os.path.join(data_dir, 'pyframes')
status = process_video_asd(file, sd_root, work_root, data_root, avi_dir, tmp_dir, work_dir, crop_dir, frames_dir)
if status != "success":
return status
print("Successfully pre-processed the video")
return "success"
def process_video_syncoffset(video_path, num_avg_frames, apply_preprocess):
try:
# Extract the video filename
video_fname = os.path.basename(video_path.split(".")[0])
# Create folders to save the inputs and results
result_folder = os.path.join("results", video_fname)
result_folder_input = os.path.join(result_folder, "input")
result_folder_output = os.path.join(result_folder, "output")
if os.path.exists(result_folder):
rmtree(result_folder)
os.makedirs(result_folder)
os.makedirs(result_folder_input)
os.makedirs(result_folder_output)
# Preprocess the video
print("Applying preprocessing: ", apply_preprocess)
wav_file, fps, vid_path_processed, status = preprocess_video(video_path, result_folder_input, apply_preprocess)
if status != "success":
return None, status
print("Successfully preprocessed the video")
# Resample the video to 25 fps if it is not already 25 fps
print("FPS of video: ", fps)
if fps!=25:
vid_path, status = resample_video(vid_path_processed, "preprocessed_video_25fps", result_folder_input)
if status != "success":
return None, status
orig_vid_path_25fps, status = resample_video(video_path, "input_video_25fps", result_folder_input)
if status != "success":
return None, status
else:
vid_path = vid_path_processed
orig_vid_path_25fps = video_path
# Load the original video frames (before pre-processing) - Needed for the final sync-correction
orig_frames, status = load_video_frames(orig_vid_path_25fps)
if status != "success":
return None, status
# Load the pre-processed video frames
frames, status = load_video_frames(vid_path)
if status != "success":
return None, status
print("Successfully extracted the video frames")
if len(frames) < num_avg_frames:
msg = "Error: The input video is too short. Please use a longer input video."
return None, msg
# Load keypoints and check if gestures are visible
kp_dict, status = get_keypoints(frames)
if status != "success":
return None, status
print("Successfully extracted the keypoints: ", len(kp_dict), len(kp_dict["kps"]))
status = check_visible_gestures(kp_dict)
if status != "success":
return None, status
# Load RGB frames
rgb_frames, num_frames, orig_masked_frames, status = load_rgb_masked_frames(frames, kp_dict, asd=False, window_frames=25, width=480, height=270)
if status != "success":
return None, status
print("Successfully loaded the RGB frames")
# Convert frames to tensor
rgb_frames = np.transpose(rgb_frames, (4, 0, 1, 2, 3))
rgb_frames = torch.FloatTensor(rgb_frames).unsqueeze(0)
B = rgb_frames.size(0)
print("Successfully converted the frames to tensor")
# Load spectrograms
spec, orig_spec, status = load_spectrograms(wav_file, asd=False, num_frames=num_frames)
if status != "success":
return None, status
spec = torch.FloatTensor(spec).unsqueeze(0).unsqueeze(0).permute(0, 1, 2, 4, 3)
print("Successfully loaded the spectrograms")
# Create input windows
video_sequences = torch.cat([rgb_frames[:, :, i] for i in range(rgb_frames.size(2))], dim=0)
audio_sequences = torch.cat([spec[:, :, i] for i in range(spec.size(2))], dim=0)
# Load the trained model
model = Transformer_RGB()
model = load_checkpoint(CHECKPOINT_PATH, model)
print("Successfully loaded the model")
# Extract embeddings
print("Obtaining audio and video embeddings...")
video_emb, audio_emb = get_embeddings(video_sequences, audio_sequences, model, calc_aud_emb=True)
print("Successfully extracted GestSync embeddings")
# L2 normalize embeddings
video_emb = torch.nn.functional.normalize(video_emb, p=2, dim=1)
audio_emb = torch.nn.functional.normalize(audio_emb, p=2, dim=1)
audio_emb = torch.split(audio_emb, B, dim=0)
audio_emb = torch.stack(audio_emb, dim=2)
audio_emb = audio_emb.squeeze(3)
audio_emb = audio_emb[:, None]
video_emb = torch.split(video_emb, B, dim=0)
video_emb = torch.stack(video_emb, dim=2)
video_emb = video_emb.squeeze(3)
# Calculate sync offset
print("Calculating sync offset...")
pred_offset, status = calc_optimal_av_offset(video_emb, audio_emb, num_avg_frames, model)
if status != "success":
return None, status
print("Predicted offset: ", pred_offset)
# Generate sync-corrected video
video_output, status = sync_correct_video(video_path, orig_frames, wav_file, pred_offset, result_folder_output, sample_rate=16000, fps=fps)
if status != "success":
return None, status
print("Successfully generated the video:", video_output)
return video_output, f"Predicted offset: {pred_offset}"
except Exception as e:
return None, f"Error: {str(e)}"
def process_video_activespeaker(video_path, global_speaker, num_avg_frames):
try:
# Extract the video filename
video_fname = os.path.basename(video_path.split(".")[0])
# Create folders to save the inputs and results
result_folder = os.path.join("results", video_fname)
result_folder_input = os.path.join(result_folder, "input")
result_folder_output = os.path.join(result_folder, "output")
if os.path.exists(result_folder):
rmtree(result_folder)
os.makedirs(result_folder)
os.makedirs(result_folder_input)
os.makedirs(result_folder_output)
if global_speaker=="per-frame-prediction" and num_avg_frames<25:
msg = "Number of frames to average need to be set to a minimum of 25 frames. Atleast 1-second context is needed for the model. Please change the num_avg_frames and try again..."
return None, msg
# Read the video
try:
vr = VideoReader(video_path, ctx=cpu(0))
except:
msg = "Oops! Could not load the input video file"
return None, msg
# Get the FPS of the video
fps = vr.get_avg_fps()
print("FPS of video: ", fps)
# Resample the video to 25 FPS if the original video is of a different frame-rate
if fps!=25:
test_video_25fps, status = resample_video(video_path, video_fname, result_folder_input)
if status != "success":
return None, status
else:
test_video_25fps = video_path
# Load the video frames
orig_frames, status = load_video_frames(test_video_25fps)
if status != "success":
return None, status
# Extract and save the audio file
orig_wav_file, status = extract_audio(video_path, result_folder)
if status != "success":
return None, status
# Pre-process and extract per-speaker tracks in each scene
status = preprocess_asd(video_path, result_folder_input)
if status != "success":
return None, status
# Load the tracks file saved during pre-processing
with open('{}/metadata/tracks.pckl'.format(result_folder_input), 'rb') as file:
tracks = pickle.load(file)
# Create a dictionary of all tracks found along with the bounding-boxes
track_dict = {}
for scene_num in range(len(tracks)):
track_dict[scene_num] = {}
for i in range(len(tracks[scene_num])):
track_dict[scene_num][i] = {}
for frame_num, bbox in zip(tracks[scene_num][i]['track']['frame'], tracks[scene_num][i]['track']['bbox']):
track_dict[scene_num][i][frame_num] = bbox
# Get the total number of scenes
test_scenes = os.listdir("{}/crops".format(result_folder_input))
print("Total scenes found in the input video = ", len(test_scenes))
# Load the trained model
model = Transformer_RGB()
model = load_checkpoint(CHECKPOINT_PATH, model)
# Compute the active speaker in each scene
output_tracks = {}
for scene_num in tqdm(range(len(test_scenes))):
test_videos = glob(os.path.join("{}/crops".format(result_folder_input), "scene_{}".format(str(scene_num)), "*.avi"))
test_videos.sort(key=lambda x: int(os.path.basename(x).split('.')[0]))
print("Scene {} -> Total video files found (speaker-specific tracks) = {}".format(scene_num, len(test_videos)))
if len(test_videos)<=1:
msg = "To detect the active speaker, at least 2 visible speakers are required for each scene! Please check the input video and try again..."
return None, msg
# Load the audio file
audio_file = glob(os.path.join("{}/crops".format(result_folder_input), "scene_{}".format(str(scene_num)), "*.wav"))[0]
spec, _, status = load_spectrograms(audio_file, asd=True)
if status != "success":
return None, status
spec = torch.FloatTensor(spec).unsqueeze(0).unsqueeze(0).permute(0,1,2,4,3)
print("Successfully loaded the spectrograms")
# Load the masked input frames
all_masked_frames, all_orig_masked_frames, status = load_masked_input_frames(test_videos, spec, audio_file, scene_num, result_folder_input)
if status != "success":
return None, status
print("Successfully loaded the masked input frames")
# Prepare the audio and video sequences for the model
audio_sequences = torch.cat([spec[:, :, i] for i in range(spec.size(2))], dim=0)
print("Obtaining audio and video embeddings...")
all_video_embs = []
for idx in tqdm(range(len(all_masked_frames))):
with torch.no_grad():
video_sequences = torch.cat([all_masked_frames[idx][:, :, i] for i in range(all_masked_frames[idx].size(2))], dim=0)
if idx==0:
video_emb, audio_emb = get_embeddings(video_sequences, audio_sequences, model, calc_aud_emb=True)
else:
video_emb = get_embeddings(video_sequences, audio_sequences, model, calc_aud_emb=False)
all_video_embs.append(video_emb)
print("Successfully extracted GestSync embeddings")
# Predict the active speaker in each scene
if global_speaker=="per-frame-prediction":
predictions, num_avg_frames = predict_active_speaker(all_video_embs, audio_emb, "False", num_avg_frames, model)
else:
predictions, _ = predict_active_speaker(all_video_embs, audio_emb, "True", num_avg_frames, model)
# Get the frames present in the scene
frames_scene = tracks[scene_num][0]['track']['frame']
# Prepare the active speakers list to draw the bounding boxes
if global_speaker=="global-prediction":
print("Aggregating scores using global predictoins")
active_speakers = [predictions]*len(frames_scene)
start, end = 0, len(frames_scene)
else:
print("Aggregating scores using per-frame predictions")
active_speakers = [0]*len(frames_scene)
mid = num_avg_frames//2
if num_avg_frames%2==0:
frame_pred = len(frames_scene)-(mid*2)+1
start, end = mid, len(frames_scene)-mid+1
else:
frame_pred = len(frames_scene)-(mid*2)
start, end = mid, len(frames_scene)-mid
print("Frame scene: {} | Avg frames: {} | Frame predictions: {}".format(len(frames_scene), num_avg_frames, frame_pred))
if len(predictions) != frame_pred:
msg = "Predicted frames {} and input video frames {} do not match!!".format(len(predictions), frame_pred)
return None, msg
active_speakers[start:end] = predictions[0:]
# Depending on the num_avg_frames, interpolate the intial and final frame predictions to get a full video output
initial_preds = max(set(predictions[:num_avg_frames]), key=predictions[:num_avg_frames].count)
active_speakers[0:start] = [initial_preds] * start
final_preds = max(set(predictions[-num_avg_frames:]), key=predictions[-num_avg_frames:].count)
active_speakers[end:] = [final_preds] * (len(frames_scene) - end)
start, end = 0, len(active_speakers)
# Get the output tracks for each frame
pred_idx = 0
for frame in frames_scene[start:end]:
label = active_speakers[pred_idx]
pred_idx += 1
output_tracks[frame] = track_dict[scene_num][label][frame]
# Save the output video
video_output, status = save_video(output_tracks, orig_frames.copy(), orig_wav_file, result_folder_output)
if status != "success":
return None, status
print("Successfully saved the output video: ", video_output)
return video_output, "success"
except Exception as e:
return None, f"Error: {str(e)}"
if __name__ == "__main__":
# Custom CSS and HTML
custom_css = """
<style>
body {
background-color: #ffffff;
color: #333333; /* Default text color */
}
.container {
max-width: 100% !important;
padding-left: 0 !important;
padding-right: 0 !important;
}
.header {
background-color: #f0f0f0;
color: #333333;
padding: 30px;
margin-bottom: 30px;
text-align: center;
font-family: 'Helvetica Neue', Arial, sans-serif;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.header h1 {
font-size: 36px;
margin-bottom: 15px;
font-weight: bold;
color: #333333; /* Explicitly set heading color */
}
.header h2 {
font-size: 24px;
margin-bottom: 10px;
color: #333333; /* Explicitly set subheading color */
}
.header p {
font-size: 18px;
margin: 5px 0;
color: #666666;
}
.blue-text {
color: #4a90e2;
}
/* Custom styles for slider container */
.slider-container {
background-color: white !important;
padding-top: 0.9em;
padding-bottom: 0.9em;
}
/* Add gap before examples */
.examples-holder {
margin-top: 2em;
}
/* Set fixed size for example videos */
.gradio-container .gradio-examples .gr-sample {
width: 240px !important;
height: 135px !important;
object-fit: cover;
display: inline-block;
margin-right: 10px;
}
.gradio-container .gradio-examples {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
/* Ensure the parent container does not stretch */
.gradio-container .gradio-examples {
max-width: 100%;
overflow: hidden;
}
/* Additional styles to ensure proper sizing in Safari */
.gradio-container .gradio-examples .gr-sample img {
width: 240px !important;
height: 135px !important;
object-fit: cover;
}
</style>
"""
custom_html = custom_css + """
<div class="header">
<h1><span class="blue-text">GestSync:</span> Determining who is speaking without a talking head</h1>
<h2>Synchronization and Active Speaker Detection Demo</h2>
<p><a href='https://www.robots.ox.ac.uk/~vgg/research/gestsync/'>Project Page</a> | <a href='https://github.com/Sindhu-Hegde/gestsync'>Github</a> | <a href='https://arxiv.org/abs/2310.05304'>Paper</a></p>
</div>
"""
tips = """
<div>
<br><br>
Please give us a 🌟 on <a href='https://github.com/Sindhu-Hegde/gestsync'>Github</a> if you like our work!
Tips to get better results:
<ul>
<li>Number of Average Frames: Higher the number, better the results.</li>
<li>Clicking on "apply pre-processing" will give better results for synchornization, but this is an expensive operation and might take a while.</li>
<li>Input videos with clearly visible gestures work better.</li>
</ul>
</div>
"""
# Define functions
def toggle_slider(global_speaker):
if global_speaker == "per-frame-prediction":
return gr.update(visible=True)
else:
return gr.update(visible=False)
def toggle_demo(demo_choice):
if demo_choice == "Synchronization-correction":
return (
gr.update(value=None, visible=True), # video_input
gr.update(value=75, visible=True), # num_avg_frames
gr.update(value=None, visible=True), # apply_preprocess
gr.update(value="global-prediction", visible=False), # global_speaker
gr.update(value=None, visible=True), # output_video
gr.update(value="", visible=True), # result_text
gr.update(visible=True), # submit_button
gr.update(visible=True), # clear_button
gr.update(visible=True), # sync_examples
gr.update(visible=False), # asd_examples
gr.update(visible=True) # tips
)
else:
return (
gr.update(value=None, visible=True), # video_input
gr.update(value=75, visible=True), # num_avg_frames
gr.update(value=None, visible=False), # apply_preprocess
gr.update(value="global-prediction", visible=True), # global_speaker
gr.update(value=None, visible=True), # output_video
gr.update(value="", visible=True), # result_text
gr.update(visible=True), # submit_button
gr.update(visible=True), # clear_button
gr.update(visible=False), # sync_examples
gr.update(visible=True), # asd_examples
gr.update(visible=True) # tips
)
def clear_inputs():
return None, None, "global-prediction", 75, None, "", None
def process_video(video_input, demo_choice, global_speaker, num_avg_frames, apply_preprocess):
if demo_choice == "Synchronization-correction":
return process_video_syncoffset(video_input, num_avg_frames, apply_preprocess)
else:
return process_video_activespeaker(video_input, global_speaker, num_avg_frames)
# Define paths to sample videos
sync_sample_videos = [
["samples/sync_sample_1.mp4"],
["samples/sync_sample_2.mp4"]
]
asd_sample_videos = [
["samples/asd_sample_1.mp4"],
["samples/asd_sample_2.mp4"]
]
# Define Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo:
gr.HTML(custom_html)
demo_choice = gr.Radio(
choices=["Synchronization-correction", "Active-speaker-detection"],
label="Please select the task you want to perform"
)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video", height=400, visible=False)
num_avg_frames = gr.Slider(
minimum=50,
maximum=150,
step=5,
value=75,
label="Number of Average Frames",
visible=False
)
apply_preprocess = gr.Checkbox(label="Apply Preprocessing", value=False, visible=False)
global_speaker = gr.Radio(
choices=["global-prediction", "per-frame-prediction"],
value="global-prediction",
label="Global Speaker Prediction",
visible=False
)
global_speaker.change(
fn=toggle_slider,
inputs=global_speaker,
outputs=num_avg_frames
)
with gr.Column():
output_video = gr.Video(label="Output Video", height=400, visible=False)
result_text = gr.Textbox(label="Result", visible=False)
with gr.Row():
submit_button = gr.Button("Submit", variant="primary", visible=False)
clear_button = gr.Button("Clear", visible=False)
# Add a gap before examples
gr.HTML('<div class="examples-holder"></div>')
# Add examples that only populate the video input
sync_examples = gr.Dataset(
samples=sync_sample_videos,
components=[video_input],
type="values",
visible=False
)
asd_examples = gr.Dataset(
samples=asd_sample_videos,
components=[video_input],
type="values",
visible=False
)
tips = gr.Markdown(tips, visible=False)
demo_choice.change(
fn=toggle_demo,
inputs=demo_choice,
outputs=[video_input, num_avg_frames, apply_preprocess, global_speaker, output_video, result_text, submit_button, clear_button, sync_examples, asd_examples, tips]
)
sync_examples.select(
fn=lambda x: gr.update(value=x[0], visible=True),
inputs=sync_examples,
outputs=video_input
)
asd_examples.select(
fn=lambda x: gr.update(value=x[0], visible=True),
inputs=asd_examples,
outputs=video_input
)
submit_button.click(
fn=process_video,
inputs=[video_input, demo_choice, global_speaker, num_avg_frames, apply_preprocess],
outputs=[output_video, result_text]
)
clear_button.click(
fn=clear_inputs,
inputs=[],
outputs=[demo_choice, video_input, global_speaker, num_avg_frames, apply_preprocess, result_text, output_video]
)
# Launch the interface
demo.launch(allowed_paths=["."], share=True) |